The invention relates generally to fitness equipment, and more specifically to fitness equipment that mechanically links to one or more plates in a weight plate stack after a user selects the desired amount of weight to be lifted by the user.
There are various types of activities that people can engage in to enhance physical fitness. Many types of fitness devices have been invented to aid people in their quest for physical fitness, and these range from the simple barbell to the mechanically complex cable, pulley and weight stack machines. In the latter, a series of stacked weights aligned with a rod extending vertically therethrough are lifted by the user through one or more cables extending through pulleys attached at one end to the rod and at the opposite end to a handle. The user selects the position of the handle in order to correctly match the lifting routine and body size, and the user selects the amount of weight appropriate to his or her fitness level in the routine.
Conventional means for selecting the amount of weight include a T-shaped pin that inserts between two of the cast iron plates in the stack and into an aligned aperture in the rod. Because the pin is placed beneath one of the plates and into the rod, when the rod is raised by pulling on the cable, the weight plates above the pin are lifted with the rod. To remove the pin from the stack, one typically lowers the weights and then presses a button at the intersection of the “legs” of the “T”. This allows the pin to be withdrawn from the aperture in the rod, for example by reducing the diameter of the pin by moving radially inwardly a small ball that otherwise protrudes from the shaft of the pin.
While those with the ability to grasp the handle and press the button on such T-shaped pins take for granted their ability to carry out the procedure needed to withdraw such a pin, a significant portion of the population is not capable of carrying out this procedure. Fitness machines listed in the Invention Disclosure Statement have been invented to allow users who are not able to carry out this procedure to avoid such machines. However, such prior art machines suffer from various weaknesses that hinder their use. Therefore, the need exists for a fitness machine with a weight stack that permits quick and accurate change of weight and display of the selected weight.
The present invention contemplates a method and apparatus for electromechanically selecting a specified resistance through a rotational interface used by a human operator. The preferred system components include a dial that is used to select a quantity of resistance, and also displays the quantity selected. A weight stack, or a selected portion thereof, is raised and lowered by the human user according to the quantity of resistance selected using the dial. A pin insertion assembly is actuated by a computer, using the information received from the dial in a program that is designed to mechanically link the selected weight with a cable that a human interface attaches to for lifting the weight. Preferably, a plurality of solenoids is used to drive a plurality of pins into apertures between the weights and into aligned apertures in a rod to which the cable attaches. When the dial is rotated, a system of gears engages a potentiometer to determine the specified resistance based on dial orientation. This information is processed by the computer and the computer actuates the appropriate solenoid for the selected weight.
The solenoids are mounted to a tower in an array of actuator solenoids and retraction solenoids. Each actuator solenoid is coupled to a corresponding array of pins through a linkage system. When an actuator solenoid is actuated by the computer, the linkage translates the corresponding pin into the weight stack to engage the weight, which enables the specified weight to travel with the cable. When a new resistance is specified by rotating the dial, the retraction solenoids are first actuated to engage a reset bar, which, through a linkage system, removes any pin engaged in the weight stack. After retraction is completed, the respective actuator solenoid is actuated by the computer according to the specified resistance.
In describing the preferred embodiment of the invention which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific term so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. For example, the word connected or terms similar thereto are often used. They are not limited to direct connection, but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art.
Provisional patent application Ser. No. 61/757,484, filed Jan. 28, 2013, which is the above claimed priority application, is incorporated in this application by reference.
The fitness machine 10 shown in
A weight selection mechanism 40 shown in
The weight selection mechanism 40 includes the weight stacks 30, 32 and 34 and a pair of vertical bars 42 and 44 that extend along one side of the weight stack 30 and are used for guidance during vertical displacement of the apparatus 20. The cable connector/pulley apparatus 20 rests on the top of the weigh stack 30 and has three rods 22, 23 and 24 that extend downwardly from the apparatus 20 and into the weight stacks 32, 30 and 34, respectively. The terms “up”, “down”, “upward”, “downward”, and other terms of orientation are used herein. These terms are relative to the position and orientation of the structures of the machine 10, and, unless indicated otherwise, are used in relation to the orientation of the machine 10 of
The cables 12c and 14c connect the handles 12 and 14 to the apparatus 20 so that upon pulling the handles 12 and 14, the apparatus 20 is raised from the position shown in
The rod 23 has a plurality of apertures 23a formed therein (see
The pin insertion assembly 60, which is part of the weight selection mechanism 40 as shown in
Two shafts 74 and 76 are mounted to the frame 71. Each of the solenoids 70 extends to a pivotal connection with a respective linkage 78, which is preferably a flat metal plate with an aperture through which the shaft 74 extends to form a pivot. Upon actuation of one of the solenoids 70 as instructed by the computer 90 to withdraw its driveshaft from the position shown in
Each pin 60a has a shoulder 82 that seats against a reset bar 80a that is drivingly linked to the retraction solenoids 80, which are also connected to the computer 90. Upon actuation of the retraction solenoids 80 by instruction of the computer 90, the reset bar 80a is pulled away from the weight stack (downwardly in the illustration of
The secondary weight stacks 32 and 34 operate in a similar manner to the weight stack 30, except that there are not multiple weights to select among. Instead, the single weight in the secondary weight stacks 32 and 34 are either selected or it is not. The weight stack 34 preferably weighs 10 pounds, which, due to the mechanical advantage provided by the pulley arrangement, provides 5 pounds of resistance to a user pulling on the cable. The pin insertion assembly 160 is very similar to the pin insertion assembly 60 except that the assembly 160 has only one actuator solenoid 170 connected to the computer 90 for inserting a pin 170a completely into a single aperture through the weight stack 34 and an aperture in the rod 24 to connect the weight stack 34 to the rod 24. A retraction solenoid 180 is also connected to the computer 90 and withdraws the pin 160a using a single linkage (not visible) substantially identical to the linkage 78.
The weight stack 32 is preferably 20 pounds in weight, which, due to the mechanical advantage provided by the pulley arrangement, provides 10 pounds of resistance to a user pulling on the cable. The pin insertion assembly 260 is very similar to the pin insertion assembly 60 except that it has only one solenoid 270 connected to the computer 90 for inserting a pin (not visible) completely into a single aperture through the weight stack 32 and an aperture in the rod 22 to connect the weight stack 32 to the rod 22. A retraction solenoid 280 is connected to the computer 90 and withdraws the pin using a single linkage (not visible) substantially identical to the linkage 78. Thus, using the weight stacks 32 and 34, five, ten or fifteen pounds can be added to each plate or set of plates in the weight stack 30, each of which preferably weighs 40 pounds with effective resistance of 20 pounds after the mechanical advantage provided by the pulley connection.
It should be understood that the exact weight of each plate, and the number of combinations thereof, is not critical to the function of the weight selection apparatus 40. Furthermore, there can be any desired and feasible number of weight stacks. The amount of weight that can be selected on the machine 10 preferably ranges from ten to 150 lbs by increments of five pounds, but this amount could be modified and still include the inventive features described herein. The amounts and combinations are described herein as examples, and a person having ordinary skill in the technology will understand from the explanation how to adapt the invention to any weight stack or weight amount.
The preferred means by which the weight selection mechanism 40 is actuated is shown in FIGS. 1 and 8-9. The dial 100 is mounted on the face of the fitness machine 10, preferably between about chest and eye levels. The dial 100 is shown in
The dial 100 is shown in
An example of this is shown in
Once the selected weight is connected to the apparatus 20, which typically will take on the order of a few seconds from stopping the rotation of the dial 100, the display of the dial 100 preferably indicates that the machine 10 is ready, such as by changing the color of the displayed text to green or some other color. During rotation of the dial 100, the display can be blank, or the color of the numbers can be displayed in a different color, such as red or black. The type of indication can vary from a color change, but in any case it is preferred that the display 106 indicate in a human-perceptible manner (visible, audible, etc.) that the machine 10 is ready for use because the desired amount of weight has been connected to the machine's handles.
It should be noted that the method of clearing and then selecting weight can be varied from that described above. For example, the pins inserted can be removed when the machine 10 is idle for a predetermined period of time and the dial 100 and display 106 are reset. For safety purposes, it is desirable that no solenoids be actuated while the machine 10 is in use. Therefore, sensors are used to detect the position of the apparatus 20 relative to the weight stack 30, and if the apparatus 20 is in a “home” position resting upon the weight stack, the computer 90 can actuate solenoids to insert or withdraw pins. If not, the computer 90 waits until the home position is achieved before actuating solenoids.
This detailed description in connection with the drawings is intended principally as a description of the presently preferred embodiments of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention and that various modifications may be adopted without departing from the invention or scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4746113 | Kissel | May 1988 | A |
5037089 | Spagnuolo et al. | Aug 1991 | A |
5104120 | Watterson et al. | Apr 1992 | A |
5350344 | Kissel | Sep 1994 | A |
5383826 | Michael | Jan 1995 | A |
5643151 | Naimo | Jul 1997 | A |
6015367 | Scaramucci | Jan 2000 | A |
7429236 | Dalebout et al. | Sep 2008 | B2 |
7473211 | Lee | Jan 2009 | B2 |
7485076 | Lee | Feb 2009 | B2 |
7507189 | Krull | Mar 2009 | B2 |
7662070 | Mann | Feb 2010 | B1 |
7717824 | Pinto | May 2010 | B2 |
7722509 | Eder | May 2010 | B2 |
7938762 | Nishimura | May 2011 | B2 |
7995038 | Vitale et al. | Aug 2011 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
D687047 | Hales, IV et al. | Jul 2013 | S |
20060172858 | Chen | Aug 2006 | A1 |
20080176713 | Olivera Brizzio et al. | Jul 2008 | A1 |
20110009239 | Whelan, Jr. | Jan 2011 | A1 |
20110195823 | Lee | Aug 2011 | A1 |
20130237390 | Lo | Sep 2013 | A1 |
20130296142 | Robertson et al. | Nov 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
61757484 | Jan 2013 | US |