The present application relates to the technical field of medical devices, and in particular to a five-degree-of-freedom (5-DOF) therapeutic focus positioning device for magnetic resonance guidance (MM-guided).
The MR-guided focused ultrasound surgery (MrgFUS) is a non-invasive therapy technique based on real-time magnetic resonance imaging. In recent years, it has shown good results in the clinical therapy of uterine fibroids, brain tumors and other tumors. With the continuous development of real-time imaging technology, this physical therapy technology can be monitored in real time during the therapy process, which greatly improves the accuracy of therapy, and has attracted more and more attention from the medical community.
When the phased-array high-intensity focused ultrasound therapy system works under the guidance of imaging equipment such as magnetic resonance, it needs to obtain images around the diseased tissue in real time from the equipment, which is convenient for doctors to plan therapy before the surgery and to evaluate the therapy effect after the surgery. The focus of the phased-array high-intensity focused ultrasound therapy system is the movable ultrasound probe. When the doctor determines the ablation area and prepares for the ablation operation, the accurate and reliable positioning of the ultrasound probe plays a key role in selectively ablation of the diseased tissue. The positioning of the ultrasound probe requires precise mechanical controlled device. Therefore, whether an accurate and reliable probe mechanical controlled device can be invented directly determines the length of the therapy time and the accuracy of the therapy range of the lesion, which has a direct impact on the safety of the therapy process and the effect after the therapy.
As a result, various probe controlled equipment came into being. CN108042932A discloses an ultrasonic probe controlled device used in the Magnetic Resonance Imaging Phased High Intensity Focused Ultrasound (MRI-pHIFU) hyperthermia system, and discloses a probe movement control assembly for controlling the probe connection plate to perform the multi-degree-of-freedom movement. A motor variable speed group for driving the probe movement control mechanism is provided in the driving bed, and the probe movement control assembly includes a probe front and rear movement mechanism, a probe left and right movement mechanism, a probe rotation mechanism and a probe swing mechanism. The probe connection plate is installed with an ultrasonic probe. However, the motor used in the mechanical positioning device will affect the performance of the magnetic resonance, or the motor is away from the magnetic resonance, resulting in a relatively great movement accuracy error.
The present application provides a 5-DOF therapy focus positioning device for magnetic resonance guidance in order to solve the above problems.
The purpose of the application is realized by the following technical solutions.
A 5-DOF therapeutic focus positioning device for magnetic resonance guidance, including: a driving bed body, a working bed body and an auxiliary bed body;
the working bed body is provided with a probe connection plate and a probe movement control assembly for controlling the probe connection plate to perform a multi-degree-of-freedom movement, and the probe connection plate is provided with an ultrasonic probe;
the probe movement control assembly includes a mechanism moving front and rear of the probe, a mechanism moving left and right of the probe, a rotation mechanism of the probe, a mechanism moving up and down of the probe and a swinging mechanism of the probe; and
the driving bed body is provided with a motor variable speed group for driving the probe movement control assembly, the motor variable speed group provides a power for the probe movement control assembly, and controls a movement of the probe connection plate through coupling, so as to control a movement of the ultrasonic probe.
The present application adopts the modular design of the driving bed, the working bed body and the auxiliary bed, and completely separates the motor variable speed group from the ultrasonic probe, which effectively avoids the electromagnetic interference caused by the close distance between the motor group and the ultrasonic probe during the operation of the device. The parallel structure design of five degrees of freedom makes the movement process precisely controlled, and the degrees of freedom do not interfere with each other. The positioning of the probe focus is more flexible and convenient.
In an embodiment, five motor variable speed groups are provided, including a motor variable speed group of the mechanism moving front and rear of the probe, a motor variable speed group of the mechanism moving left and right of the probe, a motor variable speed group of the rotation mechanism of the probe, a motor variable speed group of the rotation mechanism of the probe and a motor variable speed group of the swing mechanism of the probe, and
the motor variable speed group of the mechanism moving front and rear of the probe is fixed on the driving bed body, the motor variable speed group of the mechanism moving left and right of the probe is fixed on a dragging plate of a driving area through a first triangular bracket, the motor variable speed group of the rotation mechanism of the probe is fixed on the dragging plate of the driving area through a second triangular bracket, the motor variable speed group of the rotation mechanism of the probe is fixed on the dragging plate of the driving area through a third triangular bracket, the motor variable speed group of the swing mechanism of the probe is fixed on the dragging plate of the driving area through a fourth triangular bracket, and the dragging plate of the driving area is coupled to the driving bed body through a guiding rail of the driving area.
In an embodiment, each motor variable speed group includes a motor frame, a first gear and a second gear provided in the motor frame, the first gear is larger than the second gear, the second gear is meshed with the first gear, an ultrasonic motor is fixed on the second gear, the first gear is fixed to an output shaft of the motor, and the output shaft of the motor is coupled on the motor frame through a bearing of the motor group.
In an embodiment, the mechanism moving front and rear of the probe is embedded on a dovetail groove shape guiding rail through a sliding rail, the dovetail groove shape guiding rail is coupled on the working bed body through a fixing bracket of the guiding rail, and a dragging plate moving left and right of the working area is connected to the motor variable speed group of the mechanism moving front and rear of the probe and move front and rear through a front and rear connection assembly.
In an embodiment, the front and rear connection assembly includes a rod pushing front and rear and a screw rod moving front and rear, one end of the rod pushing front and rear is connected to the dragging plate moving left and right of the working area through a supporting member moving front and rear, another end of the rod pushing front and rear is fixed to the dragging plate of the driving area through an adjustment block, one end of the screw rod moving front and rear is connected to the motor variable speed group of the mechanism moving front and rear of the probe through a coupling, and another end of the screw rod moving front and rear is coupled to a nut of the screw rod moving front and rear.
In an embodiment, the mechanism moving left and right of the probe includes a dragging plate of the working area coupled on the dragging plate moving left and right of the working area through a sliding rail moving left and right, the dragging plate of the working area is connected to a first transmission unit, configured to change a direction of a power, through a transmission screw rod moving left and right, the first transmission unit is connected to the motor variable speed group of the mechanism moving left and right of the probe and move left and right through a dragging plate moving left and right of the working area and a coupling.
In an embodiment, the first transmission unit includes a first bevel gear and a second bevel gear meshed with the first bevel gear, the first bevel gear is fixed to an end of the dragging plate moving left and right of the working area, the second bevel gear is fixed on an end of the transmission screw rod moving left and right, the dragging plate moving left and right of the working area is provided with a first bearing of the working area and is supported by a first bearing bracket, a first bearing bracket, a square bearing cover is provided outside the first bearing of the working area, the transmission screw rod moving left and right is provided with a second bearing of the working area and is supported by a second bearing bracket, a circular bearing cover is provided outside the second bearing of the working area, and the transmission screw rod moving left and right is fixed on the dragging plate of the working area through a screw rod bracket.
In an embodiment, the swinging mechanism of the probe includes a transmission worm screw rod, a transmission worm rod connected to the transmission worm screw rod, a transmission worm rod meshed with the transmission worm rod, and a rotation sleeve connected to the transmission worm rod, the rotation sleeve is fixed to a rotation frame, a rotation movement is generated between the rotation frame and a first rotation side plate, a second rotation side plate is configured to generate a rotation movement, one end of the transmission worm screw rod is provided on a worm rod bracket, another end of the transmission worm screw rod is connected to a second transmission unit configured to change the direction of the power, the second transmission unit is connected to the motor variable speed group of the rotation mechanism of the probe through a second coupling of the driving area and a rotation shaft transmitting front and rear, the transmission worm rod is provided in the worm rod bracket, and the dragging plate of the working area is provided with a sleeve limiter confining a front and rear movement of the rotation sleeve.
In an embodiment, the second transmission unit includes a third bearing of the working area, a fourth bearing of the working area, a third bearing bracket, a fourth bearing bracket, a second circular bearing cover, a second square bearing cover, a third bevel gear and a fourth bevel gear, the rotation shaft transmitting front and rear is coupled to the third bearing bracket through the third bearing of the working area and is fixed to the third bevel gear, the second circular bearing cover is clamped in the third bearing of the working area and is fixed on the third bearing bracket, the third bevel gear is meshed with the fourth bevel gear, the fourth bevel gear is fixed to the transmission worm screw rod, the transmission worm screw rod is coupled with the fourth bearing bracket through the fourth bearing of the working area, and the second square bearing cover is clamped on the fourth bearing of the working area and is fixed on the fourth bearing bracket.
In an embodiment, the rotation mechanism of the probe includes a motor variable speed group of the rotation mechanism of the probe, a nut of the rotation mechanism, a nut fixing frame of the rotation mechanism, a rotation screw rod, a rotation guiding rod, a rotation shaft, a rotation crank, the rotation crank, a rotation transmission shaft, a rotation block, a first connecting rod, and a second connecting rod, the motor variable speed group of the rotation mechanism of the probe realizes a front and rear movement of the rotation screw rod through rotating the nut of the rotation mechanism, the rotation screw rod realizes a front and rear movement of a rotation shaft through rotating the rotation guiding rod, there is no limitation when the rotation guiding rod and the rotation shaft move left and right, a motion is transmitted to the rotation block by the rotation shaft through the rotation crank and the rotation transmission shaft, the probe connection plate is directly driven to rotate by the rotation block through the first connecting rod and the second connecting rod, wherein the rotation shaft is rotably coupled with the rotation crank, the rotation crank is fixed to the rotation transmission shaft, and the rotation transmission shaft is fixed to the rotation block.
In an embodiment, The mechanism moving up and down of the probe includes the motor variable speed group of the mechanism moving up and down of the probe, a nut of the up and down movement mechanism, a nut bracket of the up and down movement mechanism, a screw rod of the up and down movement mechanism, a guiding rod of the up and down movement mechanism, a transmission shaft of the up and down movement mechanism, a conduction block of the up and down movement mechanism, a crank of the up and down movement mechanism, a connecting block of the up and down movement mechanism, a supporting bracket of the probe of the up and down movement mechanism, and the probe connection plate. The motor variable speed group of the mechanism moving up and down of the probe converts the rotation movement to a liner movement of the screw rod of the up and down movement mechanism through the nut of the up and down movement mechanism. The screw rod of the up and down movement mechanism passes the movement to the up and down movement mechanism through the guiding rod of the up and down movement mechanism, and the conduction block of the up and down movement mechanism is driven to move. The connecting block of the up and down movement mechanism is directly driven to move by the conduction block of the up and down movement mechanism through the crank of the up and down movement mechanism. The connecting block of the up and down movement mechanism is fixed to the supporting bracket of the probe of the up and down movement mechanism. The supporting bracket of the probe of the up and down movement mechanism is fixed to the probe connection plate, and the probe is driven to rotate up and down, so as to realize the up and down movement of the probe. There is no limitation when the screw rod of the up and down movement mechanism and the guiding rod of the up and down movement mechanism move left and right.
The whole machine of the present application is non-magnetic and fully compatible with the MRI equipment. The feasibility of the movement and the performance have been verified in the experiment of ablation of bone tumors in the MRI-pHIFU hyperthermia system. The machine in the present application can assist the ultrasonic system to accurately move and position the focal point during the therapy process to make up for the lack of spatial movement range of the phased-array focus, which is of great significance for realizing ablation of large-scale bone tumors, reducing ablation errors, and realizing the precise therapy.
Compared with prior art, the present application has the following advantages:
The present application will be described in detail below with the accompanying drawings and embodiments.
An ultrasonic probe controlled device used in a Magnetic Resonance Imaging Phased High Intensity Focused Ultrasound (MRI-pHIFU) hyperthermia system, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The above descriptions of the embodiments are for those skilled in the art to understand and use the present application. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles to other embodiments without creative effort. Therefore, the present application is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present application without departing from the scope of the present application should fall within the scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202023048152.9 | Dec 2020 | CN | national |
This application is a continuation application of International Application No. PCT/CN2021/082584, filed on Mar. 24, 2021, which claims priority to Chinese Patent Application No. 202023048152.9, filed on Dec. 17, 2020. The disclosures of the above-mentioned applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/082584 | Mar 2021 | US |
Child | 18335323 | US |