The present invention relates to five-simultaneously-working-axis Computerized Numerical Control (CNC) tooth-cutting machine tools for plane enveloping toroidal worms.
Some existing toroidal worm grinding equipment have been developed recently, such as German HNC 35 TP and the Chinese Patent No. ZL92204765.0 patent entitled “Four-simultaneously-working-axis computerized numerical controlled toroidal worm grinding machines”. This equipment has such advantages that the thread of plane enveloping toroidal worms can accurately be formed in once grinding; the ground workpieces can acquire high accuracy and perfect surface roughness. However, their deficiencies are low productiveness and expensive machining cost, so that it results in very high cost of the machined workpieces and cannot meet the needs of constantly developing production.
The technical problem to be solved by this invention is to provide a sort of five-simultaneously-working-axis CNC tooth-cutting machine tools for accurately forming plane enveloping toroidal worms in order to improve the productivity and reduce the cost.
In order to solve the above technical problem the technical scheme adopted by this invention is to provide a five-simultaneously-working -axis computerized numerical controlled tooth-cutting machine tool for plane enveloping toroidal worms, comprising a body of the machine tool and a controlling cabinet. The body comprises a bed, a spindle box with a spindle, a longitudinal sliding table, a vertical guideway, a traverse slider and a tailstock, a cutter rest that supports a rotating cutter head is mounted on the vertical guideway, the spindle rotates about A-axis thereof, the table longitudinally slides along Y-axis relative-to the bed, the cutter head rotates about B-axis thereof and transversely shifts along X-axis, as well as the cutter head makes up of down shift along Z-axis of the vertical guideway. The controlling cabinet is equipped with programs for controlling the five axes of A, Y, X, Z and B to simultaneously work together, wherein a first coordinate system Σ1 is connected with the workpiece, a second coordinate system Σ2 is connected with an imaginary gear, a third coordinate system Σ3 is connected with the rotating cutter head and a four coordinate system Σ4 is connected with the cutting edges, based upon the operating transformation of the coordinate systems, the motion equations of the five axes of the machine tool are determined so that the shift of the cutting edges of the cutter on the cutter head is controlled to simulate an inclined plane in spatial locations in order to envelop cut the tooth flanks of plane enveloping toroidal worms.
Perfectly, the inclined plane simulated by the cutting edges of the cutters rotates around the central axis of the imaginary gear k2(o2), i.e. the composition of both the rotation of B-axis and the revolution of B-axis around the axis of k2(o2), at the same time the workpiece rotates around J1(o1) (i.e. A-axis), in the course of relative motions the tooth flank of plane enveloping toroidal worm is generated.
Perfectly, the tooth forming motion of plane enveloping toroidal worm can correctly be controlled by means of controlling the values of a rotating angle φ, of the workpiece rotating around j1(o1)-axis, a rotating angle φ2 of the imaginary gear rotating around k2 (o2)-axis, a rotating angle φ, of the cutter head rotating around k3 (o3)-axis, the included angle τ between the radius vector r and the coordinate axis j2(o2) while the center o3 of the cutter head rotating around the center o2 of the imaginary gear and a distance h of the center o2 of the imaginary gear making straight-line shift along thereof central axis k2 (o2)-axis to point o5, in which φ1/φ2 is equal to the gear ratio between the machined worm and the imaginary gear.
Perfectly, there are at least two blades mounted on the rotating cutter head, the cutting edges of the blades are of straight line which lies on the plane perpendicular to the axis of the rotating cutter head.
Perfectly, the cutter edges are all located on two tooth planes of the imaginary gear; while two tooth planes are inclined with an angle β with respect to the central axis of the imaginary, gear and tangential to two imaginary spatial cones respectively; the half conic angles of two cones are equal to the inclined angle β, the radius rb of said imaginary cones is equal to the radius rbt of the main basic circle of the imaginary gear, the cutting edges on the cutter head shift along the tooth plane imaginary gear; while the inclined plane is tangential to the spatial cone and rotates around the central axis k2(o2) of the cone; the center o2 of the imaginary gear makes up or down shift along the vertical axis k2(φ), the cutting edge comes into cutting at point N and secedes from cutting at point S, the coordinates of every point on the workpiece make following-up motions along X-, Y-and Z-axes while B-axis, makes the circular-arc interpolating motion around the central axis k2(o2) of the imaginary gear. In other words, the resultant motion of shifts along X-, and Y-axes, is equivalent to the revolution of B-axis around the central axis k2(o2) of the imaginary gear.
Perfectly, the spindle box and the tailstock are fixed on the longitudinal sliding table that is movably mounted on the bed, and the traverse slider is mounted on the bed.
The effect of the machine tool is that the rotating speed of cutter shaft and workpiece shaft can make the cutting velocity up to 200 m/min, thus the working efficiency is six to seven times higher than that of worm grinding and the productivity can greatly be improved. The machine tool of the present invention is to supplement the deficiency of toroidal worm grinding machines and to provide a sort of high-productivity tooth cutting machine tools.
By referring to the attached drawings and embodiment, the technical scheme of the present invention would further be expounded as follows.
As shown in
The main motions of this machine tool include: the rotating motion of the spindle rotating about A-axis thereof; the longitudinal sliding movement of the table 3 along Y-axis relative to the bed shifts; the rotating motion of the cutter head 6 rotating around B-axis thereof; the transverse movement of the cutter head 6 shifting along X-axis and the movement of the cutter head 6 shifting up or down along Z-axis of the vertical guideway. Thus the workpiece rotates about A-axis and the cutter head 6 rotates about B-axis at given speed, transversely shifts along X-axis and upwards or downwards shifts along Z-axis as well as longitudinally shifts along Y-axis relative to the workpiece mounted between the spindle of the spindle box 2 and the tailstock 7.
The controlling cabinet is equipped with the programs for controlling spindle rotation and for controlling the shifting along longitudinal, transverse and vertical directions as well as the rotation of the cutter head so as to make the rotation about or the shifts along five axes of A, B, Y, X and Z simultaneously work together to control the shifting of the cutting edges of the cutter head 6 relatively to the workpiece to simulate the rotating motion of an inclined plane in space in order to envelop cut the tooth flanks of plane enveloping toroidal worms. Therefore the thread of plane enveloping toroidal worms would be formed. The speed of the spindle can automatically be adjusted according to the size of workpiece to keep the constant cutting velocity.
In order to improve the productivity of tooth cutting, a vertical guideway is mounted on the traverse slider 4. The cutter body is connected with the nut through the structure of a ball lead screw. The cutting edge of the cutter makes up or down shift along the guideway. The edge form of the blade is of straight line, which lies on the plane perpendicular to the axis of the rotating cutter head. The left cutting edge is tangential to an imaginary special circular cone, while the right cutting edge to another imaginary circular cone. The bases of these two cones are congruent with one another, while the vertexes of two cones are located in opposite positions. Five-axis-simultaneously-working makes the cutting edges of the cutter shift along an inclined plane and rotate around the, axis of the cone so as to generate the thread of worm.
As shown in
The longitudinal sliding table 3 is mounted on said bed 1. Said spindle box 2 and said tailstock 7 are fixed on said longitudinal sliding table 3. The workpiece is mounted between spindle A and the tailstock 7. The spindle controls the rotation of the workpiece by using a servomotor 9. The longitudinal sliding table 3 makes the workpiece shift along Y-axis through a servomotor 13. The traverse slider 4 is mounted on said bed 1 and can feed along X-axis driven by a servomotor 12. The rotating cutter 6 is mounted on the cutter rest 5 located on the vertical guideway and can rotate around B-axis driven by a servomotor 11. The cutter rest is driven by a servomotor 10 through a set of lead screw-nut mechanism and makes the cutter head up or down shift along Z-axis. The rotating speed of A axis can automatically be adjusted according to the size of the workpiece to keep the constant cutting velocity. Thus the workpiece both rotates about A-axis and shifts along Y-axis, and the cutter head 6 rotates about B-axis with a given speed, transversely shifts along X-axis and upwards or downwards shifts along Z-axis.
Similarly, the programs being equipped within the controlling cabinet controls the spindle rotation and the shifting movements along longitudinal, transverse and vertical directions as well as the rotation of the cutter head so as to make the movements of rotating about or shifting along the five axes of A, Y, X, Z and B simultaneously work together to control the shifting of the cutter edges of the cutter blades of the cutter head 6 relatively to the workpiece to simulate an inclined plane in spatial locations in order to envelop out the tooth flanks of plane enveloping toroidal worms. Therefore the thread of plane enveloping toroidal worms would be formed.
As shown in
As shown in
As shown in
As shown in
The origin of the third coordinate system Σ3 that is fixed with the cutter head is o3. o3 will rotates around the central axis k2(o2) of the imaginary gear in the course of machining r represents the radius vector from the origin o5 to the origin o3. The angle included between the radius vector r and the axis j2(o2) is expressed by τ. Make the second coordinate system Σ2:{o2; i2(o2), j2(o2), k2(o2)} representing the imaginary gear be directly related to the third coordinate system Σ3:{o3; i3(φ3), j3(φ3), k3(φ3)} for the cutter head by using the radius vector r and the polar angle τ in order conveniently to reveal the motion relationship between the rotating center o3 of the cutter head and the moving point o5. The shifting of the center o3 of the cutter head can be described in the first coordinate system Σ1:{o1; i1(o1), j1(o1), k1(o1)}:
r={square root}{square root over (rat2−rac2−2ratrac cos(αat−αac))} Formula (2)
τ=Φ3+90°−αat−η Formula (3)
Where, αat—The pressure angle of the tip circle of the imaginary gear;
Point N in the figure is the cutting-in point; point S is the seceding point.
Through ΔO2NO3 we can investigate the values of r and τ mentioned above.
Formulae (1), (2) and (3) determine the coordinates of the center o3 of the cutter head and the imaginary gear in the course of simultaneous working. And it is not hard to find φ3.
(1) At Point N, x1N and y1N are known, for the cutting edge1, the rotating angle o3 of the center o3 of the cutter head is
(2) At Point S, x1S and y1S are known, for the cutting edge1, the rotating angle φ3 of the center o3 of the cutter head is
The above formulae (7) and (8) establish the spatial motion relationship of the workpiece and the cutter head. The cutting edge 1 comes into cutting at point N and secedes from cutting at point S. According to the same reason, the cutting rotating angles o3 of the cutting edges 1, 2 and 3 can be found.
In
the plane enveloping motion between the imaginary gear and the worm can be realized. This invention connects the rotating cutter head with the coordinate system Σ3 and makes the workpiece rotate around j1(o1) for angle φ1, the cutter head rotates around its own center o3 for angle φ3, at the same time o3 rotate around the center o2 of the imaginary gear for an angle τ. The cutter edge EN passes through point N, N is the end point of circular arc at the tooth root of the worm. Each cutting edge comes into cutting at point N and secedes from cutting at point S. The motion of the machine tool can compound the five-axis simultaneous working forming motion for cutting the threads of the worm by using the cutter edge 1 to substitute for EN through controlling the rotating angle φ1 of the workpiece, the rotating angle φ2 of the imaginary gear and the rotating angle φ3 of the cutter head around its own axis as well as the rotating angle τ of the cutter head around j2(o2)-axis. FIGS. 8(2) and 8(3) show the motion state of the cutting edge EN under the condition of that the cutter head makes up or down shift along o2o5 for the distance h (h<0 or h>0).
Based upon the motion principle of the existing CNC-controlled toroidal worm grinding machines, this invention can once form the tooth flank of plane enveloping toroidal worms by using the above embodiment in accordance with the present invention and makes the tooth profile of the machined toroidal worms identical with that of the ground worms by toroidal worm grinding machines as mentioned above in the Patent No. ZL 92204765.0. In this case it can greatly improve the productivity. If grinding a worm, it will take one hour from fine blank to finish formed step; while cutting a worm, it will take 10 minutes only from fine blank to formed step. If tooth-grinding process combines with the present invention, taking tooth cutting as the rough machining of the worms, and then using tooth grinding for improving the surface roughness of the worms, it will greatly raise the productivity. Under the condition of high-speed cutting, the rotating speed of cutter shaft and workpiece shaft can make the cutting velocity up to 200 m/min, thus the working efficiency is six to seven times higher than that of worm grinding. The machine tool of this invention is to overcome the deficiency of toroidal worm grinding machines and to provide a sort of high-productivity tooth cutting machine tools.
Although the preferred embodiment of the present invention has been described above, this invention is not limited to the particular structures and features described in detail herein. It will be apparent to those skilled in the art that numerous modification form part of the invention insofar as they do not depart from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
02282433.2 | Oct 2002 | CN | national |
This application is a continuation-in-part of application Ser. No. 10/331,450, filed Dec. 27, 2002 entitled “FIVE-SIMULTANEOUSLY-WORKING-AXIS COMPUTERIZED NUMERICAL CONTROLLED TOOTH CUTTING MACHINE TOOL FOR PLANE ENVELOPING TOROIDAL WORMS”.
Number | Date | Country | |
---|---|---|---|
Parent | 10331450 | Dec 2002 | US |
Child | 10984156 | Nov 2004 | US |