Fixation devices for variation in engagement of tissue

Information

  • Patent Grant
  • 7811296
  • Patent Number
    7,811,296
  • Date Filed
    Wednesday, October 27, 2004
    19 years ago
  • Date Issued
    Tuesday, October 12, 2010
    13 years ago
Abstract
Devices, systems and methods are provided for tissue approximation and repair at treatment sites, particularly in those procedures requiring minimally-invasive or endovascular access to remote tissue locations. Fixation devices are provided to fix tissue in approximation with the use of distal elements. In some embodiments, the fixation devices have at least two distal elements and an actuatable feature wherein actuation of the feature varies a dimension of the at least two distal elements. In other embodiments, the fixation devices have at least two pairs of distal elements wherein the pairs of distal elements are moveable to engage tissue between opposed pairs of distal elements. Systems are also provided having fixation devices and accessories.
Description
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

NOT APPLICABLE


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present invention relates to repair of valves of the heart and venous valves.


Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation which most commonly occurs in the mitral valve.


Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.


Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.


The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. A recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.


For these reasons, it would be desirable to provide alternative and additional methods, devices, and systems for performing the repair of mitral and other cardiac valves. Such methods, devices, and systems should preferably not require open chest access and be capable of being performed either endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart or by a minimally invasive approach. Further, such devices and systems should provide features which allow repositioning and optional removal of a fixation device prior to fixation to ensure optimal placement. In addition, such devices and systems should provide features that assist in secure engagement of the targeted tissue (e.g. leaflet or other targeted structure) at the time of placement and over time (e.g. tissue in growth, maximal surface area of engagement). The methods, devices, and systems would also be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.


2. Description of the Background Art


Minimally invasive and percutaneous techniques for coapting and modifying mitral valve leaflets to treat mitral valve regurgitation are described in PCT Publication Nos. WO 98/35638; WO 99/00059; WO 99/01377; and WO 00/03759.


Maisano et al. (1998) Eur. J. Cardiothorac. Surg. 13:240-246; Fucci et al. (1995) Eur. J. Cardiothorac. Surg. 9:621-627; and Umana et al. (1998) Ann. Thorac. Surg. 66:1640-1646, describe open surgical procedures for performing “edge-to-edge” or “bow-tie” mitral valve repair where edges of the opposed valve leaflets are sutured together to lessen regurgitation. Dec and Fuster (1994) N. Engl. J. Med. 331:1564-1575 and Alvarez et al. (1996) J. Thorac. Cardiovasc. Surg. 112:238-247 are review articles discussing the nature of and treatments for dilated cardiomyopathy.


Mitral valve annuloplasty is described in the following publications. Bach and Bolling (1996) Am. J. Cardiol. 78:966-969; Kameda et al. (1996) Ann. Thorac. Surg. 61:1829-1832; Bach and Bolling (1995) Am. Heart J. 129:1165-1170; and Bolling et al. (1995) 109:676-683. Linear segmental annuloplasty for mitral valve repair is described in Ricchi et al. (1997) Ann. Thorac. Surg. 63:1805-1806. Tricuspid valve annuloplasty is described in McCarthy and Cosgrove (1997) Ann. Thorac. Surg. 64:267-268; Tager et al. (1998) Am. J. Cardiol. 81:1013-1016; and Abe et al. (1989) Ann. Thorac. Surg. 48:670-676.


Percutaneous transluminal cardiac repair procedures are described in Park et al. (1978) Circulation 58:600-608; Uchida et al. (1991) Am. Heart J. 121: 1221-1224; and Ali Khan et al. (1991) Cathet. Cardiovasc. Diagn. 23:257-262.


Endovascular cardiac valve replacement is described in U.S. Pat. Nos. 5,840,081; 5,411,552; 5,554,185; 5,332,402; 4,994,077; and 4,056,854. See also U.S. Pat. No. 3,671,979 which describes a catheter for temporary placement of an artificial heart valve.


Other percutaneous and endovascular cardiac repair procedures are described in U.S. Pat. Nos. 4,917,089; 4,484,579; and 3,874,338; and PCT Publication No. WO 91/01689.


Thoracoscopic and other minimally invasive heart valve repair and replacement procedures are described in U.S. Pat. Nos. 5,855,614; 5,829,447; 5,823,956; 5,797,960; 5,769,812; and 5,718,725.


BRIEF SUMMARY OF THE INVENTION

The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations.


In some embodiments, the devices, systems and methods of the invention are adapted for fixation of tissue at a treatment site. Exemplary tissue fixation applications include cardiac valve repair, septal defect repair, vascular ligation and clamping, laceration repair and wound closure, but the invention may find use in a wide variety of tissue approximation and repair procedures. In a particularly preferred embodiment, the devices, systems and methods of the invention are adapted for repair of cardiac valves, and particularly the mitral valve, as a therapy for regurgitation. The invention enables two or more valve leaflets to be coapted using an “edge-to-edge” or “bow-tie” technique to reduce regurgitation, yet does not require open surgery through the chest and heart wall as in conventional approaches. In addition, the position of the leaflets may vary in diseased mitral valves depending upon the type and degree of disease, such as calcification, prolapse or flail. These types of diseases can result in one leaflet being more mobile than the other (e.g. more difficult to capture), and therefore more difficult to grasp symmetrically in the same grasp with the other leaflet. The features of the present invention allow the fixation devices to be adapted to meet the challenges of unpredictable target tissue geometry, as well as providing a more robust grasp on the tissue once it is captured.


Using the devices, systems and methods of the invention, the mitral valve can be accessed from a remote surgical or vascular access point and the two valve leaflets may be coapted using endovascular or minimally invasive approaches. While less preferred, in some circumstances the invention may also find application in open surgical approaches as well. According to the invention, the mitral valve may be approached either from the atrial side (antegrade approach) or the ventricular side (retrograde approach), and either through blood vessels or through the heart wall.


The fixation devices of the present invention each have a pair of distal elements (or fixation elements). In the main embodiments, each distal element has a first end, a free end opposite the first end, an engagement surface therebetween for engaging tissue and a longitudinal axis extending between the first and free end. The first ends of the at least two distal elements are movably coupled together such that the at least two distal elements are moveable to engage tissue with the engagement surfaces. Thus, the first ends are coupled together so that the distal elements can move between at least an open and closed position to engage tissue. Preferably, the engagement surfaces are spaced apart in the open position and are closer together and generally face toward each other in the closed position.


Each distal element has a width measured perpendicular to its longitudinal axis and a length measured along its longitudinal axis. In one embodiment suitable for mitral valve repair, the fixed width across engagement surfaces (which determines the width of tissue engaged) is at least about 2 mm, usually 3-10 mm, and preferably about 4-6 mm. In some situations, a wider engagement is desired wherein the engagement surfaces have a larger fixed width, for example about 2 cm. The engagement surfaces are typically configured to engage a length of tissue of about 4-10 mm, and preferably about 6-8 mm along the longitudinal axis. However, the size of the engagement surfaces may be varied in width and/or length, as will be described in later sections.


The fixation device is preferably delivered to a target location in a patient's body by a delivery catheter having an elongated shaft, a proximal end and a distal end, the delivery catheter being configured to be positioned at the target location from a remote access point such as a vascular puncture or cut-down or a surgical penetration. In an alternative embodiment, the target location is a valve in the heart.


Optionally, the fixation devices of the invention will further include at least one proximal element (or gripping element). Each proximal element and distal element will be movable relative to each other and configured to capture tissue between the proximal element and the engagement surface of the distal element. Preferably, the distal elements and proximal elements are independently movable but in some embodiments may be movable with the same mechanism. The proximal element may be preferably biased toward the engagement surface of the fixation element to provide a compressive force against tissue captured therebetween.


In a first aspect of the present invention, fixation devices are provided that include at least two distal elements and an actuatable feature attached to at least one of the at least two distal elements. Actuation of the feature varies a dimension of at least one of the at least two distal elements which varies the size of its engagement surface. For example, in some embodiments, the actuatable feature is configured so that actuation varies the width of the distal element. In some of these embodiments, the actuatable feature comprises at least one loop which is extendable laterally outwardly in a direction perpendicular to the longitudinal axis. Thus, extension of the at least one loop increases the size of the engagement surface of the distal element, specifically the width. In others of these embodiments, the actuatable feature comprises at least one flap which is extendable laterally outwardly in a direction perpendicular to the longitudinal axis. And in still others, the actuatable feature comprises at least one pontoon which is expandable laterally outwardly in a direction perpendicular to the longitudinal axis. The pontoon may be expanded by inflation or any suitable means.


In some embodiments, the actuatable feature is configured so that actuation varies the length of the distal element. In some of these embodiments, the actuatable feature comprises at least one loop which is extendable laterally outwardly from its free end along its longitudinal axis. Thus, extension of the at least one loop increases the size of the engagement surface of the distal element, specifically the length. In others of these embodiments, each of the distal elements comprises an elongate arm and the actuatable feature comprises an extension arm coupled with the elongate arm. The extension arm is extendable from the elongate arm to increase the length of the distal element. For example, in some instances the extension arm is coupled with the elongate arm by a cam such that rotation of the cam advances the extension arm along the longitudinal axis. Extension or retraction of the extension arm may be actuated by movement of the fixation device. For example, when each distal element is moveable from a closed position (wherein the engagement surfaces of the at least two distal elements are closer together) to an open position (wherein the engagement surfaces of the at least two distal elements are further apart), movement between the closed and open position may advance the extension arm of each distal element along its longitudinal axis.


In a second aspect of the present invention, fixation devices are provided that include two pairs of distal elements, wherein the pairs of distal elements are in an opposed orientation so that the engagement surfaces of one pair faces the engagement surfaces of the other pair, and wherein the pairs of distal elements are moveable to engage tissue with the opposed engagement surfaces of the two pairs of distal elements. Thus, the fixation device includes four distal elements, the distal elements functioning in pairs so that each pair of distal elements engages a valve leaflet (in the case of the tissue comprising a valve leaflet) rather than a single distal element engaging each valve leaflet. In some embodiments, the distal elements of at least one of the two pairs are alignable so their longitudinal axes are substantially parallel. Alternatively or in addition, the distal elements of at least one of the two pairs may be rotatable laterally outwardly to a splayed position wherein their longitudinal axes substantially form an angle.


In a third aspect of the present invention, accessories are provided which may be used with fixation devices of the present invention. Such accessories may provide benefits which are similar to increasing the width and/or length of the distal elements. Thus, such accessories may be used with fixation devices of fixed dimension or with fixation devices having distal elements of varying dimensions.


In some embodiments, the accessory comprises a support coupleable with the fixation device, the support having at least two planar sections, each planar section configured to mate with an engagement surface of a distal element when coupled. In some embodiments, wherein the tissue comprises a valve leaflet, the support is configured so that each planar section is positionable against an upstream surface of the valve leaflet while each distal element is positionable against a downstream surface of the valve leaflet. Typically the fixation device is released from a delivery catheter yet temporarily maintained by a tether. Thus, in some embodiments, the support is configured to be advancable along the tether to the fixation device. The tether may be removed from the fixation device while the support is coupled to the fixation device. Thus, the fixation device and support may be left behind to maintain fixation of the tissue.


In a fourth aspect of the present invention, a fixation device is provided having at least two distal elements wherein each of the at least two distal elements has a length along its longitudinal axis, and wherein the length of one of the at least two distal elements is longer than another of the at least two distal elements. In some embodiments, the fixation device has variable length distal elements, wherein each distal element is adjustable to a different length. In other embodiments, the fixation device has fixed length distal elements, wherein each distal element is formed to have a different length. And, in still further embodiments, the fixation device has both fixed and variable length distal elements.


Other aspects of the nature and advantages of the invention are set forth in the detailed description set forth below, taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-1C illustrate grasping of the leaflets with a fixation device, inversion of the distal elements of the fixation device and removal of the fixation device, respectively.



FIG. 2 illustrates the position of the fixation device in a desired orientation relative to the leaflets.



FIG. 3 illustrates another embodiment of the fixation device of the present invention.



FIGS. 4A-4B, 5A-5B, 6A-6B, 7A-7B illustrate embodiments of a fixation device in various possible positions during introduction and placement of the device within the body to perform a therapeutic procedure.



FIGS. 8A-8B illustrate an embodiment of distal elements having variable width wherein one or more loops are extendable laterally outwardly.



FIGS. 9A-9B illustrate an embodiment of distal elements having variable width wherein one or more flaps are extendable laterally outwardly.



FIGS. 10A-10B illustrate an embodiment of distal elements having variable width wherein one or more pontoons are expandable laterally outwardly.



FIGS. 11A-11B provide a perspective view of a fixation device having distal elements which are capable of moving to a splayed position.



FIGS. 11C-11D provide a side view of the fixation device of FIGS. 11A-11B plicating tissue of a leaflet.



FIGS. 12A-12B provide a top view of a fixation device having distal elements which are capable of moving to a splayed position.



FIGS. 13A-13B illustrate an embodiment of distal elements having variable length wherein one or more loops are extendable outwardly.



FIGS. 14A-14B, 15 illustrate embodiments of distal elements having variable length wherein the distal elements include extension arms.



FIG. 16 illustrates an embodiment of the fixation device having distal elements of different lengths.



FIGS. 17A-17B illustrate an embodiment of an accessory for use with fixation devices of the present invention.



FIGS. 18A-18B illustrate an embodiment of distal elements which vary in length and width.



FIGS. 19A-19B, 20A-20C illustrate embodiments of a fixation device combining splaying and variable length distal elements.





DETAILED DESCRIPTION OF THE INVENTION
I. Fixation Device Overview

The present invention provides methods and devices for grasping, approximating and fixating tissues such as valve leaflets to treat cardiac valve regurgitation, particularly mitral valve regurgitation.


Grasping may be atraumatic which can provide a number of benefits. By atraumatic, it is meant that the devices and methods of the invention may be applied to the valve leaflets and then removed without causing any significant clinical impairment of leaflet structure or function. The leaflets and valve continue to function substantially the same as before the invention was applied. Thus, some minor penetration or denting of the leaflets may occur using the invention while still meeting the definition of “atraumatic”. This enables the devices of the invention to be applied to a diseased valve and, if desired, removed or repositioned without having negatively affected valve function. In addition, it will be understood that in some cases it may be necessary or desirable to pierce or otherwise permanently affect the leaflets during either grasping, fixing or both. In some of these cases, grasping and fixation may be accomplished by a single device. Although a number of embodiments are provided to achieve these results, a general overview of the basic features will be presented herein. Such features are not intended to limit the scope of the invention and are presented with the aim of providing a basis for descriptions of individual embodiments presented later in the application.


The devices and methods of the invention rely upon the use of an interventional tool that is positioned near a desired treatment site and used to grasp the target tissue. In endovascular applications, the interventional tool is typically an interventional catheter. In surgical applications, the interventional tool is typically an interventional instrument. In some embodiments, fixation of the grasped tissue is accomplished by maintaining grasping with a portion of the interventional tool which is left behind as an implant. While the invention may have a variety of applications for tissue approximation and fixation throughout the body, it is particularly well adapted for the repair of valves, especially cardiac valves such as the mitral valve. Referring to FIG. 1A, an interventional tool 10, having a delivery device, such as a shaft 12, and a fixation device 14, is illustrated having approached the mitral valve MV from the atrial side and grasped the leaflets LF. The mitral valve may be accessed either surgically or by using endovascular techniques, and either by a retrograde approach through the ventricle or by an antegrade approach through the atrium, as described above. For illustration purposes, an antegrade approach is described.


The fixation device 14 is releasably attached to the shaft 12 of the interventional tool 10 at its distal end. When describing the devices of the invention herein, “proximal” shall mean the direction toward the end of the device to be manipulated by the user outside the patient's body, and “distal” shall mean the direction toward the working end of the device that is positioned at the treatment site and away from the user. With respect to the mitral valve, proximal shall refer to the atrial or upstream side of the valve leaflets and distal shall refer to the ventricular or downstream side of the valve leaflets.


The fixation device 14 typically comprises proximal elements 16 (or gripping elements) and distal elements 18 (or fixation elements) which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween. The proximal elements 16 may be comprised of cobalt chromium, nitinol or stainless steel, and the distal elements 18 are may be comprised of cobalt chromium or stainless steel, however any suitable materials may be used. The fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17. The coupling mechanism 17 allows the fixation device 14 to detach and be left behind as an implant to hold the leaflets together in the coapted position.


In some situations, it may be desired to reposition or remove the fixation device 14 after the proximal elements 16, distal elements 18, or both have been deployed to capture the leaflets LF. Such repositioning or removal may be desired for a variety of reasons, such as to reapproach the valve in an attempt to achieve better valve function, more optimal positioning of the device 14 on the leaflets, better purchase on the leaflets, to detangle the device 14 from surrounding tissue such as chordae, to exchange the device 14 with one having a different design, or to abort the fixation procedure, to name a few. To facilitate repositioning or removal of the fixation device 14 the distal elements 18 are releasable and optionally invertible to a configuration suitable for withdrawal of the device 14 from the valve without tangling or interfering with or damaging the chordae, leaflets or other tissue. FIG. 1B illustrates inversion wherein the distal elements 18 are moveable in the direction of arrows 40 to an inverted position. Likewise, the proximal elements 16 may be raised, if desired. In the inverted position, the device 14 may be repositioned to a desired orientation wherein the distal elements may then be reverted to a grasping position against the leaflets as in FIG. 1A. Alternatively, the fixation device 14 may be withdrawn (indicated by arrow 42) from the leaflets as shown in FIG. 1C. Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues. Once the device 14 has been withdrawn through the valve leaflets, the proximal and distal elements may be moved to a closed position or configuration suitable for removal from the body or for reinsertion through the mitral valve.



FIG. 2 illustrates the position of the fixation device 14 in a desired orientation in relation to the leaflets LF. This is a short-axis view of the mitral valve MV from the atrial side, therefore, the proximal elements 16 are shown in solid line and the distal elements 18 are shown in dashed line. The proximal and distal elements 16, 18 are positioned to be substantially perpendicular to the line of coaptation C. The device 14 may be moved roughly along the line of coaptation to the location of regurgitation. The leaflets LF are held in place so that during diastole, as shown in FIG. 2, the leaflets LF remain in position between the elements 16, 18 surrounded by openings O which result from the diastolic pressure gradient. Advantageously, leaflets LF are coapted such that their proximal or upstream surfaces are facing each other in a vertical orientation, parallel to the direction of blood flow through mitral valve MV. The upstream surfaces may be brought together so as to be in contact with one another or may be held slightly apart, but will preferably be maintained in the substantially vertical orientation in which the upstream surfaces face each other at the point of coaptation. This simulates the double orifice geometry of a standard surgical bow-tie repair. Color Doppler echo will show if the regurgitation of the valve has been reduced. If the resulting mitral flow pattern is satisfactory, the leaflets may be fixed together in this orientation. If the resulting color Doppler image shows insufficient improvement in mitral regurgitation, the interventional tool 10 may be repositioned. This may be repeated until an optimal result is produced wherein the leaflets LF are held in place. Once the leaflets are coapted in the desired arrangement, the fixation device 14 is then detached from the shaft 12 and left behind as an implant to hold the leaflets together in the coapted position.



FIG. 3 illustrates an embodiment of a fixation device 14. Here, the fixation device 14 is shown coupled to a shaft 12 to form an interventional tool 10. The fixation device 14 includes a coupling member 19 and a pair of opposed distal elements 18. The distal elements 18 comprise elongate arms 53, each arm having a proximal end 52 rotatably connected to the coupling member 19 with a pin, and a free end 54. The free ends 54 have a rounded shape to minimize interference with and trauma to surrounding tissue structures. Each free end 54 may define a curvature about two axes, one being a longitudinal axis 66 of arms 53. Thus, engagement surfaces 50 have a cupped or concave shape to surface area in contact with tissue and to assist in grasping and holding the valve leaflets. This further allows arms 53 to nest around the shaft 12 in a closed position to minimize the profile of the device. Arms 53 may be at least partially cupped or curved inwardly about their longitudinal axes 66. Also, each free end 54 may define a curvature about an axis 67 perpendicular to longitudinal axis 66 of arms 53. This curvature is a reverse curvature along the most distal portion of the free end 54. Likewise, the longitudinal edges of the free ends 54 may flare outwardly. Both the reverse curvature and flaring minimize trauma to the tissue engaged therewith. Arms 53 further include a plurality of openings to enhance grip and to promote tissue ingrowth following implantation.


The valve leaflets are grasped between the distal elements 18 and proximal elements 16. In some embodiments, the proximal elements 16 are flexible, resilient, and cantilevered from coupling member 19. The proximal elements are preferably resiliently biased toward the distal elements. Each proximal element 16 is shaped and positioned to be at least partially recessed within the concavity of the distal element 18 when no tissue is present. When the fixation device 14 is in the open position, the proximal elements 16 are shaped such that each proximal element 16 is separated from the engagement surface 50 near the proximal end 52 of arm 53 and slopes toward the engagement surface 50 near the free end 54 with the free end of the proximal element contacting engagement surface 50, as illustrated in FIG. 3. This shape of the proximal elements 16 accommodates valve leaflets or other tissues of varying thicknesses.


Proximal elements 16 include a plurality of openings 63 and scalloped side edges 61 to increase grip on tissue. The proximal elements 16 optionally include frictional accessories, frictional features or grip-enhancing elements to assist in grasping and/or holding the leaflets. In some embodiments, the frictional accessories comprise barbs 60 having tapering pointed tips extending toward engagement surfaces 50. It may be appreciated that any suitable frictional accessories may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these. Optionally, magnets may be present in the proximal and/or distal elements. It may be appreciated that the mating surfaces will be made from or will include material of opposite magnetic charge to cause attraction by magnetic force. For example, the proximal elements and distal elements may each include magnetic material of opposite charge so that tissue is held under constant compression between the proximal and distal elements to facilitate faster healing and ingrowth of tissue. Also, the magnetic force may be used to draw the proximal elements 16 toward the distal elements 18, in addition to or alternatively to biasing of the proximal elements toward the distal elements. This may assist in deployment of the proximal elements 16. In another example, the distal elements 18 each include magnetic material of opposite charge so that tissue positioned between the distal elements 18 is held therebetween by magnetic force.


The fixation device 14 also includes an actuation mechanism 58. In this embodiment, the actuation mechanism 58 comprises two link members or legs 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 at a riveted joint 76 and a second end 72 which is rotatably joined with a stud 74. The legs 68 may be comprised of a rigid or semi-rigid metal or polymer such as Elgiloy®, cobalt chromium or stainless steel, however any suitable material may be used. While in the embodiment illustrated both legs 68 are pinned to stud 74 by a single rivet 78, it may be appreciated, however, that each leg 68 may be individually attached to the stud 74 by a separate rivet or pin. The stud 74 is joinable with an actuator rod 64 (not shown) which extends through the shaft 12 and is axially extendable and retractable to move the stud 74 and therefore the legs 68 which rotate the distal elements 18 between closed, open and inverted positions. Likewise, immobilization of the stud 74 holds the legs 68 in place and therefore holds the distal elements 18 in a desired position. The stud 74 may also be locked in place by a locking feature.


In any of the embodiments of fixation device 14 disclosed herein, it may be desirable to provide some mobility or flexibility in distal elements 18 and/or proximal elements 16 in the closed position to enable these elements to move or flex with the opening or closing of the valve leaflets. This provides shock absorption and thereby reduces force on the leaflets and minimizes the possibility for tearing or other trauma to the leaflets. Such mobility or flexibility may be provided by using a flexible, resilient metal or polymer of appropriate thickness to construct the distal elements 18. Also, the locking mechanism of the fixation device (described below) may be constructed of flexible materials to allow some slight movement of the proximal and distal elements even when locked. Further, the distal elements 18 can be connected to the coupling mechanism 19 or to actuation mechanism 58 by a mechanism that biases the distal element into the closed position (inwardly) but permits the arms to open slightly in response to forces exerted by the leaflets. For example, rather than being pinned at a single point, these components may be pinned through a slot that allowed a small amount of translation of the pin in response to forces against the arms. A spring is used to bias the pinned component toward one end of the slot.



FIGS. 4A-4B, 5A-5B, 6A-6B, 7A-7B illustrate embodiments of the fixation device 14 of FIG. 3 in various possible positions during introduction and placement of the device 14 within the body to perform a therapeutic procedure. FIG. 4A illustrates an embodiment of an interventional tool 10 delivered through a catheter 86. It may be appreciated that the interventional tool 10 may take the form of a catheter, and likewise, the catheter 86 may take the form of a guide catheter or sheath. However, in this example the terms interventional tool 10 and catheter 86 will be used. The interventional tool 10 comprises a fixation device 14 coupled to a shaft 12 and the fixation device 14 is shown in the closed position. FIG. 4B illustrates a similar embodiment of the fixation device of FIG. 4A in a larger view. In the closed position, the opposed pair of distal elements 18 are positioned so that the engagement surfaces 50 face each other. Each distal element 18 comprises an elongate arm 53 having a cupped or concave shape so that together the arms 53 surround the shaft 12 and optionally contact each other on opposite sides of the shaft. This provides a low profile for the fixation device 14 which is readily passable through the catheter 86 and through any anatomical structures, such as the mitral valve. In addition, FIG. 4B further includes an actuation mechanism 58. In this embodiment, the actuation mechanism 58 comprises two legs 68 which are each movably coupled to a base 69. The base 69 is joined with an actuator rod 64 which extends through the shaft 12 and is used to manipulate the fixation device 14. In some embodiments, the actuator rod 64 attaches directly to the actuation mechanism 58, particularly the base 69. However, the actuator rod 64 may alternatively attach to a stud 74 which in turn is attached to the base 69. In some embodiments, the stud 74 is threaded so that the actuator rod 64 attaches to the stud 74 by a screw-type action. However, the rod 64 and stud 74 may be joined by any mechanism which is releasable to allow the fixation device 14 to be detached from shaft 12.



FIGS. 5A-5B illustrate the fixation device 14 in the open position. In the open position, the distal elements 18 are rotated so that the engagement surfaces 50 face a first direction. Distal advancement of the stud 74 relative to coupling member 19 by action of the actuator rod 64 applies force to the distal elements 18 which begin to rotate around joints 76 due to freedom of movement in this direction. Such rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are directly slightly outwards. The stud 74 may be advanced to any desired distance correlating to a desired separation of the distal elements 18. In the open position, engagement surfaces 50 are disposed at an acute angle relative to shaft 12, and are preferably at an angle of between 90 and 180 degrees relative to each other. In one embodiment, in the open position the free ends 54 of arms 53 have a span therebetween of about 10-20 mm, usually about 12-18 mm, and preferably about 14-16 mm.


Proximal elements 16 are typically biased outwardly toward arms 53. The proximal elements 16 may be moved inwardly toward the shaft 12 and held against the shaft 12 with the aid of proximal element lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures. The proximal element lines 90 may be connected with the proximal elements 16 by threading the lines 90 in a variety of ways. When the proximal elements 16 have a loop shape, as shown in FIG. 5A, the line 90 may pass through the loop and double back. When the proximal elements 16 have an elongate solid shape, as shown in FIG. 5B, the line 90 may pass through one or more of the openings 63 in the element 16. Further, a line loop 48 may be present on a proximal element 16, also illustrated in FIG. 5B, through which a proximal element line 90 may pass and double back. Such a line loop 48 may be useful to reduce friction on proximal element line 90 or when the proximal elements 16 are solid or devoid of other loops or openings through which the proximal element lines 90 may attach. A proximal element line 90 may attach to the proximal elements 16 by detachable means which would allow a single line 90 to be attached to a proximal element 16 without doubling back and would allow the single line 90 to be detached directly from the proximal element 16 when desired. Examples of such detachable means include hooks, snares, clips or breakable couplings, to name a few. By applying sufficient tension to the proximal element line 90, the detachable means may be detached from the proximal element 16 such as by breakage of the coupling. Other mechanisms for detachment may also be used. Similarly, a lock line 92 may be attached and detached from a locking mechanism by similar detachable means.


In the open position, the fixation device 14 can engage the tissue which is to be approximated or treated. This embodiment is adapted for repair of the mitral valve using an antegrade approach from the left atrium. The interventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle. The distal elements 18 are oriented to be perpendicular to the line of coaptation and then positioned so that the engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby grasping the leaflets. The proximal elements 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements. In this embodiment, the proximal elements 16 have frictional accessories, such as barbs 60 which are directed toward the distal elements 18. However, neither the proximal elements 16 nor the barbs 60 contact the leaflets at this time.


The interventional tool 10 may be repeatedly manipulated to reposition the fixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while the device 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.


It may also be desired to invert the fixation device 14 to aid in repositioning or removal of the fixation device 14. FIGS. 6A-6B illustrate the fixation device 14 in the inverted position. By further advancement of stud 74 relative to coupling member 19, the distal elements 18 are further rotated so that the engagement surfaces 50 face outwardly and free ends 54 point distally, with each arm 53 forming an obtuse angle relative to shaft 12. The angle between arms 53 is preferably in the range of about 270 to 360 degrees. Further advancement of the stud 74 further rotates the distal elements 18 around joints 76. This rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are returned toward their initial position, generally parallel to each other. The stud 74 may be advanced to any desired distance correlating to a desired inversion of the distal elements 18. Preferably, in the fully inverted position, the span between free ends 54 is no more than about 20 mm, usually less than about 16 mm, and preferably about 12-14 mm. In this illustration, the proximal elements 16 remain positioned against the shaft 12 by exerting tension on the proximal element lines 90. Thus, a relatively large space may be created between the elements 16, 18 for repositioning. In addition, the inverted position allows withdrawal of the fixation device 14 through the valve while minimizing trauma to the leaflets. Engagement surfaces 50 provide an atraumatic surface for deflecting tissue as the fixation device is retracted proximally. It should be further noted that barbs 60 are angled slightly in the distal direction (away from the free ends of the proximal elements 16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.


Once the fixation device 14 has been positioned in a desired location against the valve leaflets, the leaflets may then be captured between the proximal elements 16 and the distal elements 18. FIGS. 7A-7B illustrate the fixation device 14 in such a position. Here, the proximal elements 16 are lowered toward the engagement surfaces 50 so that the leaflets are held therebetween. In FIG. 7B, the proximal elements 16 are shown to include barbs 60 which may be used to provide atraumatic gripping of the leaflets. Alternatively, larger, more sharply pointed barbs or other penetration structures may be used to pierce the leaflets to more actively assist in holding them in place. This position is similar to the open position of FIGS. 5A-5B, however the proximal elements 16 are now lowered toward arms 53 by releasing tension on proximal element lines 90 to compress the leaflet tissue therebetween. At any time, the proximal elements 16 may be raised and the distal elements 18 adjusted or inverted to reposition the fixation device 14, if regurgitation is not sufficiently reduced.


After the leaflets have been captured between the proximal and distal elements 16, 18 in a desired arrangement, the distal elements 18 may be locked to hold the leaflets in this position or the fixation device 14 may be returned to or toward a closed position.


It may be appreciated that the fixation devices 14 of the present invention may have any or all of the above described functions and features. For example, the fixation devices 14 may or may not be moveable to an inverted position. Or, the fixation devices 14 may or may not include proximal elements 16. Thus, the above described aspects of the fixation devices 14 are simply various embodiments and are not intended to limit the scope of the present invention.


II. Variable Width Distal Elements

The width of one or more distal elements 18 of a fixation device 14 may be varied to increase the surface area and therefore increase the area of contact with tissue to be fixated, such as a valve leaflet. In some embodiments, the width is increased once the leaflets have been grasped. In other embodiments, the width is increased prior to grasping of the leaflets. Although it is typically desired to increase the width of the distal elements 18 to increase purchase size and distribute fixation forces, in some instances the variable width distal elements 18 may be used to decrease the width, either prior to leaflet grasping or while the leaflets are grasped.



FIGS. 8A-8B illustrate an embodiment of distal elements 18 having a variable width. In this embodiment, each distal element 18 has one or more loops 100 which are extendable laterally outward in a direction perpendicular to longitudinal axis 66. FIG. 8A illustrates the loops 100 in a retracted position, wherein the distal elements 18 each have a width determined by the size of the distal element 18 itself. In this embodiment, the loops 100 are disposed on a surface of the distal elements 18 opposite the engagement surfaces 50 when in the retracted position. However, it may be appreciated that the loops 100 may be disposed on the engagement surfaces 50 or within the distal elements 18 themselves. FIG. 8B illustrates the loops 100 in an expanded position wherein the loops 100 extend laterally outward in a direction perpendicular to longitudinal axis 66. Expansion may be active or passive. The loops 100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number of loops 100 may be present, the loops 100 may extend any distance and the loops 100 may expand on one side of a distal element and not the other.



FIGS. 9A-9B illustrate another embodiment of a fixation device 14 having distal elements 18 of variable width; here, the fixation device 14 is shown grasping a leaflet LF. In this embodiment, each distal element 18 has one or more flaps 104 which are extendable laterally outward in a direction perpendicular to longitudinal axis 66. FIG. 9A illustrates the flaps 104 in a retracted position wherein the flaps 104 are substantially disposed within the distal elements 18 themselves. It may be appreciated however that the flaps 104 may be folded or curved so that the flaps are substantially disposed on the engagement surfaces 50 or on a surface of the distal elements 18 opposite the engagement surfaces 50. FIG. 9B illustrates the flaps 104 in an expanded position wherein the flaps 104 extend laterally outward in a direction perpendicular to longitudinal axis 66. Expansion may be active or passive. The flaps 104 may be comprised of any suitable material including polymer, mesh, metal, shape-memory alloy or a combination of these, to name a few. Further, it may be appreciated that any number of flaps 104 may be present, the flaps 104 may extend any distance and the flaps 104 may expand on one side of a distal element and not the other.



FIGS. 10A-10B illustrate yet another embodiment of a fixation device 14 having distal elements 18 of variable width. In this embodiment, each distal element 18 has one or pontoons 108 which are expandable laterally outward in a direction perpendicular to longitudinal axis 66. FIG. 10A provides a perspective view of a fixation device 14 having expandable pontoons 108 wherein the pontoons 108 are in an expanded state. FIG. 10B provides a side view of the fixation device 14 of FIG. 10B. Here, the increase in width of the distal element 18 due to the pontoon 108 may be readily seen. The pontoons 108 may be expanded by any means, such as by inflation with liquid or gas, such as by inflation with saline solution. Such expansion may be active or passive. The pontoons 108 may be comprised of any suitable material such as a flexible polymer or plastic. Further, it may be appreciated that any number of pontoons 108 may be present, the pontoons 108 may extend any distance and a pontoon 108 may expand on one side of a distal element and not the other.


III. Splayed Distal Elements

In some embodiments, the fixation device 14 includes additional distal elements 18 that assist in grasping of tissue, such as a valve leaflet. For example, the fixation device 14 may include four distal elements 18 wherein a pair of distal elements 18 grasp each side of the leaflet. The pairs of distal elements 18 may have any arrangement, however in some embodiments the distal elements 18 of each pair rotated laterally outwardly to a splayed position. This increases the area of contact with the tissue to be fixated and distributes the fixation forces across a broader portion of the tissue. Typically, the pairs of distal elements are splayed prior to grasping of the leaflets, however such splaying may be achieved after grasping.



FIGS. 11A-11B provide a perspective view of an embodiment of a fixation device 14 having a first distal element 112, a second distal element 114, a third distal element 116 and a fourth distal element 118. The distal elements 112, 114, 116, 118 are arranged in pairs so that the first and second distal elements 112, 114 are connected with one leg 68 and the third and fourth distal elements 116, 118 are connected with the other leg 68′ allowing the distal elements to grasp in pairs. FIG. 11A illustrates the fixation device 14 in a closed position wherein the distal elements 112, 114, 116, 118 are in substantially parallel alignment. FIG. 11B illustrates the fixation device 14 in an open position wherein the distal elements 112, 114, 116, 118 are splayed apart. Here, the first and second distal elements 114 are rotated laterally outwardly so that the free ends 54 are moved away from each other. Such splaying may be achieved as a result of opening the fixation device 14 or may be achieved separately from the opening and closing mechanism. In this embodiment, the fixation device 14 includes two proximal elements 16, each proximal element 16 facing a pair of distal elements. It may be appreciated that any number of proximal elements 16, if any, may be present, including a corresponding proximal element for each distal element. Finally, the distal elements 112, 114, 116, 118 may be splayed to separate the distal elements by any distance and the distance may be fixed or variable. Further, the distal elements 112, 114, 116, 118 may be returned to the substantially parallel alignment.



FIG. 11C provides a side view of the fixation device 14 of FIGS. 11A-11B capturing valve leaflets LF in a coapted position. The fixation device 14 is shown in the splayed position wherein the distal elements 112, 114 are rotated laterally outwardly so that the free ends 54 are moved away from each other. It may be appreciated the proximal element 16 is disposed on the opposite side of the leaflet LF and therefore shielded from view. Return of the distal elements 112, 114 toward the substantially parallel alignment, as illustrated in FIG. 11D, may capture tissue between the distal elements 112, 114, plicating the leaflet LF as shown. Such plication may be desired for optimal treatment of the diseased valve.



FIGS. 12A-12B provide a top view of another embodiment of a fixation device 14 having a first distal element 112, a second distal element 114, a third distal element 116 and a fourth distal element 118. FIG. 12A illustrates the fixation device 14 in a closed position wherein the distal elements 112, 114, 116, 118 are in substantially parallel alignment. FIG. 12B illustrates the fixation device 14 in an open position wherein the distal elements 112, 114, 116, 118 are splayed apart. Here, the first and second distal elements 114 are rotated laterally outwardly so that the free ends 54 are moved away from each other. Again, such splaying may be achieved as a result of opening the fixation device 14 or may be achieved separately from the opening and closing mechanism. And, the distal elements 112, 114, 116, 118 may be splayed to separate the distal elements by any distance and the distance may be fixed or variable. Further, the distal elements 112, 114, 116, 118 may be returned to the substantially parallel alignment. Again, it may be appreciated that return of the distal elements toward the substantially parallel alignment may capture tissue between the distal elements, plicating the leaflet.


IV. Variable Length Distal Elements

The length of one or more distal elements 18 of a fixation device 14 may be varied to increase the surface area and therefore increase the area of contact with tissue to be fixated, such as a valve leaflet. In some embodiments, the length is increased once the leaflets have been grasped. In other embodiments, the length is increased prior to grasping of the leaflets. Although it is typically desired to increase the length of the distal elements 18 to increase purchase size and distribute fixation forces, in some instances the variable length distal elements 18 may be used to decrease the length, either prior to leaflet grasping or while the leaflets are grasped.



FIGS. 13A-13B illustrate an embodiment of distal elements 18 having a variable length. In this embodiment, each distal element 18 has one or more loops 100 which are extendable outwardly from the free ends 54 along longitudinal axis 66. FIG. 13A illustrates the loops 100 in a retracted position, wherein the distal elements 18 each have a length determined substantially by the length of the distal element 18 itself. In this embodiment, the loops 100 are retracted within the distal elements 18 themselves. However, it may be appreciated that the loops 100 may be disposed on the engagement surfaces 50 or on a surface opposite the engagement surfaces 50. FIG. 13B illustrates the loops 100 in an expanded position wherein the loops 100 extend outwardly along longitudinal axis 66. Expansion may be active or passive. The loops 100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number of loops 100 may be present and the loops 100 may extend any distance.



FIGS. 14A-14B illustrate another embodiment of a fixation device 14 having distal elements 18 of variable length. In this embodiment, the fixation device 14 includes a coupling member 19 and a pair of opposed distal elements 18, wherein each distal element 18 is comprised of an elongate arm 53 which is coupled with an extension arm 130. Each elongate arm 53 has a proximal end 52 rotatably connected to the coupling member 19 and a free end 54. The extension arm 130 is coupled with the elongate arm 53 near the free end 54 to lengthen the distal element in the direction of a longitudinal axis 66. Each elongate arm 53 is also coupled with a leg 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 and a second end 72 which is rotatably joined with a base 69.


In this embodiment, the extension arm 130 is coupled with the elongate arm 53 by a cam 132. The leg 68 is joined with the arm 53 and cam 132 at a first joint 134 and the extension arm 130 is joined with the cam 132 at a second joint 136. Rotation of the cam 132 in the direction of arrows 138, advances the extension arm 130 along the longitudinal axis 66. FIG. 14B shows the cams 132 rotated so that the extension arms 130 are extended in the direction of arrows 140. The cams 132 may rotate due to motion of the fixation device 14 between an open and closed position, or rotation of the cams 132 may occur due to actuation of a mechanism. The extension arms 130 may be comprised of any suitable material, particularly a material similar to that of the elongate arms 53. Further, it may be appreciated the extension arms 130 may have any length and may extend any distance.



FIG. 15 illustrates another embodiment of a fixation device 14 having distal elements 18 of variable length. In this embodiment, each distal element 18 comprises an elongate arm 53 coupled with an extension arm 130. Each elongate arm 53 has a proximal end 52 rotatably connected to the coupling member 19 and a free end 54. The extension arm 130 is coupled with the elongate arm 53 near the free end 54 to lengthen the distal element in the direction of a longitudinal axis 66. Each elongate arm 53 is also coupled with a leg 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 and a second end 72 which is rotatably joined with a base 69. In this embodiment, each extension arm 130 is disposed within a corresponding elongate arm 53 and may be extended beyond the free end 54 by advancement out of the elongate arm 53. Likewise, the extension arm 130 may be retracted back into the elongate arm 53. In some embodiments, the extension arms 130 are extended by action of the fixation device 14 moving toward an open position and are retracted by action of the fixation device 14 moving toward a closed position. Extension and retraction may be active or passive and the extension arms 130 may be extended any distance.


V. Differing Length Distal Elements

In some instances, it may be desired to grasp or fix tissue or valve leaflets together with a fixation device 14 wherein the distal elements 18 are of differing length. This may be achieved with a fixation device 14 having variable length distal elements 18, wherein each distal element 18 is adjusted to a different length. Or, this may be achieved with a fixation device 14 having distal elements 18 of fixed length, wherein each distal element 18 is formed to have a different length. An example of such a fixation device is illustrated in FIG. 16. As shown, the fixation device 14 includes two distal elements 18, each joined with a coupling member 18 and a leg 68 wherein actuation of the legs 68 move the distal elements 18 between at least an open and closed position. In this example, one of the distal elements 18 is shown to be longer than the other. The fixation device 14 may also include proximal elements 14. Proximal elements 16 may be of the same dimensions or one may be longer than the other to correspond with the distal elements 18 to which they mate.


VI. Accessories

One or more accessories may be used with the fixation devices 14 of the present invention to increase purchase size and distribute fixation forces. Thus, such accessories may provide benefits similar to increasing the width and/or length of the distal elements. Thus, such accessories may be used with fixation devices of fixed dimension or with fixation devices having distal elements of varying dimension.



FIGS. 17A-17B illustrate an embodiment of an accessory 150. In this embodiment, the accessory 150 comprises a support 152 which is positioned to support the tissue which is being grasped by the fixation device 14. FIG. 17A illustrates valve leaflets LF being grasped by a fixation device 14. The fixation device 14 includes a pair of distal elements 18 which are joined with a coupling member 19 and moveable between at least an open and closed position by a pair of legs 68. In this embodiment, engagement surfaces 50 of the distal elements 18 contact the downstream surfaces of the leaflets LF. In this embodiment, the support 152 has at least two planar sections, each planar section configured to mate with an engagement surface of a distal element 18 when coupled. Typically, the fixation device 14 is released from a delivery catheter, yet maintained by a tether 154, to determine if regurgitation has been sufficiently reduced. If additional support is desired, the support 152 is advanced down the tether 154, as depicted in FIG. 17A, and positioned against the upstream surfaces of the leaflets, as depicted in FIG. 17B. The support 152 is then attached to the fixation device 14 and the tether 154 removed.


VII. Combinations

Any of the above described features and accessories may be present in any combination in a fixation device of the present invention. For example, a fixation device 14 may have distal elements 18 that vary in width and in length, either simultaneously or independently. Or, the fixation device may have distal elements 18 that are splayable and vary in length or width or length and width, all of which may occur simultaneously or independently. Or, in another example, the fixation device 14 may have one distal element 18 which is longer than the other wherein one or both distal elements 18 vary in width. Further, mechanisms related to each feature may be present in any combination. For example, a fixation device 14 may have one distal element 18 that varies in width by action of a flap 104 and another distal element 18 that varies in width by action of a pontoon 108. Still further, a fixation device 14 may include some distal elements 18 which have one or more of the above described features and some distal elements 18 which do not.



FIGS. 18A-18B illustrate an embodiment of a fixation device 14 combining the features presented in FIGS. 8A-8B and FIGS. 13A-13B. In this embodiment, each distal element 18 has one or more loops 100 which are extendable laterally outward in a direction perpendicular to longitudinal axis 66 and extendable outward along longitudinal axis 66. FIG. 18A illustrates the loops 100 in a retracted position, wherein the distal elements 18 each have a width and length substantially determined by the size of the distal element 18 itself. In this embodiment, some of the loops 100 are disposed on a surface of the distal elements 18 opposite the engagement surfaces 50 when in the retracted position. However, it may be appreciated that the loops 100 may be disposed on the engagement surfaces 50 or within the distal elements 18 themselves. FIG. 18B illustrates the loops 100 in an expanded position wherein the loops 100 extend laterally outward in a direction perpendicular to longitudinal axis 66 and outward along longitudinal axis 66. Expansion may be active or passive. The loops 100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number of loops 100 may be present and the loops 100 may extend any distance.



FIGS. 19A-19C illustrate an embodiment of a fixation device 14 combining splaying and variable length distal elements. FIG. 19A provides a perspective view of a fixation device 14 having four distal elements 18. Each distal element 18 is connected with a coupling member 19 and a leg 68, wherein actuation of the legs 68 move the distal elements 18 between at least an open and closed position. FIG. 19B provides a top view of the fixation device 14 of FIG. 19A in the open position illustrating the splaying of the distal elements 18. In this embodiment, the distal elements 18 are fixed in a splayed position. When in the open position, the fixation device 14 can be positioned to grasp tissue, such as a valve leaflet. Transitioning to a closed position retracts the distal elements 18 as illustrated in FIG. 19C. Similarly, as mentioned above, tissue may be captured or “pinched” between the distal elements 18. Further, retraction of the distal elements may drag the tissue inwardly. Together, such actions may assist in gathering up the leaflet to tighten the plication while also providing a more secure grasp on the captured tissue.



FIGS. 20A-20C also illustrates an embodiment of a fixation device 14 combining splaying and variable length distal elements. FIG. 20A provides a top view of the fixation device 14 having four distal elements 18. Again, each distal element 18 is connected with a coupling member 19 and a leg 68, wherein actuation of the legs 68 move the distal elements 18 between at least an open and closed position. In FIG. 20A, the distal elements 18 are shown in a splayed arrangement. However, in this embodiment, the distal elements 18 are not fixed in the splayed arrangement. FIG. 20B illustrates the distal elements 18 rotating to a parallel arrangement. Thus, when in the open position, the distal elements 18 can move between a parallel arrangement and a splayed arrangement prior to grasping tissue. Transitioning to a closed position retracts the distal elements 18 as illustrated in FIG. 20C.


Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.

Claims
  • 1. A fixation system for engaging tissue comprising: an elongate shaft;a fixation device releasably connected with the elongate shaft, the fixation device comprising an actuation mechanism, at least two proximal elements and at least two distal elements, wherein the at least two distal elements each have a first end, a free end opposite the first end, an engagement surface therebetween for engaging the tissue and a longitudinal axis extending between the first and free end, the first ends of the at least two distal elements being pivotably coupled together with a pin disposed in an aperture in each of the first ends, such that the at least two distal elements pivot to engage tissue with the engagement surfaces, and wherein the actuation mechanism is operably coupled with the at least two distal elements, such that actuation of the actuation mechanism rotates the at least two distal elements between a closed position, an inverted position, and open positions therebetween, wherein the engagement surface comprises a concave shape, and the at least two proximal elements are at least partially recessed in the engagement surface; andan accessory comprising a support having at least two planar sections and coupleable with the fixation device, each planar section configured to substantially maintain its planar shape when said accessory is coupled with the tissue and said accessory is disposed at least partially between the distal elements,wherein the fixation system is adapted to capture tissue directly between the engagement surface of at least one of the distal elements and at least one of the planar sections.
  • 2. The system as in claim 1, wherein the tissue comprises a valve leaflet and the support is configured so that each planar section is positionable against an upstream surface of the valve leaflet while each distal element is positionable against a downstream surface of the valve leaflet.
  • 3. The system as in claim 1, further comprising a tether attachable to the fixation device, wherein the support is advancable along the tether to the fixation device.
  • 4. The system as in claim 3, wherein the tether is removable from the fixation device while the support is coupled with the fixation device.
  • 5. The system as in claim 1, wherein the fixation device further comprises an actuatable feature attached to at least one of the at least two distal elements, wherein actuation of the feature varies a dimension of the at least one of the at least two distal elements which varies the size of its engagement surface.
  • 6. The system as in claim 5, wherein each of the at least two distal elements has a width perpendicular to its longitudinal axis, and wherein the actuatable feature is configured so that actuation varies its width.
  • 7. The system as in claim 5, wherein each of the at least two distal elements has a length along its longitudinal axis, and wherein the actuatable feature is configured so that actuation varies its length.
  • 8. The system as in claim 1, wherein the at least two proximal elements are resiliently biased to rest against the at least two distal elements.
  • 9. The system as in claim 1, wherein the at least two distal elements comprise a plurality of openings therein and are adapted to enhance grip and promote tissue ingrowth therethrough.
  • 10. The system as in claim 1, wherein the at least two proximal elements comprise a plurality of openings therein, the openings adapted to increase grip on the tissue.
  • 11. The system as in claim 1, wherein the at least two proximal elements comprise a plurality of barbs for holding the tissue.
  • 12. The system as in claim 1, wherein the actuation mechanism comprises two link members, each link member rotatably coupled with one of the at least two distal members elements.
  • 13. The system as in claim 12, wherein the actuation mechanism further comprises an actuator rod extending through the elongate shaft, and wherein extension or retraction of the actuator rod actuates the two link members.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation-in-part of copending U.S. application Ser. No. 10/803,444 filed Mar. 17. 2004 which is a continuation of U.S. application Ser. No. 09/894,463 filed Jun. 27, 2001, (now U.S. Pat. No. 6,752,813 issued Jun. 22, 2004), which is a continuation-in-part of U.S. patent application Ser. No. 09/544,930 filed Apr. 7, 2000 (now U.S. Pat. No. 6,629,534) and which claims priority from U.S. Provisional Application No. 60/128,690, filed Apr. 9, 1999.

US Referenced Citations (464)
Number Name Date Kind
2108206 Meeker Feb 1938 A
3296668 Winthrop Jan 1967 A
3378010 Codling et al. Apr 1968 A
3671979 Moulopoulos Jun 1972 A
3874338 Happel Apr 1975 A
3874388 King et al. Apr 1975 A
4007743 Blake Feb 1977 A
4056854 Boretos et al. Nov 1977 A
4064881 Meredith Dec 1977 A
4112951 Hulka et al. Sep 1978 A
4235238 Ogiu et al. Nov 1980 A
4297749 Davis et al. Nov 1981 A
4425908 Simon Jan 1984 A
4484579 Meno et al. Nov 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4498476 Cerwin et al. Feb 1985 A
4510934 Batra Apr 1985 A
4578061 Lemelson Mar 1986 A
4641366 Yokoyama et al. Feb 1987 A
4686965 Bonnet et al. Aug 1987 A
4777951 Cribier et al. Oct 1988 A
4809695 Gwathmey et al. Mar 1989 A
4917089 Sideris Apr 1990 A
4944295 Gwathmey et al. Jul 1990 A
4969890 Sugita et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5015249 Nakao et al. May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5042707 Taheri Aug 1991 A
5047041 Samuels Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5061277 Carpentier et al. Oct 1991 A
5069679 Taheri Dec 1991 A
5108368 Hammerslag et al. Apr 1992 A
5125758 DeWan Jun 1992 A
5171252 Friedland Dec 1992 A
5171259 Inoue Dec 1992 A
5190554 Coddington et al. Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5209756 Seedhorn et al. May 1993 A
5226429 Kuzmak Jul 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5250071 Palermo Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5282845 Bush et al. Feb 1994 A
5304131 Paskar Apr 1994 A
5306283 Conners Apr 1994 A
5306286 Stack et al. Apr 1994 A
5312415 Palermo May 1994 A
5314424 Nicholas May 1994 A
5318525 West et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5325845 Adair Jul 1994 A
5330442 Green et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5350397 Palermo et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5359994 Krauter Nov 1994 A
5368564 Savage Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5383886 Kensey et al. Jan 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411552 Anderson et al. May 1995 A
5417699 Klein et al. May 1995 A
5417700 Egan May 1995 A
5423857 Rosenman et al. Jun 1995 A
5423858 Bolanos et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437551 Chalifoux Aug 1995 A
5437681 Meade et al. Aug 1995 A
5447966 Hermes et al. Sep 1995 A
5450860 O'Connor Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5462527 Stevens-Wright et al. Oct 1995 A
5472044 Hall et al. Dec 1995 A
5476470 Hall et al. Dec 1995 A
5477856 Lundquist Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5487746 Yu et al. Jan 1996 A
5507725 Savage et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5520701 Lerch May 1996 A
5522873 Jackman et al. Jun 1996 A
5527313 Scott et al. Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5536251 Evard et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5554185 Block et al. Sep 1996 A
5562678 Booker Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571085 Accisano, III Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5593424 Northrup, III Jan 1997 A
5593435 Carpentier et al. Jan 1997 A
5609598 Laufer et al. Mar 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5626588 Sauer et al. May 1997 A
5634932 Schmidt Jun 1997 A
5636634 Kordis Jun 1997 A
5639277 Mariant et al. Jun 1997 A
5640955 Ockuly et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5662681 Nash et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
2097018 Chamberlain Oct 1997 A
5690671 McGurk et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5702825 Keital et al. Dec 1997 A
5706824 Whittier Jan 1998 A
5709707 Lock et al. Jan 1998 A
5713910 Gordon et al. Feb 1998 A
5713911 Racene et al. Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716367 Koike et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5719725 Nakao Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5725556 Moser et al. Mar 1998 A
5738649 Macoviak Apr 1998 A
5741280 Fleenor Apr 1998 A
5749828 Solomon et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5769863 Garrison Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5782845 Shewchuk Jul 1998 A
5797927 Yoon Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810847 Laufer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810853 Yoon Sep 1998 A
5810876 Kelleher Sep 1998 A
5814029 Hassett et al. Sep 1998 A
5820592 Hammerslag Oct 1998 A
5820631 Nobles Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5824065 Gross Oct 1998 A
5827237 Macoviak et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5833671 Macoviak et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5840081 Anderson et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5849019 Yoon Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855271 Eubanks et al. Jan 1999 A
5855614 Stevens et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5868733 Ockuly et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879307 Chio et al. Mar 1999 A
5885271 Hamilton et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5916147 Boury Jun 1999 A
5916224 Esplin Jun 1999 A
5928224 Laufer Jul 1999 A
5944733 Engelson Aug 1999 A
5947363 Bolduc et al. Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972020 Carpentier et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5980455 Daniel et al. Nov 1999 A
5989284 Laufer Nov 1999 A
6015417 Reynolds, Jr. Jan 2000 A
6019722 Spence et al. Feb 2000 A
6022360 Reimels et al. Feb 2000 A
6033378 Lundquist et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6059757 Macoviak et al. May 2000 A
6060628 Aoyama et al. May 2000 A
6060629 Pham et al. May 2000 A
6063106 Gibson May 2000 A
6066146 Carroll et al. May 2000 A
6068628 Fanton et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6077214 Mortier et al. Jun 2000 A
6086600 Kortenbach Jul 2000 A
6088889 Luther et al. Jul 2000 A
6099553 Hart et al. Aug 2000 A
6110145 Macoviak Aug 2000 A
6117144 Nobles et al. Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126658 Baker Oct 2000 A
6132447 Dorsey Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6165164 Hill et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171320 Monassevitch Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190408 Melvin Feb 2001 B1
6203531 Ockuly et al. Mar 2001 B1
6203553 Robertson et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6210419 Mayenberger et al. Apr 2001 B1
6210432 Solem et al. Apr 2001 B1
6245079 Nobles et al. Jun 2001 B1
6267781 Tu Jul 2001 B1
8267746 Bumbalough Jul 2001
6269819 Oz et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6283127 Sterman et al. Sep 2001 B1
6283962 Tu et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6306133 Tu et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6319250 Falwell et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6352708 Duran et al. Mar 2002 B1
6358277 Duran Mar 2002 B1
8355030 Aldrich et al. Mar 2002
6368326 Dakin et al. Apr 2002 B1
6402780 Williamson et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6461366 Seguin Oct 2002 B1
6464707 Bjerken Oct 2002 B1
6482214 Sidor et al. Nov 2002 B1
6482224 Michler et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6508828 Akerfeldt et al. Jan 2003 B1
6533796 Sauer et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540755 Ockuly et al. Apr 2003 B2
6551331 Nobles et al. Apr 2003 B2
6562037 Paton et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6575971 Hauck et al. Jun 2003 B2
6585761 Taheri Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626930 Allen et al. Sep 2003 B1
6269534 St. Goar et al. Oct 2003 B1
6641592 Sauer et al. Nov 2003 B1
6656221 Taylor et al. Dec 2003 B2
6669687 Saadat Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6701929 Hussein Mar 2004 B2
6702825 Frazier et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6709382 Horner Mar 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6740107 Loeb et al. May 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770083 Seguin Aug 2004 B2
6797001 Mathis et al. Sep 2004 B2
8797002 Spence et al. Sep 2004
6860179 Hopper et al. Mar 2005 B2
8875224 Grimes Apr 2005
6926715 Hauck et al. Aug 2005 B1
6945978 Hyde Sep 2005 B1
6949122 Adams et al. Sep 2005 B2
6966914 Abe Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
7004970 Cauthen, III et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7048754 Martin et al. May 2006 B2
7112207 Allen et al. Sep 2006 B2
7226467 Lucatero et al. Jun 2007 B2
7288097 Séguin Oct 2007 B2
7381210 Zarbatany et al. Jun 2008 B2
7464712 Oz et al. Dec 2008 B2
7497822 Kugler et al. Mar 2009 B1
7533790 Knodel et al. May 2009 B1
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
20010004715 Duran et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010022872 Marui Sep 2001 A1
20010037084 Nardeo Nov 2001 A1
20010039411 Johansson et al. Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020022848 Garrison et al. Feb 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020055774 Liddicoat May 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077687 Ahn Jun 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020107534 Schaefer et al. Aug 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020158528 Tsuzaki et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130669 Damarati Jul 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030158604 Cauthen, III et al. Aug 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171776 Adams et al. Sep 2003 A1
20030187467 Schreck Oct 2003 A1
20030195562 Collier et al. Oct 2003 A1
20030208231 Williamson, IV et al. Nov 2003 A1
20030229395 Cox Dec 2003 A1
20030233038 Hassett Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040088047 Spence et al. May 2004 A1
20040092962 Thorton et al. May 2004 A1
20040097878 Anderson et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133062 Pai et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133082 Abraham-Fuchs et al. Jul 2004 A1
20040133192 Houser et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040152847 Emri et al. Aug 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040153144 Seguin Aug 2004 A1
20040158123 Jayaraman Aug 2004 A1
20040162610 Laiska et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040186486 Roue et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004665 Aklog Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050021057 St. Goar et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038508 Gabbay Feb 2005 A1
20050049698 Bolling et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050059351 Cauwels et al. Mar 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050251001 Hassett Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050287493 Novak et al. Dec 2005 A1
20060004247 Kute et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060030866 Schreck Feb 2006 A1
20060030867 Zadno Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060089711 Dolan Apr 2006 A1
20060135993 Seguin Jun 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20070038293 St.Goar et al. Feb 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thorton et al. Feb 2008 A1
20080051807 St. Goar et al. Feb 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090198322 Deem et al. Aug 2009 A1
20090270858 Hauck et al. Oct 2009 A1
20090326567 Goldfarb et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
Foreign Referenced Citations (111)
Number Date Country
3504292 Jul 1986 DE
0 179 562 Jul 1989 EP
179562 Jul 1989 EP
558031 Sep 1993 EP
684012 Feb 1995 EP
727239 Aug 1996 EP
2768324 Mar 1999 FR
1598111 Sep 1981 GB
2151142 Jul 1985 GB
11-89937 Jun 1999 JP
WO 8100668 Mar 1981 WO
WO 9101689 Feb 1991 WO
WO 9118881 Dec 1991 WO
WO 9212690 Aug 1992 WO
WO 9418881 Sep 1994 WO
WO 9418893 Sep 1994 WO
WO 9515715 Jun 1995 WO
WO 9614032 May 1996 WO
WO 9622735 Aug 1996 WO
WO 9630072 Oct 1996 WO
WO 9725927 Jul 1997 WO
WO 9726034 Jul 1997 WO
WO 9738748 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9748436 Dec 1997 WO
WO 9807375 Feb 1998 WO
WO 9824372 Jun 1998 WO
WO 9830153 Jul 1998 WO
WO 9832382 Jul 1998 WO
WO 9835638 Aug 1998 WO
WO 9900059 Jan 1999 WO
WO 9901377 Jan 1999 WO
WO 9907354 Feb 1999 WO
WO 9913777 Mar 1999 WO
WO 9966967 Dec 1999 WO
WO 0002489 Jan 2000 WO
WO 0003651 Jan 2000 WO
WO 0003759 Jan 2000 WO
WO 0012168 Mar 2000 WO
WO 0044313 Aug 2000 WO
WO 0060995 Oct 2000 WO
WO 0100111 Jan 2001 WO
WO 0100114 Jan 2001 WO
WO 0103651 Jan 2001 WO
WO 0126557 Apr 2001 WO
WO 0126557 Apr 2001 WO
WO 0126586 Apr 2001 WO
WO 0126587 Apr 2001 WO
WO 0126588 Apr 2001 WO
WO 0126703 Apr 2001 WO
WO 0128432 Apr 2001 WO
WO 0128455 Apr 2001 WO
WO 0147438 Jul 2001 WO
WO 0149213 Jul 2001 WO
WO 0149213 Jul 2001 WO
WO 0150985 Jul 2001 WO
WO 0154618 Aug 2001 WO
WO 0156512 Aug 2001 WO
WO 0166001 Sep 2001 WO
WO 0170320 Sep 2001 WO
WO 0189440 Nov 2001 WO
WO 0195831 Dec 2001 WO
WO 0195832 Dec 2001 WO
WO 0197741 Dec 2001 WO
WO 0200099 Jan 2002 WO
WO 0201999 Jan 2002 WO
WO 0203892 Jan 2002 WO
WO 0234167 May 2002 WO
WO 0234167 May 2002 WO
WO 02060352 Aug 2002 WO
WO 02062263 Aug 2002 WO
WO 02062270 Aug 2002 WO
WO 02062408 Aug 2002 WO
WO 03001893 Jan 2003 WO
WO 03003930 Jan 2003 WO
WO 03020179 Mar 2003 WO
WO 03028558 Apr 2003 WO
WO 03037171 May 2003 WO
WO 03047467 Jun 2003 WO
WO 03049619 Jun 2003 WO
WO 03073910 Sep 2003 WO
WO 03073913 Sep 2003 WO
WO 0059382 Oct 2003 WO
WO 03105667 Dec 2003 WO
WO 2004004607 Jan 2004 WO
WO 2004012583 Feb 2004 WO
WO 2004012789 Feb 2004 WO
WO 2004014282 Feb 2004 WO
WO 2004019811 Mar 2004 WO
WO 2004082538 Mar 2004 WO
WO 2004030570 Apr 2004 WO
WO 2004037317 May 2004 WO
WO 2004045370 Jun 2004 WO
WO 2004045378 Jun 2004 WO
WO 2004045463 Jun 2004 WO
WO 2004047679 Jun 2004 WO
WO 2004062725 Jul 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004093730 Nov 2004 WO
WO 2004112585 Dec 2004 WO
WO 2004112651 Dec 2004 WO
WO 2005002424 Jan 2005 WO
WO 2005018607 Mar 2005 WO
WO 2005027797 Mar 2005 WO
WO 2005032421 Apr 2005 WO
WO 2005062931 Jul 2005 WO
WO 2005112792 Dec 2005 WO
WO 2006105008 Oct 2006 WO
WO 2006105009 Oct 2006 WO
WO 2006115875 Nov 2006 WO
WO 2006115876 Nov 2006 WO
Related Publications (1)
Number Date Country
20060089671 A1 Apr 2006 US
Provisional Applications (1)
Number Date Country
60128690 Apr 1999 US
Continuations (1)
Number Date Country
Parent 09894463 Jun 2001 US
Child 10803444 US
Continuation in Parts (2)
Number Date Country
Parent 10803444 Mar 2004 US
Child 10975555 US
Parent 09544930 Apr 2000 US
Child 09894463 US