The present invention resides in an improved method of mounting an implantable component of an implantable medial device, such as a cochlear implant package, securely in the head region of a recipient.
In many people who are profoundly deaf, the reason for deafness is absence of, or destruction of, the hair cells in the cochlea which transduce acoustic signals into nerve impulses. These people are unable to derive suitable benefit from conventional hearing aid systems, no matter how loud the acoustic stimulus is made, because there is damage to or absence of the mechanism for nerve impulses to be generated from sound in the normal manner.
It is for this purpose that cochlear implant systems have been developed. Such systems bypass the hair cells in the cochlea and directly deliver electrical stimulation to the auditory nerve fibres, thereby allowing the brain to perceive a hearing sensation resembling the natural hearing sensation normally delivered to the auditory nerve.
Cochlear implant systems have typically consisted of essentially two components, an external component commonly referred to as a processor unit and an internal implanted component commonly referred to as a receiver/stimulator unit. Traditionally, both of these components have cooperated together to provide the sound sensation to a user.
The external component has traditionally consisted of a microphone for detecting sounds, such as speech and environmental sounds, a speech processor that converts the detected sounds, particularly speech, into a coded signal, a power source such as a battery, and an external transmitter antenna coil.
The coded signal output by the speech processor is transmitted transcutaneously to the implanted receiver/stimulator unit situated within a recess of the temporal bone of the user. This transcutaneous transmission occurs via the external transmitter antenna coil which is positioned to communicate with an implanted receiver antenna coil provided with the receiver/stimulator unit.
This communication serves two essential purposes, firstly to transcutaneously transmit the coded sound signal and secondly to provide power to the implanted receiver/stimulator unit. Conventionally, this link has been in the form of a radio frequency (RF) link, but other such links have been proposed and implemented with varying degrees of success.
The implanted receiver/stimulator unit traditionally includes a receiver antenna coil that receives the coded signal and power from the external processor component, and a stimulator that processes the coded signal and outputs a stimulation signal to an intracochlear electrode assembly which applies the electrical stimulation directly to the auditory nerve producing a hearing sensation corresponding to the original detected sound.
Traditional implanted receiver/stimulator units are positioned within the head of the recipient by drilling a bed into and through the posterior section of the mastoid bone lying behind the recipient's ear. Such a bed is usually made by drilling the bone down to the lining of the brain or dura mater, so that the receiver/stimulator unit is maintained in position and does not protrude excessively past the skull surface.
The receiver/stimulator unit manufactured by the present Applicant has a package made from titanium which houses the stimulation electronics and which is fitted into a bed created in the mastoid bone. A receiver antenna coil extends from the rear end of the package and lies superficial to the bone. Other cochlear implants have included packages made from a ceramic material which are usually placed completely within the bed drilled down to the dura mater.
Various techniques have been implemented in order to mount or fix the device in place and to ensure that the device does not undergo movement once implanted.
One such technique has been to drill holes in the bone surrounding the device and to use sutures or Dacron ties to hold the device in place. One problem with this approach is that drilling of the holes into the surrounding bone can be a difficult and time consuming procedure, and especially for young children, much care must be taken by the surgeon to ensure that the drilling does not perforate the dura mater, as the skull thickness in such cases can be quite thin. Further to this, the suture or Dacron ties may not be sufficiently strong enough to withstand a substantial impact to a region of the head adjacent the device and as a result, such a force may dislodge the device from its desired position. In addition, it has been found that if a suture or Dacron tie is inadvertently placed across an inappropriate section of the device, such as across a strain relief of the electrode lead, the suture/tie may cause the lead/device to undergo fatigue and cause failure at this location.
Another technique used to secure the implant device in place is for the surgeon to craft a suitable well or bed in the cranial bone that is capable of maintaining the device in place without the need of sutures or ties. Such a technique relies upon the shape of the well or bed being such that the surrounding bone can hold the device in place. This technique is not always possible depending upon the thickness of the surrounding bone and the age and anatomy of the recipient.
Therefore, there is a need to provide a fixation method for an implantable hearing prosthesis that is capable of securely maintaining the device in place in a desired region of the recipient's head without the need for additional sutures or ties.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
According to a first aspect, the present invention is a medical implant for implantation within a body of a recipient, the medical implant comprising a hermetically sealed housing, said housing having at least one flange extending outwardly therefrom that is securable to tissue within the body of the recipient.
In this aspect, the flange can be securable to a suitable tissue surface. While a bone surface is preferred, it can be envisaged that the flange could be securable to a other suitable tissues within the body, including cartilage and tendons.
In one embodiment, the implant can be an implantable component of a tissue-stimulating prosthesis. In a preferred embodiment, the tissue-stimulating prosthesis is a cochlear implant. The implantable component of the cochlear implant preferably comprises a receiver/stimulator package of such an implant. While the present application will hereinafter refer to cochlear implants, it is to be understood that the invention has a potential wider application to other implantable tissue-stimulating prostheses.
In one embodiment, the housing of the implantable component can be adapted to be placed on the surface of the bone of the recipient. In the case of a cochlear implant, this bone would likely be the mastoid bone. In another embodiment, a bed or well can be formed in the surface of the bone, such as the mastoid bone, such that the housing can be positioned in the well or bed.
In one embodiment, a flange can extend outwardly from the housing in at least one direction. More preferably, the housing has at least two flanges extending outwardly therefrom. In this embodiment, the flanges preferably extend in substantially opposite directions relative to each other. In a further embodiment where there are two flanges, the respective flanges can extend in opposite directions relative to each other.
In one embodiment, at least one flange preferably extends from a first or upper surface of the housing. The first surface of the housing is preferably the outer surface of the housing on implantation of the component.
In another embodiment, at least one flange can extend from a second or lower surface of the housing. In this embodiment, the second surface preferably faces inwardly, such that the surface normally abuts with or is embedded in the bone of the recipient receiving the implantable component.
In a still further embodiment, at least one flange can extend from the housing at a location between the first and second surfaces of the housing. In one embodiment, the flange can extend outwardly from a location that is approximately midway between the first and second surfaces.
In yet another embodiment and where there is more than one flange, one of such flanges may extend from the first or upper surface while another extends from the second or lower surface. Other flange combinations can be envisaged.
In a further embodiment, the flanges extending from the housing comprise part of a plate mounted to the housing of the implantable component. In one embodiment, the plate can be removably or non-removably mounted to the housing.
Each of the flanges are preferably adapted to abut the tissue surface of the recipient following implantation of the implantable component. In one embodiment, the flanges are preferably conformable to the tissue surface. In this regard, the flanges can be formed from a malleable material that allows the flanges to be conformed to the surface of the tissue, such as bone. In another embodiment, the flanges can be constructed so as to be conformable to the tissue surface. In this regard, the flanges may have a thickness that allows the flanges to be suitably conformable during the surgical procedure. In a still further embodiment, both the properties of the material and the construction of the flanges may play a role in ensuring the flanges are malleable and conformable to the tissue surface. The flanges are preferably conformable by finger pressure exertable on the flanges by a surgeon during the surgical implant of the implantable component.
The degree of conformation of the flanges necessary to ensure the flanges conform to the tissue surface will depend on the position of the flanges and/or whether the housing of the component is embedded within the tissue, such as within a well or bed within the bone. Where the flanges extend from the first surface of the housing, the downward angle of the flanges necessary so as to abut with the tissue surface will depend on the degree to which the housing is embedded within the tissue. The downward angle of the flange is likely to be less when the housing is at least partially embedded in the tissue in comparison to the situation where the housing essentially is sitting on the tissue surface.
In one embodiment, the flanges can have a thickness between about 0.1 mm and 0.3 mm. The flanges can be formed from a malleable material.
In one embodiment, the flanges can constitute an integral extension of the housing of the implantable component. In another embodiment, the flanges can be formed separately and mounted to the housing. Techniques such as welding and brazing can be envisaged as techniques for mounting the flanges to the housing of the implantable component. In another embodiment, one or more flanges may be an integral extension of the housing while one or more may be formed separately and mounted to the housing.
In another embodiment, the flanges can be removably mounted to the housing. In this embodiment, the flanges or housing of the implantable component can be provided with engagement means adapted to engage with the housing or flanges, respectively. In one embodiment, the housing can have one or more clips adapted to engage with the flanges. In this embodiment, it is envisaged that the flanges may not be mounted to the housing until surgery is underway and the size and shape of the flanges required for that particular surgery have been determined. Still further, removably mounted flanges provide the surgeon with the option of not using the flanges at all.
In one embodiment, the flanges can be formed of titanium, such as malleable titanium. In this and other embodiments, the housing of the implantable component can also be formed from titanium. In another embodiment, the housing of the implantable component and/or the flanges can be formed of other materials, including suitable biocompatible metallic, ceramic and polymeric materials. In this regard, the flanges and housing do not need to be formed of the same material. For example, the flanges could be formed of a polymeric material, such as polypropylene or polytetrafluoroethylene, while the housing is formed of a ceramics or metallic material.
As defined above, the flanges are preferably securable to the surface of the tissue within the recipient. In one embodiment, one or more of the flanges can have orifices passing therethrough. These orifices can be adapted to receive tissue fixation devices, such as screws, clips and/or nails, including bone screws, bone clips and bone nails. In one embodiment, the screws can be countersunk, or have a round head. Still further, the tissue fixation devices can be resorbable.
In one embodiment, the housing is preferably adapted to be secured to the tissue surface at the site of each flange. It will, however, be appreciated that there may be instances where it is not possible to use a particular flange due to a previous cavity having been formed in the selected tissue, or, for example, the presence of a skull growth line, or a region of bone weakness.
In the above embodiments, the flanges and/or housing can be coated with a layer of silicone rubber or other suitable elastomeric material. The tissue fixation devices would preferably be accessible by means of a slit or hole formed or formable in the coating material.
According to a second aspect, the present invention is a medical implant for implantation within a body of a recipient, the medical implant comprising a hermetically sealed housing, said housing having at least one flange extending outwardly therefrom that is securable and conformable to tissue within the body of the recipient.
In this aspect, the said at least one flange can be formed of a malleable material. In this aspect, the implant, housing and flange can have any one or more of the features defined herein with reference to the first aspect.
In the case of a cochlear implant, an electrically conducting lead preferably extends from the receiver/stimulator package to an electrode array. The lead preferably exits the package such that it is extendable into the cochlea of the recipient on appropriate positioning of the implantable component within the recipient. In a preferred embodiment, the lead preferably extends from the implanted package to the cochlea via a posterior tympanotomy positioned at the bottom of a mastoid cavity. Other lead positions and geometries are can, however, be envisaged.
The present invention provides a housing of an implantable component having one or more flanges for use in securing the component to a tissue surface of the recipient. In addition to supporting the component, the flanges have the additional characteristic of serving to protect the component from inadvertent dislodgment following an impact that might otherwise dislodge the component if positioned and mounted using conventional techniques.
By way of example only, a preferred embodiment of the invention is now described with reference to the accompanying drawings, in which:
Before describing the features of the present invention, it is appropriate to briefly describe the construction of one type of known cochlear implant system with reference to
Known cochlear implants typically consist of two main components, an external component including a speech processor 29, and an internal component including an implanted receiver and stimulator unit 22. The external component includes a microphone 27. The speech processor 29 is, in this illustration, constructed and arranged so that it can fit behind the outer ear 11 and is held in place behind the outer ear 11 via an ear-hook arrangement. Alternative versions may be worn on the body. Attached to the speech processor 29 via a cable 13 is a transmitter antenna coil 24 that transmits electrical signals to the implanted unit 22 via a radio frequency (RF) link.
The implanted component includes a receiver antenna coil 23 for receiving power and data from the transmitter coil 24. A cable 21 extends from the implanted receiver and stimulator unit 22 to the cochlea 12 and terminates in an electrode array 20. The signals thus received are applied by the array 20 to the basilar membrane 8 and the nerve cells within the cochlea 12 thereby stimulating the auditory nerve 9. The operation of such a device is described, for example, in U.S. Pat. No. 4,532,930.
As can be appreciated from
One embodiment of the fixation system according to the present invention is shown in
The malleable flanges 42 are preferably made from a titanium material and, in the depicted embodiment, are attached to the titanium implant package 22 by welding. Alternatively, the flanges 42 may be made integral with the implant package 22, and may merely be extension of the package 22. It is envisaged that other metals may be used for the implant package 22 and flanges 42, for example, any biocompatible metal such as stainless steel. It would, however, be preferable that the material used for the implant package 22 and/or flanges 42 be non-magnetic to allow MRI compatibility.
The skull attachment devices 43 are typically surgical screws and preferably have a low profile so they do not cause tissue erosion in the region of the head surrounding the implant, or produce a noticeable protuberance. Preferably, the flanges 42 and skull attachment devices 43 are coated in a silicone rubber to prevent tissue erosion, with the skull attachment devices 43 being accessed by means of a slit or hole in the silicone rubber above the skull attachment devices 43.
As shown in
As can be appreciated in
As surgical methods and preferences vary from surgeon to surgeon, it is important that the present invention can also be adapted to meet such variations. As can be seen in
It should be appreciated that each of the flanges 42 shown in the above mentioned embodiments could be made from a plastic or elastomeric materials bonded to the implant package 22. For example, the silicone rubber coating of the implant package 22 can be extended to create a silicone rubber flange which may be secured to the skull via appropriate means. Further, a plastic material, such as PTFE or polyurethane, can be embedded within the silicone rubber coating of the implant package 22 to form a flange. Such a device may also be attached to the implant package via a mechanical interlock. It may also be possible to make the flange of a composite or combination of materials. For example, a Dacron mesh may be used as a reinforcing structure to strengthen the silicone rubber coating. PTFE, polyurethane or carbon fibre materials may also be used as a reinforcing member.
By providing the flange made from a plastic or elastomeric material, it then becomes possible for the surgeon to remove or cut-off the flange during the surgical procedure should they not wish to use such a fixation method. This results in the fixation mechanism being an optional feature. Such a flange would also be easier to form and alter the shape thereof to more appropriately conform to the shape of the recipient's skull. Further, a flange made from a plastic or elastomeric material is softer than a metallic flange and will therefore be less prone to causing tissue erosion.
a, 11b, 12a, and 12b depict yet another embodiment of the present invention. In this embodiment, the flanges 42 are detachable from the implant package 22. Each flange 42 is attached to the implant package 22 via lugs or clips 50 protruding from the side of the case of the implant package 22. The flanges 42 are received in the lugs or clips 50 and can be securely attached to the skull via appropriate skull attachment devices 43. This embodiment has the advantage that there is no need for a separate flange plate which adds thickness to the implant package. Further, the use of the flanges is optional, should the surgeon prefer not to use the flanges to secure the implant in place.
As is shown in
The embodiment as shown in
As alluded to above, the plate 55 may be made of a non-metallic material, such as a biocompatible plastic since there is no need for welding of the plate to the implant package 22. Such a plate would overcome the need to provide a coating of silicone rubber to the surface of the plate to soften it and prevent tissue erosion. In this regard, the plate 55 could be made of a polyurethane or PTFE which are strong, relatively inelastic materials suited to this application. However, it should be envisaged that other plastics may also be used which exhibit the desired properties.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
2002950755 | Aug 2002 | AU | national |
The present application is a Continuation application of U.S. patent application Ser. No. 15/406,190, filed Jan. 13, 2017, now U.S. Pat. No. 10,610,691, naming Peter Gibson as an inventor, which is a Continuation application of U.S. patent application Ser. No. 10/523,800, filed Nov. 3, 2005, now U.S. Pat. No. 9,545,522, which is a National Stage of PCT/AU03/01004, filed Aug. 8, 2003, which claims priority to AU Application No. 2002950755, filed Aug. 9, 2002. The entire contents of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2487038 | Baum | Nov 1949 | A |
2641328 | Beaudry | Jun 1953 | A |
3768977 | Brumfield et al. | Oct 1973 | A |
4055233 | Huntress | Oct 1977 | A |
4333469 | Jeffcoat et al. | Jun 1982 | A |
4488561 | Doring | Dec 1984 | A |
4532930 | Crosby et al. | Aug 1985 | A |
4590946 | Loeb | May 1986 | A |
4612915 | Hough et al. | Sep 1986 | A |
4744792 | Sander et al. | May 1988 | A |
4904233 | Hakansson et al. | Feb 1990 | A |
4986831 | King et al. | Jan 1991 | A |
5176620 | Gilman | Jan 1993 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5282253 | Konomi | Jan 1994 | A |
5443493 | Byers et al. | Aug 1995 | A |
5558618 | Maniglia | Sep 1996 | A |
5572594 | Devoe et al. | Nov 1996 | A |
5738521 | Dugot | Apr 1998 | A |
5814095 | Muller et al. | Sep 1998 | A |
5881158 | Lesinski et al. | Mar 1999 | A |
5906635 | Maniglia | May 1999 | A |
5999632 | Leysieffer et al. | Dec 1999 | A |
6042380 | De Rowe | Mar 2000 | A |
6070105 | Kuzma | May 2000 | A |
6125302 | Kuzma | Sep 2000 | A |
6132384 | Christopherson et al. | Oct 2000 | A |
6161046 | Maniglia et al. | Dec 2000 | A |
6293903 | Kasic, II et al. | Sep 2001 | B1 |
6381336 | Lesinski et al. | Apr 2002 | B1 |
6427086 | Fischell et al. | Jul 2002 | B1 |
6516228 | Berrang et al. | Feb 2003 | B1 |
6537200 | Leysieffer et al. | Mar 2003 | B2 |
6565503 | Leysieffer et al. | May 2003 | B2 |
6575894 | Leysieffer et al. | Jun 2003 | B2 |
6618623 | Pless | Sep 2003 | B1 |
6697674 | Leysieffer | Feb 2004 | B2 |
6730015 | Schugt et al. | May 2004 | B2 |
6840919 | Hakansson | Jan 2005 | B1 |
7043040 | Westerkull | May 2006 | B2 |
7937156 | Gibson | May 2011 | B2 |
7974700 | Gibson | Jul 2011 | B1 |
9545522 | Gibson | Jan 2017 | B2 |
10610691 | Gibson | Apr 2020 | B2 |
20020019669 | Berrang et al. | Feb 2002 | A1 |
20020091419 | Firlik | Jul 2002 | A1 |
20020138115 | Baumann | Sep 2002 | A1 |
20040260361 | Gibson | Dec 2004 | A1 |
20060030852 | Sevrain | Feb 2006 | A1 |
20060116743 | Gibson et al. | Jun 2006 | A1 |
20090099658 | Dalton et al. | Apr 2009 | A1 |
20110160855 | Gibson | Jun 2011 | A1 |
20110208303 | Gibson | Aug 2011 | A1 |
20110264170 | Gibson | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2282426 | Aug 2006 | RU |
8300999 | Mar 1983 | WO |
3429932 | Dec 1994 | WO |
9705673 | Feb 1997 | WO |
9436457 | Oct 1997 | WO |
9906108 | Feb 1999 | WO |
0071063 | Nov 2000 | WO |
0110369 | Feb 2001 | WO |
03070133 | Aug 2003 | WO |
03092326 | Nov 2003 | WO |
2004014269 | Feb 2004 | WO |
2004014270 | Feb 2004 | WO |
2007053882 | May 2007 | WO |
2009099658 | Aug 2009 | WO |
Entry |
---|
International Preliminary Examination Report for PCT/AU2003/000229, dated May 2004. |
International Preliminary Examination Report for PCT/AU2000/000936, dated Jun. 2001. |
International Search Report for PCT/AU2000/000936, dated Oct. 10, 2000. |
International Search Report for PCT/AU2003/000229, dated May 5, 2003. |
Written Opinion for PCT/AU2003/00229, dated Jun. 30, 2003. |
International Search Report for PCT/AU03/01004, dated Oct. 13, 2003. |
International Preliminary Examination Report for PCT/AU03/01004, dated Nov. 2004. |
International Search Report for PCT/AU03/001012, dated Oct. 13, 2003. |
International Preliminary Examination Report for PCT/AU03/001012, dated Nov. 2004. |
Written Opinion for PCT/AU03/01004, dated Jan. 9, 2006. |
Written Opinion for PCT/AU03/001012, dated Feb. 23, 2004. |
Gerald A. Niznick, “Achieving Osseointegration in Soft Bone: The Search for Improved Results,” Oral Health, Aug. 2000, pp. 27-32. |
International Search Report for PCT/AU2006/001632, dated Dec. 1, 2006. |
Written Opinion for PCT/AU2006/001632, dated Dec. 1, 2006. |
International Preliminary Report on Patentability for PCT/AU2006/001632, dated May 14, 2008. |
Number | Date | Country | |
---|---|---|---|
20180169416 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15406190 | Jan 2017 | US |
Child | 15852779 | US | |
Parent | 10523800 | US | |
Child | 15406190 | US |