Fixation system with multidirectional bone supports

Information

  • Patent Grant
  • 7527639
  • Patent Number
    7,527,639
  • Date Filed
    Friday, July 23, 2004
    20 years ago
  • Date Issued
    Tuesday, May 5, 2009
    15 years ago
Abstract
A fixation system includes a plate intended to be positioned against a bone, a plurality of bone screws for securing the plate along a non-fractured portion of the bone, and a plurality of bone pegs which extend from the plate and into bone fragments of the fracture to provide a supporting framework. The pegs can be oriented at various angles relative to an axis normal to be lower surface of the plate. For each peg, once the peg has been appropriately positioned within the peg hole, a set screw is threaded into the peg hole and tightened, thereby securing the peg in the selected orientation.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates broadly to surgical devices. More particularly, this invention relates to a bone fixation system having multidirectional bone fragment support pegs.


2. State of the Art Referring to FIG. 1, a Colles' fracture is a fracture resulting from compressive forces being placed on the distal radius 10-, and which causes backward displacement of the distal fragment 12 and radial deviation of the hand at the wrist 14. Often, a Colles' fracture will result in multiple bone fragments 16, 18, 20 which are movable and out of alignment relative to each other. If not properly treated, such fractures result in permanent wrist deformity. It is therefore important to align the fracture and fixate the bones relative to each other so that proper healing may occur.


Alignment and fixation are typically performed by one of several methods: casting, external fixation, interosseous wiring, and plating. Casting is non-invasive, but may not be able to maintain alignment of the fracture where many bone fragments exist. Therefore, as an alternative, external fixators may be used. External fixators utilize a method known as ligamentotaxis, which provides distraction forces across the joint and permits the fracture to be aligned based upon the tension placed on the surrounding ligaments. However, while external fixators can maintain the position of the wrist bones, it may nevertheless be difficult in certain fractures to first provide the bones in proper alignment. In addition, external fixators are often not suitable for fractures resulting in multiple bone fragments. Interosseous wiring is an invasive procedure whereby screws are positioned into the various fragments and the screws are then wired together as bracing. This is a difficult and time consuming procedure. Moreover, unless the bracing is quite complex, the fracture may not be properly stabilized. Plating utilizes a stabilizing metal plate typically against the dorsal side of the bones, and a set of parallel pins extending from the plate into the holes drilled in the bone fragments to provide stabilized fixation of the fragments. However, the currently available plate systems fail to provide desirable alignment and stabilization.


SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide an improved fixation and alignment system for a Colles' fracture and other fractures.


It is another object of the invention to provide a fixation system which desirably aligns and stabilizes multiple bone fragments in a fracture to permit proper healing.


It is also an object of the invention to provide a fixation system which is highly adjustable to provide a customizable framework for bone fragment stabilization.


In accord with these objects, which will be discussed in detail below, a fracture fixation system is provided which generally includes a plate intended to be positioned against a non-fragmented proximal portion of a fractured bone, a plurality of bone screws for securing the plate along the non-fragmented portion of the bone, and a plurality of bone pegs coupled to the plate and extending therefrom into bone fragments adjacent the non-fragment portion.


According to a preferred embodiment of the invention, the plate is generally a T-shaped volar plate defining an elongate body, a head portion angled relative to the body, a first side which is intended to contact the bone, and a second side opposite the first side. The body portion includes a plurality of countersunk screw holes for the extension of the bone screws therethrough. The head portion includes a plurality of threaded peg holes for receiving the pegs therethrough. The pegs are angularly adjustable relative to the peg holes and can be independently fixed in selectable orientations; i.e., the pegs are multidirectional.


To stabilize a Colles' fracture, the volar plate is positioned with its first side against the volar side of the radius and bone screws are inserted through the bone screw holes into the radius to secure the volar plate to the radius. The bone fragments are then aligned and, through the peg holes, holes are drilled into and between the bone fragment at angles chosen by the surgeon. The pegs are then inserted into the peg holes and into the drilled holes, and a set screw (or screw cap) is inserted over each peg to lock the peg in the volar plate at the chosen orientation. The volar fixation system thereby stabilizes and secures the bone fragments in their proper orientation.


The various adjustably directable pegs can also be used in conjunction with fracture fixation plates adapted for fractures of other bones, e.g., the proximal and distal humerus, the proximal and distal ulna, the proximal and distal tibia, and the proximal and distal femur.


Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of an extremity subject to a Colles' fracture;



FIG. 2 is a top volar view of a right hand volar fixation system according to a first embodiment of the invention;



FIG. 3 is a side view of a volar plate according to the first embodiment of the volar fixation system of the invention;



FIG. 4 is a section view of the head portion of the volar fixation system according to the invention;



FIG. 5 is a proximal perspective view of a bone peg according to an embodiment of the invention;



FIGS. 6 and 7 are proximal and distal perspective views, respectively, of a set screw according to the a first embodiment of the invention;



FIG. 8 is a broken section view of a first embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 9 is a broken perspective view of a peg and set screw according to the first embodiment of the directable peg assembly of the invention;



FIG. 10 is an illustration of the first embodiment of the volar fixation system provided in situ aligning and stabilizing a Colles' fracture;



FIG. 11 is a broken section view of a second embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 12 is a broken perspective view of a peg and set screw according to the second embodiment of the directable peg assembly for a fracture fixation system according to the invention;



FIG. 13 is a broken section view of a third embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 14 is a broken perspective view of a peg and set screw according to the third embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 15 is a broken section view of a fourth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 16 is a broken perspective view of a peg and set screw according to the fourth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 17 is a broken section view of a fifth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 18 is a broken perspective view of a peg and set screw according to the fifth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 19 is a broken section view of a sixth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 20 is a broken perspective view of a peg and set screw according to the sixth embodiment of a directable peg assembly for a fracture fixation system according to the invention;



FIG. 21 is a broken section view of a seventh embodiment of directable peg assembly for a fracture fixation system according to the invention;



FIG. 22 is a broken perspective view of a peg and set screw according to the seventh embodiment of a directable peg assembly of the invention;



FIG. 23 is a broken section view of an eighth embodiment of directable peg assembly for a fracture fixation system according to the invention;



FIG. 24 is a broken exploded perspective view of a peg and set screw according to the eighth embodiment of a directable peg assembly of the invention;



FIG. 25 is a broken section view of a ninth embodiment of directable peg assembly for a fracture fixation system according to the invention, shown with a driver for the peg; and



FIG. 26 is a broken perspective view of a peg, set screw and driver according to the ninth embodiment of a directable peg assembly of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning now to FIGS. 2 through 4, a first embodiment of a fracture fixation system 100 is particularly adapted for aligning and stabilizing multiple bone fragments in a Colles' fracture. The system 100 generally includes a substantially rigid T-shaped plate 102 intended to be positioned against the volar side of the radial bone, a plurality of preferably self-tapping bone screws 104 for securing the plate 102 along a non-fractured portion of the radial bone, and a plurality of bone pegs 108 which extend from the plate 102 and into bone fragments of a Colles' fracture.


The T-shaped plate 102 defines a head portion 116, an elongate body portion 118 angled relative to the head portion, a first side 120 which is intended to contact the bone, and a second side 122 opposite the first side. The first side 120 at the head portion is preferably planar, as is the first side at the body portion. As the head portion and body portion are angled relative to each other, the first side preferably defines two planar portions. The angle Ø between the head portion 116 and the body portion 118 is preferably approximately 23* and bent at a radius of approximately 0.781 inch. The distal edge 121 of the head portion 116 is preferably angled proximally toward the medial side at an angle α, e.g. 5*, relative to a line P, which is perpendicular to the body portion. The plate 102 preferably has a thickness of approximately 0.1 inch, and is preferably made from a titanium alloy, such as Ti-6A-4V.


The body portion 118 includes four preferably countersunk screw holes 124, 126, 127, 128 for the extension of the bone screws 104 therethrough. One of the screw holes, 128, is preferably generally elliptical (or oval).


The head portion 116 includes four peg holes 130, preferably closely spaced (e.g., within 0.25 inch of each other) and arranged along a line or a curve, for individually receiving the pegs 108 therethrough.


According to the invention, each peg can be directed through a range of angles within a respective peg hole and fixed at a desired angle within the range. Referring to FIGS. 4 and 8, according to a first embodiment of the invention, each peg hole 130 in the volar plate 102 includes a cylindrical upper bore 140 provided with threads 146 and a lower portion 148 having a radius of curvature. The lower end 154 of each peg hole includes a circumferential bevel 156.


Referring to FIGS. 4, 5 and 8, each peg 108 includes a head 160 and a cylindrical shaft 162. The proximal portion 164 of the head 160 includes a cup 167 having an outer radius Ro substantially corresponding to the radius of the lower portion 148 of the peg holes 130, and a relatively smaller inner radius Ri of curvature. The head 160 defines preferably approximately 160° of a sphere. The shaft 162 includes a slight taper 166 at the intersection with the head 160, and a rounded distal end 168. According to a preferred manufacture of the first embodiment, the cylindrical shaft 162 of each peg 108 is first provided with a sphere (not shown) or a hemisphere (not shown) at a proximal end. If a sphere is provided, it is cut to a hemisphere. The hemisphere is then hollowed and further reduced to the 160° shape. Finally, the taper 166 is provided at the intersection.


Referring to FIGS. 5 and 8, the surface 150 of the lower portion 148 of the peg hole 130 and/or the outer surface 152 of the head 160 of the peg 108 is preferably roughened, e.g., by electrical, mechanical, or chemical abrasion, or by the application of a coating or material having a high coefficient of friction.


Turning now to FIGS. 6 through 9, each set screw 110 includes a proximal hex socket 170, circumferential threads 172 adapted to engage the threads 146 of the upper bore 140 of the peg hole, and distal substantially hemispherical portion 174 having substantially the same radius of curvature as the inner radius of curvature Ri of the cup 167, and preferably substantially smaller than a radius of the peg holes 130.


Referring to FIGS. 4 and 10, to stabilize a Colles' fracture, the plate 102 is positioned on the radius 10, and at least one hole is drilled through the elliptical screw hole on the volar plate and into the radius 10. Then, one or more bone screws 104 are inserted through the plate and into the bone. The fractured bones 16, 18, 20 are then adjusted under the plate 102 into their desired stabilized positions, and the bone screws 104 are tightened. Then, through the peg holes 130, the surgeon drills holes into the fracture location for the stabilization pegs 108. The holes may be drilled at any angle within a predefined range, and preferably at any angle within a range of 15° relative to an axis normal AN to the lower surface of the head of the volar plate. Each hole may be drilled at the same angle or at relatively different angles. After each hole is drilled, a peg 108 is inserted therein. Referring back to FIG. 8, the bevel 156 at the lower end 154 of the peg hole 130 and the taper 166 on the shaft cooperate to permit the peg to be oriented with greater freedom relative to the axis AN, if required, as interference between the peg hole and peg shaft is thereby reduced. Once the peg 108 has been appropriately positioned within the peg hole, one of the set screws 110 is threaded into the upper bore 140 of the peg hole 130. The hemispherical portion 174 contacts the head 160 of the peg, seating in the concavity of the cup 167. As the set screw 110 is tightened, the surface 152 of the head of the peg, which may be roughened, is clamped between the set screw 110 and the roughened inner surface 150 of the lower portion of the peg hole 130, thereby securing the peg in the selected orientation. The other pegs are similarly positioned and angularly fixed.


Turning now to FIGS. 11 and 12, a second embodiment of a directable peg assembly for a fracture fixation plate is shown. The plate 202 includes threaded peg holes 230 that are generally larger in diameter than the head 260 of the pegs 208 intended for use therethrough. This permits a hole to be drilled through the peg hole 230 at a relatively greater angle than with respect to holes 130. The lower end 248 of the peg hole 230 is constricted relative to the upper threaded portion 249. The peg 208 includes a spherically-curved head 260, a cylindrical shaft 262, and an optionally constricted neck 266 therebetween. The set screw 210 includes a square opening 270 adapted to receive a square driver, threads 246 about its circumference, and a substantially spherically curved socket 274 adapted to receive the head 260 of the peg 208. As seen in FIG. 12, the lower portion of the set screw 210 includes expansion slots 276 which permit the lower portion of the set screw 210 to temporarily deform to receive the head 260 of the peg 208 (which has a diameter greater than the opening 278 of the spherical socket); i.e., the head 260 can be snapped into the socket 274.


In use, for each peg hole 230 and peg 208, holes are drilled through the peg holes and into the bone along axes at which it is desired to have pegs extend for stabilization of the fracture fragments. The head 260 of the peg 208 is snapped into the opening 278 of the socket 274. The shaft 262 of the peg 208 is then inserted into a respective bone hole until the set screw 210 meets the peg hole 230. It is appreciated that the set screw 210 can be rotated relative to the peg 208, as the socket 274 and spherical head 260 form a ball and socket coupling. As such, the set screw 210 is rotatably secured in the peg hole 230 to secure the peg 208 at the desired angle within the drilled hole.


Turning now to FIGS. 13 and 14, a third embodiment of a directable peg assembly for a fracture fixation plate is shown. The plate 302 includes threaded peg holes 330 that preferably have a stepped diameter, with a relatively large countersink portion 380 adapted to receive the head of a set screw 310, a threaded central portion 382, and a relatively smaller lower portion 384. The peg 308 includes a substantially spherically-curved head 360 having a central square opening 386 adapted to receive a driver, and a threaded cylindrical shaft 362. The set screw 310 includes a head portion 388 having a square opening 370 for also receiving a driver, a threaded portion 390, and a lower spherically-curved socket 374.


In use, for each peg hole 330 and peg 308, a hole is drilled through a respective peg hole and into the bone at the angle at which it is desired to receive a peg for stabilization of the fracture. The peg 308 is then positioned within the peg hole 330 and rotatably driven into the bone with a driver (not shown). Once the peg 308 is fully seated against the lower portion 384 of the peg hole 330, the set screw 310 is threaded into the central portion 390 of the peg hole and urged against the head 360 of the peg 308 to clamp the peg in position. The head portion 388 of the set screw 310 preferably at least partially enters the countersink portion 380 of the peg hole to provide a lower profile to the assembly.


Turning now to FIGS. 15 and 16, a fourth embodiment of a directable peg assembly for a fracture fixation plate is shown. The plate 402 includes threaded peg holes 430 each with a lower portion 448 having a radius of curvature, and a lower end 454 provided with a preferably circumferential bevel 456. The peg 408 includes a spherically curved head 460 defining a socket 467 extending in excess of 180° , a cylindrical shaft 462, and an optionally tapered neck 466 therebetween. The head 460 about the socket 467 is provided with expansion slots 476. The set screw 410 includes an upper portion 488 having a square opening 470 for a driver, and threads 490, and a lower ball portion 474 adapted in size an curvature to snap into the socket 467.


In use, for each peg hole 430 and peg 408, holes are drilled through the peg hole and into the bone at the angles at which it is desired to receive pegs for stabilization of fragments of the fracture. The ball portion 474 of the set screw 410 is snapped into the socket 467, with the socket 467 able to expand to accept the ball portion 474 by provision of the expansion slots 476. The shaft 462 of the peg 408 is then inserted into a respective bone hole until the set screw 410 meets the peg hole 430. It is appreciated that the set screw 410 can rotate relative to the peg 408, as the ball portion 474 and socket 467 are rotatably coupled to each other. As such, the set screw 410 is then rotatably secured in the peg hole 430 to secure the peg 408 in the bone.


Turning now to FIGS. 17 and 18, a fifth embodiment of a directable peg assembly for a fracture fixation plate, substantially similar to the fourth embodiment, is shown. In the fifth embodiment, the head 560 of the peg 508 includes two sets of pin slots 594a, 594b defining two planes P1 and P2 oriented transverse to each other. In addition, the head 560 includes radial expansion slots 576. The ball portion 574 of the set screw 510 includes two pins 598a, 598b extending through a center thereof and oriented transverse to each other. The ball portion 574 is snapped into the socket 567 defined by the head 560 of the peg 508, and pins 598a, 598b are positioned through the pin slots 594a, 594b to rotatably lock the peg and set screw together, yet permit the peg 508 to articulate relative to the set screw 510. The fifth embodiment is suitable for rotatably inserting threaded pegs 508 into a bone hole via rotation of the set screw 510, and may be used in a similar manner to the fourth embodiment.


Turning now to FIGS. 19 and 20, a sixth embodiment of a directable peg assembly for a fracture fixation plate is shown. The assembly includes a peg 608 having a substantially spherically curved head 660 provided with four nubs 680 (two shown) arranged in 90° intervals about the periphery of the head 660. The set screw 610 includes lower walls 682 defining a socket 674 for the head 660. In addition, the walls 682 define slots 684 through which the nubs 680 can move.


In use, the assembly of the peg 608 with its set screw 610 functions substantially similar to a universal joint. The peg 608 is then inserted through a respective peg hole 630 and into a drilled hole in a bone until threads 690 on the set screw 610 engage mating threads 692 in the peg hole. The set screw 610 is then rotated, which causes rotation of the peg 608 within the drilled hole. When the set screw 610 is fully seated in the peg hole 630, the peg 608 is secured in the bone.


Turning now to FIGS. 21 and 22, a seventh embodiment of a directable peg assembly for a fracture fixation plate is shown. The peg holes 730 in the plate 702 each include a threaded cylindrical upper portion 746 and a spherically-curved lower portion 748 having a smaller hole diameter than the upper portion. Each peg 708 has a head 760 with a lower relatively larger spherically curved portion 762 and an upper relatively smaller spherically curved portion 764, and a shaft 766. The lower curved portion 762 preferably spherically curves through substantially 150°, while the upper curved portion 764 preferably spherically curves through substantially 210°. The peg shaft is optionally provided with threads 769, and when so provided, the lower curved portion 762 of the peg is provided with driver notches 768. The set screw 710 includes an upper portion 788 having a slot 770 or other structure for engagement by a driver, threads 790, and a lower socket 792.


In use, for each peg 708, a hole is drilled through a respective peg hole into the bone at an orientation desirable for receiving that particular peg for stabilization of the fracture. A peg 708 is then inserted through the peg hole 730 and into the drilled hole until the curved lower surface 762 of the head 760 of the peg seats against the curved lower portion 748 of the peg hole. If the peg has threads 769, a driver (not shown) may be coupled to the peg 708 at the notches 768 to rotationally drive the peg into the drilled hole. The set screw 710 is then threaded into the peg hole 730 until the socket 792 extends over the upper portion 764 of the head 760 of the peg and presses thereagainst to force the lower portion 762 of the head against spherically-curved lower portion 748 of the peg hole 730 to clamp the peg 708 in position. In the seventh embodiment, the socket 792 of the set screw 710 does not necessarily capture (i.e., extend more than 180° about) any portion of the head 760 of the peg 708. However, the socket 792 may be modified to enable such capture.


Turning now to FIGS. 23 and 24, an eighth embodiment of a directable peg assembly for a fracture fixation plate is shown. The peg holes 830 of the plate each include a spherically-curved portion 848 preferably having a roughened relatively high friction surface. Each peg 808 has a substantially spherically-curved head 860 provided with a preferably roughened outer surface 861, an upper threaded axial bore 863, and a plurality of radial slots 865 extending between the outer surface and the bore. The set screw 810 includes an upper slot 870 for adapted to receive a driver and tapered threads 890.


In use, for each peg 808, a hole is drilled through a respective peg hole into the bone at an orientation desirable for receiving that particular peg for stabilization of the fracture. A peg 808 is then inserted through the peg hole 830 and into the drilled hole. When the peg 808 is fully seated in the peg hole 830 and at the desired angle, the set screw 810 in threadably inserted into the bore 863. The set screw 810 has a diameter slightly larger than the bore 863. As such, as the screw 810 is inserted, the head 860 of the peg 808 is enlarged at the slots 865 to accommodate the screw 810, and the high friction surfaces 861, 848 are forced against each other thereby locking the peg 808 in the peg hole 830 at its chosen axial orientation.


Turning now to FIGS. 25 and 26, a ninth embodiment of a directable peg assembly for a fracture fixation plate is shown. The peg holes 930 and threaded pegs 908 are substantially similar to the peg holes 330 and pegs 308 of the third embodiment (FIGS. 13 and 14). It is noted that the lower end of the peg hole 930 has a lower curving taper 931. Also according to the ninth embodiment, the set screw 910 includes a central hole 969, an upper slot 970 extending across the hole 969, helical threads 990, a lower socket 992, and a plurality of compression slots 994 about the socket.


In use, for each peg 908, a hole is drilled through a respective peg hole 930 into the bone at an orientation desirable for receiving that particular peg for stabilization of the fracture. A driver 1000 having a shaft 1001 provided with a distalmost square end 1002 and relatively proximal flanges 1004 is then used for the assembly. The threaded peg 908 is positioned at the entry of the bone hole, and the set screw 910 is positioned thereover, with the socket 992 of the set screw resting on the head 960 of the peg. The square end 1002 of the driver is then inserted through the hole 969 and into a square opening 986 at the head 960 of the peg, and the flanges 1004 of the driver 1000 are inserted into the upper slot 970. The driver 1000 is rotated to threadably insert the peg 908 into the bone hole. When the set screw 910 meets the peg hole 930, it is also threaded therein with the driver, and when a lower portion 911 of the set screw contacts the curving taper 931 of the peg hole, the set screw is compressed about the compression slots 994 to secure the peg 908 in position.


There have been described and illustrated herein several embodiments of a volar fixation system, as well as directable peg systems suitable for numerous applications related to the fixation of various bone fractures. In each of the embodiments, the head of a peg is clamped between a portion of the fixation plate and a set screw, preferably with the head of the peg and fixation plate thereabout being treated to have, or having as material properties, high friction surfaces. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials for the elements of the system have been disclosed, it will be appreciated that other materials may be used as well. In addition, fewer or more peg holes and bone pegs may be used, preferably such that at least two pegs angled in two dimensions relative to each other are provided. Also, while a right-handed volar plate is described with respect to an embodiment of the invention, it will be appreciated that right- or left-handed model, with such alternate models being mirror images of the models described. In addition, while it is disclosed that the pegs may be directed through a range of 15°, the peg holes and pegs may be modified to permit a greater, e.g. up to 30°, or smaller, e.g. 5°, range of such angular direction. Furthermore, while several drivers for applying rotational force to set screws and pegs have been disclosed, it will be appreciated that other rotational engagement means, e.g., a Phillips, slotted, star, multi-pin, or other configuration may be used. Also, the plate and pegs may be provided in different sizes adapted for implant into different size people. Furthermore, while four screw holes are described, it is understood that another number of screw holes may be provided in the plate, and that the screw holes may be located at positions other than shown. In addition, individual aspects from each of the embodiments may be combined with one or more aspects of the other embodiments. Moreover, while some elements have been described with respect to the mathematically defined shapes to which they correspond (e.g., spherical), it is appreciated that such elements need only correspond to such shapes within the tolerances required to permit the elements to adequately function together; i.e., the elements need only be “substantially” spherical in curvature. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Claims
  • 1. A fracture fixation system, comprising: a) a substantially rigid plate having a plurality of holes adapted to individually receive bone supports therein, said holes having an upper portion and a lower portion, said upper portion having a first internal thread, and said lower portion having a radius of curvature;b) a plurality of bone supports each having a head and a shaft, said shaft sized to be received through said holes, and said head having a lower surface with substantially a same radius of curvature as said lower portion of said holes and said head including two sets of pin slots, each set of pin slots defining a diameter of said head, and said diameters being transverse to each other;c) a plurality of set screws each having a body including a second thread rotationally engageable with said first thread, a lower ball portion sized to be received in said socket of one of said plurality of bone supports such that each said set screw and its respective bone support are adapted to articulate relative to each other by movement of said socket portion about said ball portion, and a proximal rotational engagement means for permitting a rotational force to be applied to said set screw;d) two pins extending through said ball portion of said set screw, each said pin permitted to rotate through one of said set of pin slots about two transverse axes,wherein when said bone supports are provided into respective holes, each said bone support may be positioned at a plurality of angles relative to an axis normal to a lower surface of a portion of said plate surrounding a respective hole, and once so positioned, respective set screws when threaded into said upper portions of said holes fix said bone supports at their respective angles.
  • 2. A fracture fixation system according to claim 1, wherein: when said bone supports are fixed at their respective angles, said bone supports are adapted to provide a framework for supporting fractured bone fragments, said bone supports of said framework defining a plurality of non-parallel axes.
  • 3. A fracture fixation system according to claim 1, wherein: said holes are closely spaced in a linear or curvilinear arrangement.
  • 4. A fracture fixation system according to claim 1, wherein: said fixation plate has a body portion and a head portion angled relative said body portion.
  • 5. A fracture fixation system according to claim 4, wherein: said body portion and said head portion are configured in a T-shape.
  • 6. A fracture fixation system according to claim 1, wherein: said body portion includes at least one non-threaded screw hole.
  • 7. A fracture fixation system according to claim 1, wherein: said lower portion of said hole has a spherical radius of curvature.
  • 8. A fracture fixation system according to claim 1, wherein: said lower portion of each of said holes defines a surface having a relatively high coefficient of friction.
  • 9. A fracture fixation system according to claim 1, wherein: an outer surface of said head of each of said bone supports has a surface having a relatively high coefficient of friction.
  • 10. A fracture fixation system according to claim 1, wherein: said plurality of angles is any angle within a predefined range of angles.
  • 11. A fracture fixation system according to claim 1, wherein: said shaft of at least one of said bone supports is non-threaded.
  • 12. A fracture fixation system, comprising: a) a substantially rigid plate having a plurality of holes adapted to individually receive bone supports therein, said holes having an upper portion and a lower portion, said upper portion having a first internal thread, and said lower portion having a substantially spherical radius of curvature;b) a plurality of bone supports each having a head portion and a shaft portion, said shaft portion sized to be received through said holes, and said head portion having a portion with an outer surface having substantially a same substantially spherical radius of curvature as said lower portion of said holes, and said head portion defining an upper concave socket and including two sets of pin slots, each set of pin slots defining a diameter of said head, and said diameters being transverse to each other; andc) a plurality of set screws each having a body including a second thread rotationally engageable with said first thread, a proximal rotational engagement means for permitting a rotational force to be applied to said set screw, and a lower ball portion sized to be received in said socket of one of said plurality of bone supports such that each said set screw and its respective bone support are adapted to articulate relative to each other by movement of said socket portion about said ball portion, said ball portion of said set screw is provided with two pins extending therethrough, said pins being transverse to each other, wherein each said pin is permitted to rotate through one of said set of pin slots about two transverse axes,wherein when said bone supports are provided into respective holes, each said bone support may be positioned at a plurality of angles relative to an axis normal to a lower surface of said plate, and once so positioned, respective set screws when threaded into said upper portions of said holes fix said bone supports at their respective angles.
  • 13. A fracture fixation system according to claim 12, wherein: for each said bone support, said socket portion of said bone support captures said ball portion of one of said set screws.
  • 14. A fracture fixation system according to claim 13, wherein: said socket portion of said bone support includes slots at which said socket portion is adapted to expand to receive said ball portion of said one of said set screws.
  • 15. A fracture fixation system according to claim 12, wherein: said shaft of at least one of said bone supports is threaded.
  • 16. A fracture fixation system according to claim 12, wherein: said plate includes at least one screw hole.
  • 17. A fracture fixation system according to claim 12, wherein: said plate is a T-shaped plate having a body portion and a head portion angled relative to said body portion, said holes being provided in said head portion.
Parent Case Info

This application is a divisional of U.S. Ser. No. 10/159,612, filed May 30, 2002, now issued as U.S. Pat. No. 6,767,351, which is a continuation-in-part of U.S. Ser. No. 09/735,228, filed Dec. 12, 2000, now U.S. Pat. No. 6,440 135 which are each hereby incorporated by reference herein in their entireties.

US Referenced Citations (212)
Number Name Date Kind
388000 Rider Aug 1888 A
472913 Taylor Dec 1892 A
1151861 Brumback Aug 1915 A
2056688 Peterka et al. Oct 1936 A
2500370 McKibbin Mar 1950 A
2526959 Lorenzo Oct 1950 A
3025853 Mason Mar 1962 A
3236141 Smith Feb 1966 A
3645161 Wesker Feb 1972 A
3709218 Halloran Jan 1973 A
3717146 Halloran Feb 1973 A
3741205 Markolf et al. Jun 1973 A
3842825 Wagner Oct 1974 A
3939498 Lee et al. Feb 1976 A
RE28841 Allgower et al. Jun 1976 E
4011863 Zickel Mar 1977 A
4119092 Gil Oct 1978 A
4135507 Harris Jan 1979 A
4153953 Grobbelaar May 1979 A
4169470 Ender et al. Oct 1979 A
4172452 Forte et al. Oct 1979 A
4408601 Wenk Oct 1983 A
4467793 Ender Aug 1984 A
4473069 Kolmert Sep 1984 A
4483335 Tornier Nov 1984 A
4484570 Sutter et al. Nov 1984 A
4488543 Tornier Dec 1984 A
4493317 Klaue Jan 1985 A
4506662 Anapliotis Mar 1985 A
4565193 Streli Jan 1986 A
4651724 Berentey et al. Mar 1987 A
4712541 Harder et al. Dec 1987 A
4733654 Marino Mar 1988 A
4776330 Chapman et al. Oct 1988 A
4794919 Nilsson Jan 1989 A
4800874 David et al. Jan 1989 A
4867144 Karas et al. Sep 1989 A
4915092 Firica et al. Apr 1990 A
4923471 Morgan May 1990 A
4955886 Pawluk Sep 1990 A
5006120 Carter Apr 1991 A
5013314 Firica et al. May 1991 A
5015248 Burstein et al. May 1991 A
5035697 Frigg Jul 1991 A
5041113 Biedermann et al. Aug 1991 A
5057110 Kranz et al. Oct 1991 A
5085660 Lin Feb 1992 A
5127912 Ray et al. Jul 1992 A
5151103 Tepic et al. Sep 1992 A
5190544 Chapman et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5201733 Etheredge, III Apr 1993 A
5275601 Gogolewski et al. Jan 1994 A
5304180 Slocum Apr 1994 A
5352228 Kummer et al. Oct 1994 A
5352229 Goble et al. Oct 1994 A
5356253 Whitesell Oct 1994 A
5356410 Pennig Oct 1994 A
5364399 Lowery et al. Nov 1994 A
5382248 Jacobson et al. Jan 1995 A
5425289 Iwinski Jun 1995 A
5437667 Papierski et al. Aug 1995 A
5458654 Tepic Oct 1995 A
5472444 Huebner et al. Dec 1995 A
5484438 Pennig Jan 1996 A
5486176 Hildebrand et al. Jan 1996 A
5520690 Errico et al. May 1996 A
5527311 Procter et al. Jun 1996 A
5531745 Ray Jul 1996 A
5531746 Errico et al. Jul 1996 A
5536127 Pennig Jul 1996 A
5549612 Yapp et al. Aug 1996 A
5558674 Heggeness et al. Sep 1996 A
5578035 Lin Nov 1996 A
5586985 Putnam et al. Dec 1996 A
5591168 Judet et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5603715 Kessler Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5662655 Laboureau et al. Sep 1997 A
5665086 Itoman et al. Sep 1997 A
5665087 Huebner Sep 1997 A
5665089 Dall et al. Sep 1997 A
5669915 Caspar et al. Sep 1997 A
5676667 Hausman Oct 1997 A
5681311 Foley et al. Oct 1997 A
5709682 Medoff Jan 1998 A
5709686 Talos et al. Jan 1998 A
5718705 Sammarco Feb 1998 A
5728099 Tellman et al. Mar 1998 A
5733287 Tepic et al. Mar 1998 A
5749872 Kyle et al. May 1998 A
5766174 Perry Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5776194 Mikol et al. Jul 1998 A
5785711 Errico et al. Jul 1998 A
5807396 Raveh Sep 1998 A
5851207 Cesarone Dec 1998 A
5853413 Carter et al. Dec 1998 A
5879350 Sherman et al. Mar 1999 A
5931839 Medoff Aug 1999 A
5935128 Carter et al. Aug 1999 A
5938664 Winquist et al. Aug 1999 A
5941878 Medoff Aug 1999 A
5951557 Luter Sep 1999 A
5954722 Bono Sep 1999 A
5964763 Incavo Oct 1999 A
5967046 Muller Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5989254 Katz Nov 1999 A
6007535 Rayhack et al. Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6010505 Asche et al. Jan 2000 A
6022350 Ganem Feb 2000 A
6053917 Sherman et al. Apr 2000 A
6096040 Esser Aug 2000 A
6123709 Jones Sep 2000 A
6129730 Bono et al. Oct 2000 A
6146384 Lee et al. Nov 2000 A
6152927 Farris et al. Nov 2000 A
6183475 Lester et al. Feb 2001 B1
6197028 Ray et al. Mar 2001 B1
6206881 Frigg et al. Mar 2001 B1
6221073 Weiss et al. Apr 2001 B1
D443060 Benirschke et al. May 2001 S
6228285 Wang et al. May 2001 B1
6231576 Frigg et al. May 2001 B1
6235033 Brace et al. May 2001 B1
6235034 Bray May 2001 B1
6238395 Bonutti May 2001 B1
6241736 Sater et al. Jun 2001 B1
6248109 Stoffella Jun 2001 B1
6258089 Campbell et al. Jul 2001 B1
6270499 Leu et al. Aug 2001 B1
6283969 Grusin et al. Sep 2001 B1
6290703 Ganem Sep 2001 B1
6322562 Wolter Nov 2001 B1
6355041 Martin Mar 2002 B1
6355043 Adam Mar 2002 B1
6358250 Orbay Mar 2002 B1
6364882 Orbay Apr 2002 B1
6379359 Dahners Apr 2002 B1
6383186 Michelson May 2002 B1
6409768 Tepic et al. Jun 2002 B1
6440135 Orbay et al. Aug 2002 B2
6454769 Wagner et al. Sep 2002 B2
6454770 Klaue Sep 2002 B1
6458133 Lin Oct 2002 B1
6468278 Muckter Oct 2002 B1
6508819 Orbay Jan 2003 B1
6527775 Warburton Mar 2003 B1
6540748 Lombardo Apr 2003 B2
6595993 Donno et al. Jul 2003 B2
6599290 Bailey et al. Jul 2003 B2
6602255 Campbell et al. Aug 2003 B1
6623486 Weaver et al. Sep 2003 B1
6626908 Cooper et al. Sep 2003 B2
6645212 Goldhahn et al. Nov 2003 B2
6669700 Farris et al. Dec 2003 B1
6679883 Hawkes et al. Jan 2004 B2
6692503 Foley Feb 2004 B2
6706046 Orbay et al. Mar 2004 B2
6712820 Orbay Mar 2004 B2
6719758 Beger et al. Apr 2004 B2
6730090 Orbay et al. May 2004 B2
6730091 Pfefferle et al. May 2004 B1
6755831 Putnam Jun 2004 B2
6761719 Justis et al. Jul 2004 B2
6767351 Orbay et al. Jul 2004 B2
6780186 Errico et al. Aug 2004 B2
6866665 Orbay Mar 2005 B2
6926720 Castaneda Aug 2005 B2
6945972 Frigg et al. Sep 2005 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7090676 Huebner et al. Aug 2006 B2
7153309 Huebner et al. Dec 2006 B2
20010001119 Lombardo May 2001 A1
20010011172 Orbay et al. Aug 2001 A1
20010021851 Eberlein et al. Sep 2001 A1
20020032446 Orbay Mar 2002 A1
20020049445 Hall, IV et al. Apr 2002 A1
20020058939 Wagner et al. May 2002 A1
20020058941 Clark et al. May 2002 A1
20020111629 Phillips Aug 2002 A1
20020147452 Medoff et al. Oct 2002 A1
20020151899 Bailey et al. Oct 2002 A1
20020156474 Wack et al. Oct 2002 A1
20030045880 Michelson Mar 2003 A1
20030078583 Biedermann et al. Apr 2003 A1
20030083661 Orbay et al. May 2003 A1
20030105461 Putnam Jun 2003 A1
20030135212 Chow Jul 2003 A1
20030153919 Harris Aug 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20040059334 Weaver et al. Mar 2004 A1
20040059335 Weaver et al. Mar 2004 A1
20040068319 Cordaro Apr 2004 A1
20040073218 Dahners Apr 2004 A1
20040097934 Farris et al. May 2004 A1
20040102778 Huebner et al. May 2004 A1
20040111090 Dahners Jun 2004 A1
20040193163 Orbay Sep 2004 A1
20040260291 Jensen Dec 2004 A1
20050004574 Muckter Jan 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050154392 Medoff et al. Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20060004462 Gupta Jan 2006 A1
20060009771 Orbay Jan 2006 A1
Foreign Referenced Citations (18)
Number Date Country
2174293 Oct 1997 CA
675 531 Oct 1990 CH
33 01 298 Feb 1984 DE
40 04 941 Aug 1990 DE
195 42 116 May 1997 DE
196 29 001 Jan 1998 DE
93 21 544 Sep 1999 DE
43 43 117 Nov 1999 DE
0 451 427 May 1990 EP
0988833 Mar 2000 EP
2855391 Dec 2004 FR
WO 9747251 Dec 1997 WO
WO 0004836 Feb 2000 WO
WO 0036984 Jun 2000 WO
WO 0119267 Mar 2001 WO
WO0215806 Feb 2002 WO
WO 2004032751 Apr 2004 WO
WO 2004096067 Nov 2004 WO
Related Publications (1)
Number Date Country
20040260292 A1 Dec 2004 US
Divisions (1)
Number Date Country
Parent 10159612 May 2002 US
Child 10897912 US
Continuation in Parts (1)
Number Date Country
Parent 09735228 Dec 2000 US
Child 10159612 US