Fixators for bone stabilization and associated systems and methods

Information

  • Patent Grant
  • 12042180
  • Patent Number
    12,042,180
  • Date Filed
    Monday, February 21, 2022
    2 years ago
  • Date Issued
    Tuesday, July 23, 2024
    4 months ago
  • CPC
  • Field of Search
    • CPC
    • A61B17/54
    • A61B17/62
    • A61B17/6441
    • A61B17/8861
    • A61B17/848
    • A61B17/06066
    • A61B17/3205
    • A61B17/06166
    • A61B17/30
    • A61B17/062
    • A61B17/32
    • A61B17/0467
    • A61B17/1325
    • A61B46/20
    • A61B50/30
    • A61B50/33
    • A61B2017/00004
    • A61B2017/320052
    • A61B2017/305
    • A61B2017/320044
    • A61B2046/201
    • A61M19/00
    • A61M5/329
    • A61M5/32
    • A61F13/068
    • A61F13/10
    • A61F13/105
    • A61F5/11
  • International Classifications
    • A61B17/62
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      333
Abstract
The present technology relates generally to ring fixators and associated systems and methods. In some embodiments, for example, a ring fixator assembly comprises a ring configured to surround a fractured bone, a retention device disposed at a first position on the ring, and a tensioner clamp disposed at a second position on the ring. A wire extends between the retention device and the tensioner clamp. The tensioner clamp includes a first screw configured to secure the wire in position with respect to the tensioner clamp and a second screw configured to apply additional tension to the wire.
Description
TECHNICAL FIELD

The present technology is generally related to fixators for stabilization of fractured bones.


BACKGROUND

For background purposes, a ring fixator is a stabilization device that is used on patients to treat complex and/or open bone fractures. The ring fixator is comprised of pins and wires secured to external scaffolding to provide support to a limb. This allows a bone or joint to be stabilized (e.g., via fusion) during trauma or limb reconstruction.


A ring fixator can be formed by a plurality of rings that are fixed to bone via tensioned pins or wires. The ring fixator can be used, for example, in fractured areas of high severity (e.g., with gunshot wounds), whereby traditional fixators are incapable of stabilizing the tissue. The ring fixators can remain in place until bone or joint stabilization is complete, upon which they can be removed.


SUMMARY

In one aspect of the present invention, a ring fixator assembly is disclosed. The ring fixator assembly includes a ring configured to surround a bone, a retention device disposed at a first position on the ring, a tensioner clamp disposed at a second position on the ring, and a wire extending between the retention device and the tensioner clamp. The tensioner clamp includes a clamping member configured to secure the wire in position with respect to the tensioner clamp and a tensioning member configured to apply tension to the wire.


In another aspect of the present invention, a tensioner clamp for a ring fixator assembly is disclosed. The tensioner clamp includes a central passage configured to receive a wire therein, a clamping member configured to secure the wire in position within the central passage, and a tensioning member configured to apply tension to the wire after the clamping member has secured the wire in position.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a ring fixator assembly.



FIG. 2 illustrates a ring fixator including first and second tensioner clamps in accordance with an embodiment of the present technology.



FIGS. 3A-3D illustrate various views of the first tensioner clamp configured in accordance with an embodiment of the present technology.



FIGS. 4A-4C illustrate various views of the second tensioner clamp configured in accordance with an embodiment of the present technology.



FIG. 5 illustrates a ring fixator with a soft tissue spacer in accordance with an embodiment of the present technology.



FIG. 6 illustrates a ring fixator with quick-connect segments in accordance with an embodiment of the present technology.





DETAILED DESCRIPTION

The present disclosure relates to improved ring fixators. An example of a ring fixator is shown in FIG. 1. The ring fixator 101 includes multiple rings 103a-d that surround a patient's fractured bones 105a, 105b. A plurality of wires 107 extend across the individual rings 103a-d, passing through the bones 105a, 105b, thereby providing stability to the fractured bones 105a, 105b while the fractured bones are healed (e.g., via fusion). The ring fixator 101 can be positioned on the patient for as long as necessary until stabilization (e.g., via fusion) is achieved.


As shown in FIG. 1, each of the rings 103a-d of the ring fixator 101 can include one or more wires 107 that are attached to a ring member. To attach the one or more wires 107 to their respective ring member 103a-d, each of the wires would first be clamped to the ring member (e.g., via a clamping instrument). Following attachment, the one or more wires 107 would then be placed in tension (e.g., via a tensioner). These steps would involve two instruments—namely the clamping instrument for attachment and the tensioner for tensioning. The use of two instruments to perform multiple steps can be time consuming in an operation room, as a surgeon would have to first seek out a clamping instrument and then a tensioner for each location on the ring wherein a wire is attached.


The present disclosure is related to embodiments of an improved ring fixator utilizing a combined clamp and tensioner (“tensioner clamp”), which reduces a need to have both a clamping instrument and a separate tensioning instrument. Advantageously, in some embodiments, a single instrument can be used with the tensioner clamp, thereby saving valuable time in an operating room. FIGS. 2-6 show different embodiments of an improved tensioner clamp in accordance with some embodiments. In particular, as shown in FIG. 2, a ring fixator assembly 201 can utilize one or more types of tensioner clamps. One type of tensioner clamp 207a, 207b is shown attached to wire 205, while a second type of tensioner clamp 211a, 211b is shown attached to wire 209.



FIG. 2 illustrates a ring 203 of a ring fixator assembly 201 (“ring fixator 201”) having four tensioner clamps affixed around the perimeter of the ring 203. A first wire 205 extends between two of a first type of tensioner clamp 207a, 207b, while a second wire 209 extends between two of a second type of tensioner clamp 211a, 211b. Each of the tensioner clamps 207 and 211 are configured to both clamp the wires 205 and 209 in place and to apply tension to the wires 205 and 209 after they have been clamped. In some embodiments, a single instrument can be used for both clamping and tensioning, thereby eliminating the need for multiple instruments.


The first and second tensioner clamps 207 and 211 are described in more detail below. Although the embodiment illustrated in FIG. 2 includes first and second tensioner clamps 207 and 211, in other embodiments the ring fixator may include only one type of tensioner clamp. In addition, in some embodiments the wire can be secured at one end by a simple retention device (e.g., a clamp device that cannot apply additional tension), while the wire is secured at the other end by a tensioner clamp. In additional embodiments, the term retention clamp can apply not only to a clamp that cannot apply additional tension, but also to a tensioner clamp. A first tensioner clamp 207 is shown in FIGS. 3A-3D, while a second tensioner clamp 211 is shown in FIGS. 4A-4C. FIG. 3A is a perspective view of a first tensioner clamp 207 engaging the wire 205 in accordance with some embodiments. As illustrated, the first tensioner clamp 207 includes a clamping screw 301 coaxial with a tensioning screw 303. A first driver (not shown) can be used to rotate the clamping screw 301, which causes a clamping member to secure the inner wire 205. A second driver (not shown) can then be used to rotate the tensioning screw 303, which causes tension to be applied to the inner wire 205. In other embodiments, a single driver can be used to control both the clamping screw 301 and the tensioning screw 303, thereby reducing the need for two separate drivers. In other embodiments, a single instrument can house a first driver for operating the clamping screw 301 and a second driver for operating the tensioning screw 303, thereby advantageously allowing a single instrument to perform both clamping and tensioning.



FIGS. 3B-3D illustrate side cross-sectional views of the first tensioner clamp 207 engaged with the wire 205 during different points of operation of the first tensioner clamp 207. In particular, FIG. 3B illustrates the first tensioner clamp 207 prior to clamping the wire 205, FIG. 3C illustrates the first tensioner clamp 207 after clamping the wire 205, and FIG. 3D illustrates the first tensioner clamp 207 after both clamping and tensioning the wire 205.


Referring to FIG. 3B, the first tensioner clamp 207 includes an outer housing 307. The housing 307 can be configured to be fixedly attached to a ring of a ring fixator. Within the housing 307 is a clamping assembly 309 which clamps the wire 205 in place in response to rotation of the clamping screw 301. The clamping assembly 309 includes a collet housing 311 received within the outer housing 307 and a collet 313 received within the collet housing 311. The collet 313 has a central opening 314 to receive the wire 205 therein, and includes a proximal end portion 315 and a distal end portion 317 opposite to the proximal end portion 315. The proximal end portion 315 includes threads 318 that are configured to engage with corresponding threads 319 of the clamping screw 301. The distal end portion 317 includes a compressible member 321 that engages with an angled surface 323 of the collet housing 311.


As illustrated in FIG. 3C, during operation, the clamping screw 301 is rotated, causing the collet 313 to be retracted relative to the collet housing 311. During this retraction, the compressible member 321 of the collet 313 engages with the angled surface 323 of the collet housing 311, thereby causing the compressible member 321 to press inwardly onto the wire 205, effectively clamping the wire 205 in place. In the illustrated embodiment, the compressible member 321 takes the form of a plurality of flared portions 325 separated by gaps such that these flared portions can be drawn inwardly radially together by engagement with the angled surface 323 of the collet housing 311 until the flared portions 325 come into contact with the wire 205.


Once the wire 205 has been clamped into position by rotation of the clamping screw 301, the wire 205 can be tensioned. Referring to FIG. 3D, the tensioning screw 303 includes distal threads 327 that are threadably engaged with corresponding threads 329 on an interior surface 331 of the housing 307. Rotation of the tensioning screw 303 causes the tensioning screw 303 to retract relative to the housing 307. The tensioning screw 303 is engaged with the clamping assembly 309 such that when the tensioning screw 303 is retracted relative to the housing 307, the clamping assembly 309 and the clamping screw 301 are also retracted. For example, a proximal surface 333 of the tensioning screw 303 can engage with a flange 335 of the clamping screw 301. The tensioning screw 303 can also be engaged with the clamping assembly 309 via internal threads (not shown). Accordingly, when the tensioning screw 303 is retracted from the housing 307, the proximal surface 333 of the tensioning screw contacts the flange 335 of the clamping screw 301, thereby causing the clamping screw 301 (and, correspondingly, the clamping assembly 309) to be retracted as well. As the clamping assembly 309 is clamped on the wire 205, retraction of the clamping assembly 309 increases tension in the wire 205.


In some embodiments, a spring 337 is disposed around the collet housing 311 between a distal flange 339 of the collet housing 311 and an engagement surface 341 of the interior surface 331. When compressed, this spring 337 urges the collet housing 311 (and, correspondingly, the clamping assembly 309) in a distal direction. This countervailing force provided by the spring 337 can provide for increased control in the amount of tension applied to the wire 205 during rotation of the tensioning screw 303.



FIGS. 4A-4C illustrate side cross-sectional views of a second tensioner clamp 211 in accordance with some embodiments. The second tensioner clamp 211 is engaged with the wire 209 during different points of operation of the second tensioner clamp 211. In particular, FIG. 4A illustrates the second tensioner clamp 211 prior to clamping the wire 209, FIG. 4B illustrates the second tensioner clamp 211 after clamping the wire 209, and FIG. 4C illustrates the second tensioner clamp 211 after clamping and tensioning the wire 209.


The second tensioner clamp 211 can utilize many features similar to the first tensioner clamp 207 described above with respect to FIGS. 3A-3D, for example by providing combined clamping and tensioning capabilities. However, the particular configuration of the tensioner clamp 211 utilizes alternative mechanisms to clamp and to tension the wire 209 can differ.


Referring to FIG. 4A, the second tensioner clamp 211 includes an outer housing 407 surrounding a clamping assembly 409. The outer housing 407 can be configured to be fixedly coupled to a ring of a ring fixator. The clamping assembly 409 includes a clamp body 411 with a central opening 413 that receives the wire 209 therethrough. A radial aperture 415 in the clamp body 411 is oriented transversely with respect to the central opening 413. For example, in some embodiments the aperture 415 can be perpendicular to the central opening 413. A clamping screw 417 (e.g., a set screw) can be threadably engaged with the aperture 415 and configured to be rotated to apply downward pressure onto the wire 209, as illustrated in FIG. 4B. Rotation of the clamping screw 417 into this position can clamp the wire 209 into position with respect to the clamping assembly 409.


Referring to FIG. 4C, the second tensioner clamp 211 includes a tensioning nut 419 that is threadably engaged with the clamp body 411 such that rotation of the tensioning nut 419 causes the clamp body 411 to be retracted with respect to the housing 407, thereby applying tension to the wire 209. In some embodiments, the second tensioner clamp 211 further includes a spring 421 surrounding a portion of the clamp body 411 and configured to urge the clamp body 411 away from the tensioning nut 419 when the clamp body 411 is retracted with respect to the housing 407. This countervailing force provided by the spring 421 can provide for increased control in the amount of tension applied to the wire 205.


In operation, a first driver (not shown) can be used to rotate the clamping screw 417, which causes is the clamping screw 417 to be downwardly threaded through the aperture 415 until it presses upon the wire 209 with sufficient pressure to clamp the wire 209 in place. A second driver (not shown) can then be used to rotate the tensioning nut 419, which causes tension to be applied to the wire 209. The tensioning nut 419 can be rotated to gradually increase and decrease the applied tension to the wire 209. The tensioning nut 419 can be rotated until the desired tension is applied to the wire 209. Rotation of the tensioning nut 419 in the opposite direction causes tension to be reduced on the wire 209. In other embodiments, a single driver can be used to control both the clamping screw 417 and the tensioning nut 419, thereby reducing the need for two separate drivers. In other embodiments, a single instrument can house a first driver for operating the clamping screw 417 and a second driver for operating the tensioning nut 419, thereby advantageously allowing a single instrument to perform both clamping and tensioning.


Often times, when attaching a ring fixator to a patient, one individual must hold a ring, while another extends the wires through the patient. Without an individual holding the ring, the ring fixator can slip and become disengaged during application. It has been found that providing a ring with a soft tissue spacer formed therein can help to retain the ring on the patient. The soft tissue spacer is advantageously designed to be removable such that once the ring of the ring fixator is put in place, it can be removed. By providing such a soft tissue spacer, this reduces the reliance on an individual having to hold the ring during installation of the ring fixator.



FIG. 5 illustrates a perspective view of a ring fixator 501 having a ring 503 and a spacer 505 coupled to the ring. The spacer 505 coupled to the ring can alleviate the need to rely on someone to hold the ring during installation. In some embodiments, the spacer 505 can be made of foam or other soft material, and can extend radially inwardly from the ring 503 so as to engage the anatomy of the patient. Providing a ring 503 with a soft tissue spacer 505 formed therein advantageously reduces the need to have an additional person hold the ring in place while applying the ring fixator. In addition, as the spacer 505 is formed of a soft material (e.g., foam), this provides added comfort to a patient during installation. The soft tissue spacer 505 can be removable such that once the ring fixator 501 is put in place, the spacer 505 can be removed. The soft tissue spacer 505 can be attached to the ring 503 via an adhesive or via nubs/protrusions that are insertable into openings in the ring. In some embodiments, the spacer 505 can be attached to the ring via an adhesive or via nubs/protrusions that are insertable into openings in the ring, thereby making it easy to attach and remove the spacer 505 from the ring.


As shown in FIG. 5, one or more spacers 505 can be attached to different segments of the inner wall of a ring. In the present embodiment, a first spacer is attached to one side of the ring, while a second spacer is attached to a second side of the ring. By providing a first spacer that is independent from a second spacer, this facilitates ease of attachment of the spacers within the ring. In addition, as shown in FIG. 5, each of the spacers can include recesses. These recesses can be in contact with the patient, and can advantageously help to accommodate varying patient anatomy.


Often times, a ring of a ring fixator (e.g., composed of two half circles) can be attached to a patient via bolts or screws. As the ring fixator is composed of multiple rings, it can be time consuming to perform the operation. It has been found that it is possible to reduce the time of the operation by providing various quick-connect mechanisms that allow a ring of a ring fixator to be attached to a patient quickly.



FIG. 6 illustrates a ring 601 having first and second members 603 and 605 joined by quick-connect components 607. The quick-connect components 607 shown in FIG. 6 advantageously allow the first and second members 603 and 605 to be secured together quickly. In the illustrated embodiment, the quick-connect components 607 include pins 609 and corresponding recesses 611 to receive the pins 609 therein. The quick-connect components 607 can take various other forms, such as mateable notches and protrusions, grooves and nubs, etc. In some embodiments, the quick-connect components 607 can include magnetic holding features in addition to or in lieu of mechanical mating features. In some embodiments, the two members 603 and 605 can be connected using these quick connect components 607 in addition to traditional screws, thereby forming a way to rapidly secure the two members 603 and 605 together while initially applying the ring fixator to a patient, while still allowing for a more robust fixation to be applied at a later stage through the use of screws.


Although many of the embodiments are described above with respect to devices, systems, and methods for ring fixators, other embodiments are within the scope of the present technology. Additionally, other embodiments of the present technology can have different configurations, components, and/or procedures than those described herein. For example, other embodiments can include additional elements and features beyond those described herein, or other embodiments may not include several of the elements and features shown and described herein. In particular, the ring fixators can be combined and used with other types of fixators, including rod fixators. In addition, the ring fixators can be used with various components used to heal bone fractures, including but not limited to, plates, rods, and screws.


The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A method for stabilizing bone comprising the steps of: providing a ring fixator assembly comprising: a ring configured to surround a bone;at least one tensioner clamp disposed on the ring at a first position; anda wire disposed within the tensioner clamp and fixated to the ring at a second position,positioning the at least one tensioner clamp to clamp the wire by rotating a clamping member and provide tension to the wire by rotating a tensioning member.
  • 2. The method of claim 1, wherein the clamping member and the tensioning member are configured to be controlled by a single driver.
  • 3. The method of claim 1, wherein the tensioner clamp comprises a housing surrounding a clamping assembly, the clamping assembly comprising: a collet housing; anda collet received at least partially within the collet housing,wherein the wire passes through a central opening in the collet,wherein the clamping member comprises a clamping screw threadably engaged with the collet such that rotation of the clamping screw causes the collet to be drawn into the collet housing, thereby clamping the wire, andwherein the tensioning member is a tensioning screw that is configured to threadably engage with the housing and to couple to the clamping assembly.
  • 4. The method of claim 3, wherein the collet comprises a compressible end portion that compresses when drawn into the collet housing, thereby clamping the wire.
  • 5. The method of claim 3, wherein the tensioning screw is coaxial with the clamping screw.
  • 6. The method of claim 1, wherein the tensioner clamp comprises a housing surrounding a clamping assembly, the clamping assembly comprising: a clamp body with a central opening that receives the wire therethrough; andan aperture in the clamp body, the aperture transverse to the central opening,wherein the clamping member is a set screw threadably received in the aperture such that rotation of the set screw applies pressure to the wire, thereby clamping the wire within the clamp body.
  • 7. The method of claim 6, further comprising a spring within the housing and surrounding a portion of the clamp body, the spring configured to urge the clamp body away from the tensioning member.
  • 8. The method of claim 1, wherein the ring comprises: a first ring portion;a second ring portion; anda quick-connect assembly that releasably couples the first ring portion to the second ring portion.
  • 9. The method of claim 8, wherein the quick-connect assembly comprises first magnetic features disposed on ends of the first ring portion and second magnetic features disposed on ends of the second ring portion, the first and second magnetic features configured to be magnetically joined together.
  • 10. A method for stabilizing bone comprising the steps of: providing a ring fixator assembly comprising: a ring configured to surround a bone;a spacer coupled to the ring and extending radially inwardly from the ring, the spacer configured to engage a patient's anatomy when the ring is positioned around a patient's limb;at least one tensioner clamp disposed on the ring at a first position; anda wire disposed within the tensioner clamp and fixed to the ring at a second positionpositioning the at least one tensioner clamp to clamp the wire by rotating a clamping member and provide tension to the wire by rotating a tensioning member.
  • 11. The method of claim 10, wherein the at least one tensioner clamp comprises a central passage configured to receive a wire therein.
  • 12. The method of claim 11, wherein the clamping member comprises a clamping screw and the tensioning member comprises a tensioning screw, and wherein the clamping screw and the tensioning screw are configured to be controlled by a single driver.
  • 13. The method of claim 11, wherein the tensioner clamp comprises a housing surrounding a clamping assembly, the clamping assembly comprising: a collet housing; anda collet received at least partially within the collet housing,wherein the wire passes through a central opening in the collet,wherein the clamping member is configured to threadably engage with the collet such that rotation of the clamping member causes the collet to be drawn into the collet housing, thereby clamping the wire.
  • 14. The method of claim 13, wherein the tensioning member is configured to threadably engage with the housing and couple to the clamping assembly.
  • 15. The method assembly of claim 13, wherein the collet comprises a compressible end portion that compresses when drawn into the collet housing, thereby clamping the wire.
  • 16. The method of claim 15, wherein the compressible end portion comprises flared portions separated by gaps.
  • 17. The method of claim 13, wherein the tensioning member is coaxial with the clamping member.
  • 18. The method of claim 11, wherein the tensioner clamp comprises a housing surrounding a clamping assembly, the clamping assembly comprising: a clamp body with a central opening that receives the wire therethrough; andan aperture in the clamp body, the aperture transverse to the central opening,wherein the clamping member is a set screw threadably received in the aperture such that rotation of the set screw applies pressure to the wire, thereby clamping the wire within the clamp body.
  • 19. The method of claim 18, wherein the tensioning member comprises a tensioning nut threadably engaged with the clamping assembly and coupled to the housing.
  • 20. The method of claim 19, further comprising a spring within the housing and surrounding a portion of the clamp body, the spring configured to urge the clamp body away from the tensioning nut.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 16/411,388 filed on May 14, 2019, which is a continuation application of U.S. patent application Ser. No. 15/708,193, filed on Sep. 19, 2017 (published as U.S. Pat. Pub. No. 2018-0000519), which is a continuation application of U.S. patent application Ser. No. 15/058,372, filed Mar. 2, 2016 (now U.S. Pat. No. 9,795,411). The disclosures referenced above are being incorporated herein by reference in their entirety.

US Referenced Citations (333)
Number Name Date Kind
1105105 Sherman Jul 1914 A
2486303 Longfellow Oct 1949 A
3463148 Treace Aug 1969 A
3695259 Yost Oct 1972 A
3716050 Johnston Feb 1973 A
3976061 Volkov et al. Aug 1976 A
4219015 Steinemann Aug 1980 A
4493317 Klaue Jan 1985 A
4524765 de Zbikowski Jun 1985 A
4651724 Berentey et al. Mar 1987 A
4683878 Carter Aug 1987 A
4768524 Hardy Sep 1988 A
4781183 Casey et al. Nov 1988 A
4867144 Karas et al. Sep 1989 A
4923471 Morgan May 1990 A
4936843 Sohngen Jun 1990 A
4966599 Pollock Oct 1990 A
5002544 Klaue et al. Mar 1991 A
5041114 Chapman et al. Aug 1991 A
5151103 Tepic et al. Sep 1992 A
5259398 Vrespa Nov 1993 A
5364399 Lowery et al. Nov 1994 A
5372598 Uhr et al. Dec 1994 A
5423826 Coates et al. Jun 1995 A
5468242 Reisberg Nov 1995 A
D365634 Morgan Dec 1995 S
5489305 Morgan Feb 1996 A
5527311 Procter et al. Jun 1996 A
5578036 Stone et al. Nov 1996 A
5601553 Trebing et al. Feb 1997 A
5676667 Hausman Oct 1997 A
5690631 Duncan et al. Nov 1997 A
5709686 Talos et al. Jan 1998 A
5709687 Pennig Jan 1998 A
5718704 Medoff Feb 1998 A
5718705 Sammarco Feb 1998 A
5728095 Taylor et al. Mar 1998 A
5746741 Kraus et al. May 1998 A
5746742 Runciman et al. May 1998 A
5766175 Martinotti Jun 1998 A
5766176 Duncan Jun 1998 A
5779706 Tschakaloff Jul 1998 A
5785712 Runciman et al. Jul 1998 A
5797914 Leibinger Aug 1998 A
5814048 Morgan Sep 1998 A
5925048 Ahmad et al. Jul 1999 A
5928230 Tosic Jul 1999 A
5938664 Winquist et al. Aug 1999 A
5961519 Bruce et al. Oct 1999 A
5980540 Bruce Nov 1999 A
6001099 Huebner Dec 1999 A
6071291 Forst et al. Jun 2000 A
6093201 Cooper et al. Jul 2000 A
6096040 Esser Aug 2000 A
6107718 Schustek et al. Aug 2000 A
6152927 Farris et al. Nov 2000 A
6206881 Frigg et al. Mar 2001 B1
6283969 Grusin et al. Sep 2001 B1
6309393 Tepic et al. Oct 2001 B1
6322562 Wolter Nov 2001 B1
6364882 Orbay Apr 2002 B1
D458683 Bryant et al. Jun 2002 S
D458684 Bryant et al. Jun 2002 S
6533786 Needham et al. Mar 2003 B1
D479331 Pike et al. Sep 2003 S
6623486 Weaver et al. Sep 2003 B1
6669700 Farris et al. Dec 2003 B1
6669701 Steiner et al. Dec 2003 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730091 Pfefferle et al. May 2004 B1
6866665 Orbay Mar 2005 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7001387 Farris et al. Feb 2006 B2
7063701 Michelson Jun 2006 B2
7090676 Huebner et al. Aug 2006 B2
7128744 Weaver et al. Oct 2006 B2
7137987 Patterson et al. Nov 2006 B2
7153309 Huebner et al. Dec 2006 B2
7179260 Gerlach et al. Feb 2007 B2
7250053 Orbay Jul 2007 B2
7294130 Orbay Nov 2007 B2
7322983 Harris Jan 2008 B2
7341589 Weaver et al. Mar 2008 B2
7344538 Myerson et al. Mar 2008 B2
7354441 Frigg Apr 2008 B2
7604657 Orbay et al. Oct 2009 B2
7632277 Woll et al. Dec 2009 B2
7635381 Orbay Dec 2009 B2
7637928 Fernandez Dec 2009 B2
7655029 Niedernberger et al. Feb 2010 B2
7655047 Swords Feb 2010 B2
7695472 Young Apr 2010 B2
7717946 Oepen et al. May 2010 B2
7722653 Young et al. May 2010 B2
7740648 Young et al. Jun 2010 B2
D622853 Raven, III Aug 2010 S
7771457 Kay et al. Aug 2010 B2
7776076 Grady, Jr. et al. Aug 2010 B2
7857838 Orbay Dec 2010 B2
7867260 Meyer et al. Jan 2011 B2
7867261 Sixto, Jr. et al. Jan 2011 B2
7875062 Lindemann et al. Jan 2011 B2
7905910 Gerlach et al. Mar 2011 B2
7909858 Gerlach et al. Mar 2011 B2
7951178 Jensen May 2011 B2
7951179 Matityahu May 2011 B2
7976570 Wagner et al. Jul 2011 B2
D643121 Millford et al. Aug 2011 S
D646785 Milford Oct 2011 S
8043297 Grady, Jr. et al. Oct 2011 B2
8057520 Ducharme et al. Nov 2011 B2
8062296 Orbay et al. Nov 2011 B2
8100953 White et al. Jan 2012 B2
8105367 Austin et al. Jan 2012 B2
8114081 Kohut et al. Feb 2012 B2
8118846 Leither et al. Feb 2012 B2
8118848 Ducharme et al. Feb 2012 B2
8162950 Digeser et al. Apr 2012 B2
8167918 Strnad et al. May 2012 B2
8177820 Anapliotis et al. May 2012 B2
8246661 Beutter et al. Aug 2012 B2
8252032 White et al. Aug 2012 B2
8257403 Den Hartog et al. Sep 2012 B2
8257405 Haidukewych et al. Sep 2012 B2
8257406 Kay et al. Sep 2012 B2
8262707 Huebner et al. Sep 2012 B2
8267972 Gehlert Sep 2012 B1
8317842 Graham et al. Nov 2012 B2
8323321 Gradl Dec 2012 B2
8337535 White et al. Dec 2012 B2
8343155 Fisher et al. Jan 2013 B2
8382807 Austin et al. Feb 2013 B2
8394098 Orbay et al. Mar 2013 B2
8394130 Orbay et al. Mar 2013 B2
8398685 McGarity et al. Mar 2013 B2
8403966 Ralph et al. Mar 2013 B2
8419775 Orbay et al. Apr 2013 B2
8435272 Dougherty et al. May 2013 B2
8439918 Gelfand May 2013 B2
8444679 Ralph et al. May 2013 B2
8491593 Prien et al. Jul 2013 B2
8506608 Cerynik et al. Aug 2013 B2
8512384 Beutter et al. Aug 2013 B2
8512385 White et al. Aug 2013 B2
8518090 Huebner et al. Aug 2013 B2
8523862 Murashko, Jr. Sep 2013 B2
8523919 Huebner et al. Sep 2013 B2
8523921 Horan et al. Sep 2013 B2
8540755 Whitmore Sep 2013 B2
8551095 Fritzinger et al. Oct 2013 B2
8551143 Norris et al. Oct 2013 B2
8568462 Sixto, Jr. et al. Oct 2013 B2
8574268 Chan et al. Nov 2013 B2
8597334 Mocanu Dec 2013 B2
8603147 Sixto, Jr. et al. Dec 2013 B2
8617224 Kozak et al. Dec 2013 B2
8632574 Kortenbach et al. Jan 2014 B2
8641741 Murashko, Jr. Feb 2014 B2
8641744 Weaver et al. Feb 2014 B2
8663224 Overes et al. Mar 2014 B2
8728082 Fritzinger et al. May 2014 B2
8728126 Steffen May 2014 B2
8740905 Price et al. Jun 2014 B2
8747442 Orbay et al. Jun 2014 B2
8764751 Orbay et al. Jul 2014 B2
8764808 Gonzalez-Hernandez Jul 2014 B2
8777998 Daniels et al. Jul 2014 B2
8790376 Fritzinger et al. Jul 2014 B2
8790377 Ralph et al. Jul 2014 B2
8808333 Kuster et al. Aug 2014 B2
8808334 Strnad et al. Aug 2014 B2
8834532 Velikov et al. Sep 2014 B2
8834537 Castanada et al. Sep 2014 B2
8852246 Hansson Oct 2014 B2
8852249 Ahrens et al. Oct 2014 B2
8858555 Crozet et al. Oct 2014 B2
8864802 Schwager et al. Oct 2014 B2
8870931 Dahners et al. Oct 2014 B2
8888825 Batsch et al. Nov 2014 B2
8906076 Mocanu et al. Dec 2014 B2
8911482 Lee et al. Dec 2014 B2
8926675 Leung et al. Jan 2015 B2
8940026 Hilse et al. Jan 2015 B2
8940028 Austin et al. Jan 2015 B2
8940029 Leung et al. Jan 2015 B2
8945128 Singh et al. Feb 2015 B2
8951252 Steiner et al. Feb 2015 B2
8951291 Impellizzeri Feb 2015 B2
8968368 Tepic Mar 2015 B2
9011457 Grady, Jr. et al. Apr 2015 B2
9023052 Lietz et al. May 2015 B2
9050151 Schilter Jun 2015 B2
9072555 Michel Jul 2015 B2
9072557 Fierlbeck et al. Jul 2015 B2
9107678 Murner et al. Aug 2015 B2
9107711 Hainard Aug 2015 B2
9107713 Horan et al. Aug 2015 B2
9107718 Isch Aug 2015 B2
9113970 Lewis et al. Aug 2015 B2
9149310 Fritzinger et al. Oct 2015 B2
9161791 Frigg Oct 2015 B2
9161795 Chasbrummel et al. Oct 2015 B2
9168075 Dell'Oca Oct 2015 B2
9179950 Zajac et al. Nov 2015 B2
9179956 Cerynik et al. Nov 2015 B2
9180020 Gause et al. Nov 2015 B2
9211151 Weaver et al. Dec 2015 B2
9259217 Fritzinger et al. Feb 2016 B2
9259255 Lewis et al. Feb 2016 B2
9271769 Batsch et al. Mar 2016 B2
9283010 Medoff et al. Mar 2016 B2
9295506 Raven, III et al. Mar 2016 B2
9314284 Chan et al. Apr 2016 B2
9320554 Greenberg et al. Apr 2016 B2
9322562 Takayama et al. Apr 2016 B2
9370388 Globerman et al. Jun 2016 B2
D765851 Early et al. Sep 2016 S
9433407 Fritzinger et al. Sep 2016 B2
9433452 Weiner et al. Sep 2016 B2
9468479 Marotta et al. Oct 2016 B2
9480512 Orbay Nov 2016 B2
9486262 Andermahr et al. Nov 2016 B2
9492213 Orbay Nov 2016 B2
9510878 Nanavati et al. Dec 2016 B2
9510880 Terrill et al. Dec 2016 B2
9526543 Castaneda et al. Dec 2016 B2
9545277 Wolf et al. Jan 2017 B2
9549819 Bravo et al. Jan 2017 B1
9566097 Fierlbeck et al. Feb 2017 B2
9579133 Guthlein Feb 2017 B2
9622799 Orbay et al. Apr 2017 B2
9636157 Medoff May 2017 B2
9649141 Raven, III et al. May 2017 B2
9668794 Kuster et al. Jun 2017 B2
9801670 Hashmi et al. Oct 2017 B2
9814504 Ducharme et al. Nov 2017 B2
20020045901 Wagner et al. Apr 2002 A1
20040097937 Pike et al. May 2004 A1
20050107796 Gerlach et al. May 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20060149265 James et al. Jul 2006 A1
20060241607 Myerson et al. Oct 2006 A1
20060276786 Brinker Dec 2006 A1
20070173840 Huebner Jul 2007 A1
20070270849 Orbay et al. Nov 2007 A1
20070288022 Lutz Dec 2007 A1
20080021477 Strnad et al. Jan 2008 A1
20080234749 Forstein Sep 2008 A1
20080275510 Schonhardt et al. Nov 2008 A1
20090024172 Pizzicara Jan 2009 A1
20090024173 Reis, Jr. Jan 2009 A1
20090118773 James et al. May 2009 A1
20090198285 Raven, III Aug 2009 A1
20090228010 Gonzalez-Hernandez et al. Sep 2009 A1
20090228047 Derouet et al. Sep 2009 A1
20090248084 Hintermann Oct 2009 A1
20090281543 Orbay et al. Nov 2009 A1
20090299369 Orbay et al. Dec 2009 A1
20090312760 Forstein et al. Dec 2009 A1
20100057086 Price et al. Mar 2010 A1
20100114097 Siravo et al. May 2010 A1
20100121326 Woll et al. May 2010 A1
20100274247 Grady, Jr. et al. Oct 2010 A1
20110106086 Laird May 2011 A1
20110218580 Schwager et al. Sep 2011 A1
20120010667 Eglseder Jan 2012 A1
20120059424 Epperly et al. Mar 2012 A1
20120203227 Martin Aug 2012 A1
20120232599 Schoenly et al. Sep 2012 A1
20120323284 Baker et al. Dec 2012 A1
20130018426 Tsai et al. Jan 2013 A1
20130046347 Cheng et al. Feb 2013 A1
20130060291 Petersheim Mar 2013 A1
20130123841 Lyon May 2013 A1
20130138156 Derouet May 2013 A1
20130150902 Leite Jun 2013 A1
20130165981 Clasbrummet et al. Jun 2013 A1
20130211463 Mizuno et al. Aug 2013 A1
20130289630 Fritzinger Oct 2013 A1
20140005728 Koay et al. Jan 2014 A1
20140018862 Koay et al. Jan 2014 A1
20140031879 Sixto, Jr. et al. Jan 2014 A1
20140066998 Martin Mar 2014 A1
20140094856 Sinha Apr 2014 A1
20140121710 Weaver et al. May 2014 A1
20140180345 Chan et al. Jun 2014 A1
20140277178 O'Kane et al. Sep 2014 A1
20140277181 Garlock Sep 2014 A1
20140316473 Pfeffer et al. Oct 2014 A1
20140330320 Wolter Nov 2014 A1
20140378975 Castaneda et al. Dec 2014 A1
20150051650 Verstreken et al. Feb 2015 A1
20150051651 Terrill et al. Feb 2015 A1
20150073486 Marotta et al. Mar 2015 A1
20150105829 Laird Apr 2015 A1
20150112355 Dahners et al. Apr 2015 A1
20150134011 Medoff May 2015 A1
20150142065 Schonhardt et al. May 2015 A1
20150190185 Koay et al. Jul 2015 A1
20150209091 Sixto, Jr. et al. Jul 2015 A1
20150216571 Impellizzeri Aug 2015 A1
20150223852 Lietz et al. Aug 2015 A1
20150272638 Langford Oct 2015 A1
20150282851 Michel Oct 2015 A1
20150313653 Ponce et al. Nov 2015 A1
20150313654 Horan et al. Nov 2015 A1
20150327898 Martin Nov 2015 A1
20150351816 Lewis et al. Dec 2015 A1
20150374421 Rocci et al. Dec 2015 A1
20160022336 Bateman Jan 2016 A1
20160030035 Zajac et al. Feb 2016 A1
20160045237 Cerynik et al. Feb 2016 A1
20160045238 Bohay et al. Feb 2016 A1
20160074081 Weaver et al. Mar 2016 A1
20160166297 Mighell et al. Jun 2016 A1
20160166298 Mighell et al. Jun 2016 A1
20160183990 Koizumi et al. Jun 2016 A1
20160262814 Wainscott Sep 2016 A1
20160278828 Ragghianti Sep 2016 A1
20160310183 Shah et al. Oct 2016 A1
20160310185 Sixto et al. Oct 2016 A1
20160324552 Baker et al. Nov 2016 A1
20160354122 Montello et al. Dec 2016 A1
20170035478 Andermahr et al. Feb 2017 A1
20170042592 Kim Feb 2017 A1
20170042596 Mighell et al. Feb 2017 A9
20170049493 Gauneau et al. Feb 2017 A1
20170065312 Lauf et al. Mar 2017 A1
20170105775 Ricker et al. Apr 2017 A1
20170215931 Cremer et al. Aug 2017 A1
Foreign Referenced Citations (20)
Number Date Country
201987653 Sep 2011 CN
202313691 Jul 2012 CN
202821574 Mar 2013 CN
202821575 Mar 2013 CN
203506858 Apr 2014 CN
203815563 Sep 2014 CN
105982727 Oct 2016 CN
3213703 Sep 2017 EP
2279371 Feb 1976 FR
2595045 Feb 1986 FR
2846870 May 2004 FR
2928259 Sep 2009 FR
62-253046 Nov 1987 JP
2003210478 Jul 2003 JP
2004344365 Dec 2004 JP
201316942 May 2013 TW
8701625 Oct 1987 WO
2014055202 Apr 2014 WO
2015137976 Sep 2015 WO
2016079504 May 2016 WO
Related Publications (1)
Number Date Country
20220175421 A1 Jun 2022 US
Continuations (3)
Number Date Country
Parent 16411388 May 2019 US
Child 17676304 US
Parent 15708193 Sep 2017 US
Child 16411388 US
Parent 15058372 Mar 2016 US
Child 15708193 US