FIXaxFX bispecific antibody with common light chain

Information

  • Patent Grant
  • 10815308
  • Patent Number
    10,815,308
  • Date Filed
    Friday, December 20, 2019
    4 years ago
  • Date Issued
    Tuesday, October 27, 2020
    4 years ago
Abstract
Bispecific antigen binding molecules (e.g., antibodies) that bind blood clotting factors, factor IXa (FIXa) and factor X (FX), and enhance the FIXa-catalysed activation of FX to FXa. Use of the bispecific antigen binding molecules to control bleeding, by replacing natural cofactor FVIIIa which is deficient in patients with haemophilia A.
Description
FIELD OF THE INVENTION

This invention relates to bispecific antigen-binding molecules (e.g., antibodies) that bind factor IXa and factor X clotting factors in the blood coagulation cascade. Such bispecifics functionally substitute for factor VIII by activating factor X, restoring blood clotting ability to patients who are deficient in FVIII, i.e., patients who have type A haemophilia.


BACKGROUND

Haemophilia is an inherited condition in which the blood has a reduced ability to clot, owing to loss of function (partial or total) of one of the many clotting factors. Haemophilia A is a deficiency in blood clotting factor VIII (FVIII). The disease has mild, moderate and severe forms, depending on the degree to which the patient retains any residual FVIII function and on the balance of other components in the blood coagulation cascade. If untreated, haemophilia A leads to uncontrolled bleeding, which can result in severe disability, especially through damage to joints from haemarthrosis events. The disease is often life-limiting and can be life-threatening. The global incidence of haemophilia A is believed to be around 1:10,000. Haemophilia B (deficiency of a different blood clotting factor, factor IX) is less common, with an incidence of around 1:50,000. Both diseases are X-linked so are usually found in males, the incidence of haemophilia A in male births thus being around 1 in 5,000.


Preventing bleeding episodes is essential to improving patients' quality of life and reducing the risk of fatal blood loss. For haemophilia A, the missing co-factor can be replaced by administration of FVIII. FVIII for administration to a patient may be recombinantly expressed or it may be purified from blood plasma. Typically, patients on this treatment self-inject with FVIII every 48 hours or 3× per week.


Treatment with FVIII is not a perfect solution. A serious drawback is that it can trigger production of allo-antibodies in the body. This renders treatment with FVIII ineffective, as the allo-antibodies bind the FVIII and prevent its activity, putting the patient in a dangerous situation if a bleed occurs. Such inhibitory antibodies develop in about 30% of patients treated with FVIII for severe haemophilia.


Treatment with plasma-derived FVIII, rather than the recombinant form, has been reported to have a lower risk of triggering inhibitory antibodies in patients. This may be due to the plasma-derived form retaining Von Willebrand factor (VWF), which is found naturally in association with FVIII and may mask immunogenic epitopes. However, no form of FVIII has yet been produced that completely avoids the risk of inhibitory antibodies.


Despite being possibly more immunogenic, recombinant FVIII offers some advantages over the plasma-derived form, since being more stable it is easier and cheaper to store and transport. The risk of transmitting infections via products from donated blood plasma is now much reduced compared with the 1980s when viruses such as hepatitis C and HIV were inadvertently spread to recipients of infected blood products, but of course the need for strict safety controls remains.


New recombinant forms of FVIII have been developed, such as the B-domain truncated polypeptide turoctocog alfa (NovoEight®). However, such products are ineffective for patients that develop neutralising antibodies against FVIII. Some patients successfully undergo immune tolerance induction to prevent anti-FVIII antibodies from developing. However, there remains a substantial demand for alternatives to FVIII for use in patients who have, or are at risk of developing, inhibitory antibodies.


One such alternative is recombinant factor VIIa, known as activated eptacog alfa (NovoSeven®). However, it has a short half-life and must be injected every few hours. Its use is largely restricted to rescue therapy or providing haemostatic cover during surgery in haemophiliacs who have inhibitory antibodies, rather than being a viable option for long term protective treatment.


Another available product is FEIBA (Factor Eight Inhibitor Bypassing Activity), an activated prothrombin complex concentrate (aPCC), which similarly can be used to control bleeding episodes and to prevent bleeding during surgical interventions in haemophiliac patients who have inhibitors to factor VIII.


A variety of other alternative therapies are currently being pursued, such as gene therapy, suppression of anti-thrombin using siRNA, and an antibody to TFPI (Tissue factor Pathway Inhibitor), concizumab.


One approach is a humanised bispecific IgG antibody targeting both factor IXa (FIXa) and factor X (FX). The bispecific antibody binds FIXa with one arm and FX with the other arm, bringing these two co-factors together and thereby promoting FIXa-catalysed activation of FX in the same way that FVIII does. Thus, the antibody functionally replaces FVIII in the blood coagulation cascade (FIG. 1). As its structure is completely different from FVIII, the antibody cannot be neutralised by anti-FVIII antibodies and so is suitable for patients who have developed, or are at risk of developing, allo-antibodies to administered FVIII.


In 2012, Kitazawa et al reported isolation of a FIXa/X bispecific antibody which was able to activate FX, from a screen of approximately 40,000 anti-FIXa/X bispecific antibodies that had been produced by immunising 92 laboratory animals with human FIXa or FX and co-transfecting the anti-FIXa and anti-FX antibody genes into host cells for expression [1]. The selected antibody was refined to generate a humanised antibody designated hBS23, which showed coagulation activity in FVIII-deficient plasma and in vivo haemostatic activity in primates [1]. A more potent version of this antibody, designated hBS910 [2], entered clinical trials under the investigational drug name ACE910, INN emicizumab [3]. The development of ACE910 took place in one of the leading antibody groups globally. Nevertheless, it took more than 7 years to engineer a molecule with the appropriate in vivo efficacy and with biochemical and biophysical properties suitable for clinical scale manufacturing.


In a phase I study of 48 healthy male subjects receiving ACE910 subcutaneously at doses up to 1 mg/kg, 2 subjects tested positive for anti-ACE910 antibodies [4]. The antibody was reported to have a linear pharmacokinetic profile and a half-life of about 4-5 weeks [4]. Emicizumab was subsequently administered to 18 Japanese patients with severe haemophilia A, at weekly subcutaneous doses of up to 3 mg/kg, and was reported to reduce the episodic use of clotting factors to control bleeding in these patients [5]. In December 2016, emicizumab was reported to have met its primary endpoint in a phase III clinical trial for reducing bleeding in patients with haemophilia A (the “HAVEN 1” study). A statistically significant reduction in the number of bleeds was reported for patients treated with emicizumab prophylaxis compared with those receiving no prophylactic treatment. The study was also reported to have met all secondary endpoints, including a statistically significant reduction in the number of bleeds over time with emicizumab prophylaxis treatment in an intra-patient comparison in people who had received prior bypassing agent prophylaxis treatment. The efficacy data on emicizumab are therefore encouraging, although safety concerns were heightened by the death of a patient on the HAVEN 1 study. The approved drug carries a boxed warning regarding the risk of thrombotic microangiopathy and thromboembolism in patients receiving aPCC in combination with emicizumab. As noted above, aPCC is used to control bleeding in patients who have inhibitory antibodies to FVIII, a key patient group for treatment with the bispecific antibody.


It is important to note that management of haemophilia requires continuous treatment for a patient's lifetime, beginning at the point of diagnosis—which is usually in infancy—and calls for a therapy that will be tolerated without adverse effects and that will remain effective over several decades or even a century. Long term safety, including low immunogenicity, is therefore of greater significance for an anti-haemophilia antibody compared with antibodies that are intended to be administered over a shorter duration such as a period of weeks, months or even a few years.


WO2018/098363 described bispecific antibodies binding to FIX and FX, isolated from a human antibody yeast library (Adimab). WO2018/098363 disclosed that increasing the affinity of the anti-FIXa arm of a bispecific antibody results in an increase in FVIIIa activity (represented by decreased blood clotting time in an assay). A bispecific antibody “BS-027125” was generated by affinity maturation of an initially selected “parent” antibody, which increased the affinity of its FIXa-binding arm. BS-027125 was reported to achieve approximately 90% FVIIIa-like activity in a one-stage clotting assay. When compared with emicizumab, BS-027125 was reported to exhibit much higher affinity binding to factor FIX zymogen, FIXa and FX zymogen, and much lower binding (no detected binding) to FXa. The FIX-binding arm, “BIIB-9-1336” reportedly showed selective binding for FIXa (activated FIX) in preference to FIX zymogen (mature FIX prior to proteolytic activation), and was found to bind an epitope overlapping with the FIXa epitope bound by FVIIIa. The FX-binding arm, “BIIB-12-917”, reportedly showed selective binding to FX zymogen, lacked detectable binding to (activated) FXa, and bound an epitope of FX that lies within the activation peptide (which is present in FX zymogen but not FXa). Further mutations were then introduced into selected FIX-binding antibodies, including BIIB-9-1336, to generate libraries from which to select for antibodies with even further increased specificity and/or affinity for FIXa.


WO2018/141863 and WO2018/145125 also described anti-FIXaxFX bispecific antibodies and their use as procoagulants for treating or reducing bleeding.


SUMMARY OF THE INVENTION

The present invention relates to improved bispecific antigen-binding molecules that bind blood clotting factors FIXa and FX. The bispecific antigen-binding molecules of the present invention enhance the FIXa-catalysed activation of FX to FXa, and can effectively replace the natural cofactor FVIIIa which is missing in patients with haemophilia A, to restore the ability of the patients' blood to clot. See FIG. 2.


As reported here, the inventors succeeded in generating a number of bispecific antigen-binding molecules having suitable qualities for development as therapeutic products, including very high potency in enhancing FX activation. Described are bispecific antigen-binding molecules having novel binding sites for anti-FIXa and anti-FX, which can be used to effectively substitute for FVIIIa in the blood clotting cascade. In particular, an anti-FIXa binding site is described which is highly active in combination with an array of different anti-FX binding sites and can thus be incorporated into a variety of different FIXa-FX bispecifics, providing flexibility for selection of bispecific antibodies with further desired characteristics such as ease of manufacture.


The inventors have designed bispecific antibodies which combine a potent FVIII mimetic activity (as indicated by high performance in in vitro assays) with robust biochemical and biophysical properties suitable for clinical scale manufacturing (including expression, bispecific molecular assembly, purification and formulation), and which are of fully human origin, thereby minimising the risk of immunogenicity in human in vivo therapy.


Aspects of the invention are set out in the appended claims, and further embodiments and preferred features of the invention are described below.


In a first aspect, the present invention relates to bispecific antigen-binding molecules comprising (i) a FIXa binding polypeptide arm comprising a FIXa binding site, and (ii) a FX binding polypeptide arm comprising a FX binding site. The FIXa and/or the FX binding polypeptide arm may comprise an antibody Fv region comprising the FIXa or FX binding site respectively. An antibody Fv region is an antibody VH-VL domain pair. The VH domain comprises HCDR1, HCDR2 and HCDR3 in a VH domain framework, and the VL domain comprises LCDR1, LCDR2 and LCDR3 in a VL domain framework. The polypeptide arm may comprise an antibody heavy chain (optionally one comprising an IgG constant region) and/or an antibody light chain.


Antigen-binding molecules of the present invention may thus comprise

    • first and second antibody Fv regions, the first and second antibody Fv regions comprising binding sites for FIXa and for FX respectively, and
    • a half-life extending region for prolonging the half-life of the molecule in vivo.


The half-life extending region may be a heterodimerisation region, comprising a first polypeptide covalently linked (e.g., as a fusion protein) to the first antibody Fv region and a second polypeptide covalently linked (e.g., as a fusion protein) to the second antibody Fv region, wherein the two polypeptides pair covalently and/or non-covalently with one another. The first and second polypeptides of the heterodimerisation region may have identical or different amino acid sequences. The heterodimerisation region may comprise one or more antibody constant domains, e.g., it may be an antibody Fc region.


Bispecific antigen-binding molecules of the present invention are able to bind FIXa through the FIXa binding site of the FIXa binding polypeptide arm and to bind FX through the FX binding site of the FX binding polypeptide arm, and thereby enhance the FIXa-catalysed activation of FX to FXa. This may be determined in an in vitro FX activation assay as described herein.


The FIXa binding site may be provided by a set of complementarity determining regions (CDRs) in the FIXa binding polypeptide arm, the set of CDRs comprising HCDR1, HCDR2, HCDR3 and LCDR1, LCDR2 and LCDR3. Optionally, HCDR1 is SEQ ID NO: 406, HCDR2 is SEQ ID NO: 407 and HCDR3 is SEQ ID NO: 408. Optionally, LCDR1 is SEQ ID NO: 6, LCDR2 is SEQ ID NO: 7 and LCDR3 is SEQ ID NO: 8.


The set of HCDRs in the FIXa binding polypeptide arm may be the set of HCDRs of any anti-FIX VH domain shown herein, such as any shown in Table S-9A, any identified in Table N, or any of the VH domains N0128H, N0436H, N0511H, N1091H, N1172H, N1280H, N1314H, N1327H or N1333H shown in FIG. 20. HCDR1 may be SEQ ID NO: 441. HCDR2 may be SEQ ID NO: 634 or SEQ ID NO: 436. HCDR3 may be SEQ ID NO: 635 or SEQ ID NO: 433. The CDRs may be the N1280 CDRs, wherein HCDR1 is SEQ ID NO: 441, HCDR2 is SEQ ID NO: 436 and HCDR3 is SEQ ID NO: 533. Alternatively the CDRs may be the N1333H CDRs.


The set of LCDRs in the FIXa binding polypeptide arm may be the set of LCDRs of any anti-FIX VL domain shown herein. The LCDRs may be the LCDRs of 0128L as shown in Table S-50. LCDR1 may be SEQ ID NO: 6, LCDR2 may be SEQ ID NO: 7 and/or LCDR3 may be SEQ ID NO: 8.


Optionally, one or more amino acids in the set of CDRs may be mutated to differ from these sequences. For example, the set of CDRs may comprise 1, 2, 3, 4 or 5 amino acid alterations, the altered residue or residues being in any one or more of the heavy or light chain CDRs. For example the set of CDRs may comprise one or two conservative substitutions. The choice of mutations, e.g., substitutions, can be informed by the information and analysis provided in the Examples herein.


The FIXa binding polypeptide arm may comprise an antibody VH domain comprising a set of HCDRs HCDR1, HCDR2 and HCDR3. The sequence of HCDR1 may be SEQ ID NO: 406, optionally with one or two amino acid alterations (e.g., substitutions). The sequence of HCDR2 may be SEQ ID NO: 407, optionally with one or two amino acid alterations (e.g., substitutions). The sequence of HCDR3 may be SEQ ID NO: 408, optionally with one or two amino acid alterations (e.g., substitutions).


The FIXa binding polypeptide arm may comprise an antibody VL domain comprising a set of LCDRs LCDR1, LCDR2 and LCDR3. The sequence of LCDR1 may be SEQ ID NO: 6, optionally with one or two amino acid alterations (e.g., substitutions). The sequence of LCDR2 may be SEQ ID NO: 7, optionally with one or two amino acid alterations (e.g., substitutions). The sequence of LCDR3 may be SEQ ID NO: 8, optionally with one or two amino acid alterations (e.g., substitutions).


The antibody Fv region of the FIXa binding polypeptide arm may comprise a VH domain generated through recombination of immunoglobulin heavy chain v, d and j gene segments, wherein the v gene segment is VH3-7 (e.g., VH3-7*01), wherein the j gene segment is JH6 (e.g. JH6*02), and optionally wherein the d gene segment is DH1-26 (e.g., DH1-26*01), and/or it may comprise a VL domain generated through recombination of immunoglobulin light chain v and j gene segments, wherein the v gene segment is VL3-21 (e.g., VL3-21*d01) and the j gene segment is JL2 (e.g., JL2*01). In another embodiment, a VL domain may be one that is generated through recombination of immunoglobulin light chain v and j gene segments, wherein the v gene segment is VL3-21 (e.g., VL3-21*d01) and the j gene segment is JL3 (e.g., JL3*02).


The amino acid sequence of the VH domain of a FIXa polypeptide binding arm may share at least 90% sequence identity with a VH domain shown in FIG. 20, e.g., the N1280H VH domain. Sequence identity may be at least 95%, at least 97%, at least 98% or at least 99%. Optionally the VH domain is one of the anti-FIX VH domains shown herein, such as any shown in Table S-9A, any identified in Table N, or any of the VH domains N0128H, N0436H, N0511H, N1091H, N1172H, N1280H, N1314H, N1327H or N1333H shown in FIG. 20. Optionally the VH domain is N1280H, N1333H, N1441, N1442 or N1454. Optionally the anti-FIXa VH domain comprises the amino acid sequence of any of said VH domains (e.g., N1280H) with up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions. Substitutions may optionally be in one or more framework regions, e.g., there may be 1 or 2 substitutions in FR3, optionally at IMGT position 84 and/or IMGT position 86.


The amino acid sequence of the VL domain may share at least 90% sequence identity with SEQ ID NO: 10 (0128L). Sequence identity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99%. Optionally the VL domain amino acid sequence is SEQ ID NO: 10. The VL domain amino acid sequence may alternatively be SEQ ID NO: 416.


The FX binding site may be provided by a set of CDRs in the FX binding polypeptide arm. The FX binding polypeptide arm may comprise an antibody VH-VL domain pair (i.e., an antibody Fv region), the VH domain comprising HCDR1, HCDR2 and HCDR3 in a framework, and the VL domain comprising LCDR1, LCDR2 and LCDR3 in a framework.


The FX binding site may be provided by the HCDRs of any anti-FX VH domain identified herein (e.g., any set of HCDR1, HCDR2 and HCDR3 of a VH domain shown in Table S10-C and/or in FIG. 11) and the 0128L LCDRs.


The FX binding polypeptide arm may comprise a VH domain having at least 90% amino acid sequence identity with a VH domain disclosed herein, including any in Table S-10C and/or in FIG. 11—for example the T0687H, T0736H or T0999H VH domain. Sequence identity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99%. Optionally the VH domain comprises the amino acid sequence of said VH domain with up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions. Substitutions may optionally be in one or more framework regions.


The FX binding polypeptide arm may comprise a VH domain having at least 90% amino acid sequence identity with the T0201 VH domain (shown in FIG. 11). Sequence identity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99%. Optionally the VH domain comprises the amino acid sequence of said VH domain with up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions. Substitutions may optionally be in one or more framework regions.


The FX binding polypeptide arm may comprise any VH domain amino acid sequence identified herein, such as any shown in Table S-10C, any identified in Table T or any from FIG. 11. Optionally the VH domain is T0201 H, T0687H, T0736H or T0999H.


The FX binding polypeptide arm may comprise a VL domain having at least 90% amino acid sequence identity with the 0128L VL domain SEQ ID NO: 10. Sequence identity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99%. Optionally the VL domain comprises the amino acid sequence of the 0128L VL domain with up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions. Optionally the VL domain amino acid sequence is SEQ ID NO: 10. Alternatively the VL domain sequence is SEQ ID NO: 416.


The FX binding polypeptide arm may comprise an antibody Fv region comprising

    • a VH domain generated through recombination of immunoglobulin heavy chain v, d and j gene segments, wherein the v and j gene segments are IGHV1-46 (e.g., VH1-46*03) and IGHJ1 (e.g., JH1*01), and optionally wherein the d gene segment is IGHD6-6 (e.g., DH6-6*01), and
    • a VL domain generated through recombination of immunoglobulin light chain v and j gene segments, wherein the v and j gene segments are IGLV3-21 (e.g., VL3-21*d01) and IGLJ2 (e.g., JL2*01) or IGLJ3 (e.g., JL3*02).


Accordingly, one aspect of the present invention is a bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein

    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein
    • the first VH domain comprises a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 406, HCDR2 is SEQ ID NO: 407 and HCDR3 is SEQ ID NO: 408, and/or wherein the first VH domain is at least 95 identical to the N1280H VH domain at the amino acid sequence level;
    • the second VH domain is at least 95% identical to the T0201H VH domain at the amino acid sequence level, and
    • the first VL domain and the second VL domain each comprise a set of LCDRs comprising LCDR1, LCDR2 and LCDR3 with amino acid sequences defined wherein LCDR1 is SEQ ID NO: 6, LCDR2 is SEQ ID NO: 7 and LCDR3 is SEQ ID NO: 8, and/or wherein the first VL domain and the second VL domain are at least 95% identical to the 0128L VL domain SEQ ID NO: 10 at the amino acid sequence level.


Another aspect of the present invention is a bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein

    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein
    • the first VH domain is a product of recombination of human immunoglobulin heavy chain v, d and j gene segments, wherein the v gene segment is IGHV3-7 (e.g., VH3-7*01) and the j gene segment is IGHJ6 (e.g., JH6*02),
    • the second VH domain is a product of recombination of human immunoglobulin heavy chain v, d and j gene segments, wherein the v gene segment is IGHV1-46 (e.g., VH1-46*03) and the j gene segment is IGHJ1 (e.g., JH1*01), and optionally wherein the d gene segment is IGHD6-6 (e.g., DH6-6*01), and
    • the first VL domain and the second VL domain are both products of recombination of human immunoglobulin light chain v and j gene segments, wherein the v gene segment is IGLV3-21 (e.g., VL3-21*d01) and the j gene segment is IGLJ2 (e.g., JL2*01) or IGLJ3 (e.g., JL3*02).


Another aspect of the present invention is a bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein

    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein
    • the first VH domain has at least 95% amino acid sequence identity with the N1280H VH domain,
    • the second VH domain has at least 95% amino acid sequence identity with the T0201H VH domain, and
    • the first VL domain and the second VL domain each have at least 95% amino acid sequence identity with the 0128L VL domain.


The first VH domain may comprise a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 406, HCDR2 is SEQ ID NO: 407 and HCDR3 is SEQ ID NO: 408.


The first VH domain may have at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1280H. The first VH domain may comprise a set of N1280H HCDRs comprising N1280H HCDR1, N1280H HCDR2 and N1280H HCDR3. For example, it may be the N1280H VH domain. Alternatively, the VH domain may be the N1441H, N1442H or N1454H VH domain.


Amino acid sequences of example VH domains and sets of VH CDRs are shown in FIG. 20 and/or in Table S-9A. The first VH domain of the bispecific antibody may be, or may have at least 95%, at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to, any of these VH domains. Optionally it may comprise a VH domain amino acid sequence having up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions compared with said VH domain. Substitutions are optionally in framework regions.


Examples of residues and substitutions that may be retained or introduced in the first VH domain include the following (defined with reference to N1280H, with IMGT numbering as shown in FIG. 14):


Substitution of another residue (e.g., Asp, Glu, His, Asn, Gln, Met, Thr, Gly, Ser, Ala, Ile, Leu, Val or Tyr) at Lys84 in FR3, e.g., Lys84Asp or Lys84Glu; and Substitution of another residue at Ser86 in FR3, e.g., a negatively charged residue such as Glu (Ser86Glu).


Further examples include:


Substitution of a negatively charged residue (e.g., Asp or Glu) or His at one or more of Gln3, Val5, Gly9, Gly11, Gly16, Gly17 and Leu21 FR1, such as any of Gln3Asp, Gln3Glu, Gln3His, Val5Glu, Gly9Glu, Gly11Asp, Gly11Glu, Gly11His, Gly16Glu, Gly17Asp, Gly17Glu or Leu21Asp;


Substitution of a negatively charged residue at Val68 and/or Val71 in FR3, e.g., Val68Asp, Val68Glu or Val71Glu;


Substitution of His, Gln or Leu at Arg75 in FR3;


Substitution of Ser, Thr, Gly, Leu or Lys at Arg80 in FR3; and


Substitution of Asp or His at Asn82 in FR3.


Any one or more of the above-listed sequence features may be included.


The second VH domain may be, or may have at least 95%, at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to T0201H or any other VH domain shown in FIG. 11 and/or in Table S-10C. Optionally it may comprise a VH domain amino acid sequence having up to 5 amino acid substitutions, i.e., 1, 2, 3, 4 or 5 substitutions compared with said VH domain. Substitutions are optionally in framework regions. The second VH domain may comprise an HCDR1 which is the T0201H HCDR1, an HCDR2 which is the T0201H HCDR1, and/or an HCDR3 which is the T0201H HCDR3. Amino acid sequences of these CDRs are shown in FIGS. 11 and 12 and in Table S-10C. Further example CDRs are indicated in FIG. 12 and in Table T. For example, the second VH domain may comprise:

    • an HCDR1 which is the T0201 HCDR1 or the T0736 HCDR1,
    • an HCDR2 which is the T0201 HCDR2, and/or
    • an HCDR3 which is the T0201 HCDR3, the T0687 HCDR3 or the T0736 HCDR3.


Optionally, HCDR1 is SEQ ID NO: 636 or SEQ ID NO: 598. Optionally, HCDR2 is SEQ ID NO: 467. Optionally, HCDR3 is SEQ ID NO: 637, SEQ ID NO: 638, SEQ ID NO: 639 or SEQ ID NO: 565.


Examples of residues and substitutions that may be retained or introduced in the second VH domain include the following (defined with reference to T0201H, with IMGT numbering as shown in FIG. 13):

    • Substitution of another amino acid residue at Cys114, e.g., wherein the substituted residue is Ile, Gln, Arg, Val or Trp, (preferably Ile, Val or Leu);
    • Substitution of another positively charged residue for Gln3 in FR1, e.g., Gln3Arg or Gln3Lys;
    • Germlining of residues in framework regions, e.g., Ile5Val (substitution of valine for isoleucine at residue 5 in FR1), or replacement of a non-germline residue in a framework region by a different non-germline residue, e.g., Ile5Arg (substitution of arginine for isoleucine at residue 5 in FR1);
    • Substitution of another amino acid residue (e.g., Lys, Ala or Gly) at Glu11 in FR1, e.g., Glu11Lys;
    • Substitution of a positively charged amino acid residue for Gly16 in FR1, e.g., Gly16Arg;
    • Presence of Met at position 39 in FR2, or alternatively Leu at this position;
    • Presence of Ser at position 62 and/or position 64 in CDR2;
    • Substitution of Tyr at Phe71 in FR3;
    • Substitution of a positively charged residue at Thr82 in FR3, e.g., Thr82Arg or Thr82Lys; Presence of Ser at position 85 in FR3, or alternatively Thr at this position;


Substitution of a positively charged residue at Thr86 in FR3, e.g., Thr86Arg or Thr86Lys.


Any one or more of the above-listed sequence features may be included.


The FIXa binding polypeptide arm and the FX binding polypeptide arm may each comprise an antibody Fv, wherein the VL domain of each Fv has an identical amino acid sequence, i.e. the bispecific antigen-binding molecule has a common VL domain. The molecule may have a common light chain comprising a variable region and a constant region, optionally a human lambda constant region.


The bispecific antigen-binding molecule may be a tetrameric immunoglobulin comprising

    • a first pair of antibody heavy and light chains (heavy-light chain pair) comprising a FIXa binding Fv region,
    • a second heavy-light chain pair comprising a FX binding Fv region,
    • wherein each heavy chain comprises a VH domain and a constant region, and each light chain comprises a VL domain and a constant region, and wherein the first and second heavy-light chain pairs associate through heterodimerisation of their heavy chain constant regions to form the immunoglobulin tetramer.


As noted, the light chain may be a common light chain, i.e., the light chain of the first and second heavy-light chain pairs has an identical amino acid sequence. Each heavy-light chain pair may comprise the 0128L CL constant domain paired with a CH1 domain. The sequence of the light chain may be SEQ ID NO: 405. Alternatively the sequence of the light chain may be SEQ ID NO: 414. Exemplary immunoglobulin isotypes include human IgG, e.g., IgG4, optionally with engineered constant domains such as IgG4 PE.


The Fc domain of a bispecific antibody may be engineered to promote heterodimerisation over homodimerisation. For example, the heavy chain constant region of the first heavy-light chain pair may comprise a different amino acid sequence from the heavy chain constant region of the second heavy-light chain pair, wherein the different amino acid sequences are engineered to promote heterodimerisation of the heavy chain constant regions. Examples include knobs-into-holes mutations or charge pair mutations. Alternatively, the heavy chain constant region of the first heavy-light chain pair may be identical to the heavy chain constant region of the second heavy-light chain pair, in which case it is expected that both homodimers and heterodimers will assemble, and these will be subsequently separated using one or more purification steps in the antibody manufacturing process to isolate the desired heterodimer comprising one anti-FIXa arm and one anti-FX arm.


An advantageous feature of bispecific antibodies exemplified here is that they have been generated from human immunoglobulin gene segments, using the Kymouse platform. Unlike antibodies generated from immunisation of normal laboratory animals, which may require “humanisation” steps such as grafting of mouse CDRs into human antibody variable domains and iterative refinement of the engineered variable domains to mitigate a loss of function resulting from these changes, the antibodies of the present invention were generated and selected from the outset with fully human antibody variable domains. The use of a fully human antibody is of special relevance in the context of haemophilia treatment, where low immunogenicity is paramount, as noted above. The low immunogenicity of the bispecific antibodies of the present invention renders them suitable for treatment of haemophilia A patients, including those with or without inhibitory antibodies to other treatments such as FVIII. Patients receiving antigen-binding molecules of the present invention should be at minimal risk of developing an immunogenic response to the therapy.


The mode of action of the bispecific molecules is also associated with a good safety profile, with low risk of complications such as deep vein thrombosis and pulmonary embolism. Activity of the bispecific molecules is comparable with that of natural FVIII and a mechanism of action that is integrated within the existing blood coagulation pathway, being activated only in the context of upstream triggering of the natural clotting cascade.


Bispecific antibodies according to the present invention have shown strong activity in a number of functionally relevant assays for FVIII mimetic activity, including factor Xase assay, activated partial thromboplastin time (aPTT) assay and thrombin generation assay (TGA), as exemplified herein.


Other desirable features include long-half life (reducing the required frequency of administration) and amenability of the molecules to formulation at high concentration (facilitating subcutaneous injection in the home setting).


Patient compliance is recognised to be a significant issue for long term self-administered therapy, especially among teenage and young adult patients. For a treatment to succeed in the field, its administration schedule should be simple for the patient to understand and follow with minimum inconvenience. Long intervals between administered doses are desirable, but reducing dose frequency without sacrificing therapeutic activity requires a product with both a long in vivo half life and a sufficient efficacy at “trough” concentrations towards the end of a dosing period. Antigen-binding molecules according to the present invention desirably have a long in vivo half life. This can be facilitated by inclusion of an Fc region which undergoes recycling in vivo via FcRn. Antigen-binding molecules according to the present invention also preferably maintain high functional activity at low concentration. We found that bispecific antibodies according to the present invention have a thrombogenic activity similar to that of emicizumab but with an increase in thrombogenic activity that is most pronounced at lower concentrations. Data disclosed herein indicate that bispecific antibodies according to the present invention possess a thrombogenic activity that is the same as or surpasses that of emicizumab at concentrations in at least the range of 1 to 300 nM, for example when the antibody and emicizumab are tested at the following concentrations:

    • 1-30 nM, e.g., at 1 nM, at 3 nM, at 10 nM and/or at 30 nM;
    • 100-300 nM, e.g., at 100 nM and/or at 300 nM.


Activity can be measured in the thrombin generation assay described herein. Effective activity at low concentrations may help to ensure that protection against bleeds is maintained towards the end of a dosing period—the in vivo concentration of the antibody being lowest in the final days before the next dose is due. It may also assist in protecting areas of the body which are relatively poorly perfused by the circulation—including the joints, which are a common site of problematic bleeding in haemophiliac patients.


Further aspects of the invention relate to pharmaceutical compositions comprising the bispecific antigen-binding molecules and their use in medicine including for the treatment of haemophilia A, as set out in the appended claims and described in the present disclosure.


Monospecific antibodies are also provided as aspects of the present invention. Thus, an anti-FIXa antibody may comprise two copies of a first heavy-light chain pair as defined herein. An anti-FX antibody may comprise two copies of a second heavy-light chain pair as defined herein.


Further aspects include nucleic acid molecules encoding sequences of the antibodies described herein, host cells containing such nucleic acids, and methods of producing the antibodies by culturing the host cells and expressing and optionally isolating or purifying the antibodies. The expressed antibody is thereby obtained. VH and VL domains of antibodies described herein may similarly be produced and are aspects of the present invention. Suitable production methods of antibodies include large-scale expression from host cells (e.g, mammalian cells) in a bioreactor by continuous or batch culture (e.g., fed batch culture).





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects and embodiments of the invention will now be described in more detail, with reference to the drawings, in which:



FIG. 1 illustrates the blood coagulation cascade [6].



FIG. 2 shows (A) co-factor action of FVIIIa interacting with FIXa and FX; (B) co-factor action of bispecific antibody interacting with FIXa and FX; and (C) bispecific antibody interacting with FIXa (9a) and FX (10) on the surface of a platelet. Bispecific antibody in this embodiment is a four chain molecule having two disulphide-linked heavy chains each comprising (N to C) domains VH1-CH1-CH2-CH3 and two identical light chains (common light chain) comprising (N to C) domains VL-CL. In this illustration, binding site comprising VH1-VL binds to FX and binding site comprising VH2-VL binds to FXa.



FIG. 3 shows the amino acid sequence (SEQ ID NO: 334) of factor IX, with residue numbering for the mature protein. The signal peptide (straight underlined) is cleaved after secretion. The propeptide (wave underlined) is cleaved on maturation. Mature factor IX contains a light chain (residues 1-145) and a heavy chain (residues 146-415). The activation peptide (boxed) is cleaved on activation, generating activated factor IXa which contains a light chain (residues 1-145) and a heavy chain (residues 181-415, bold) joined by a disulphide bridge between Cys132 and Cys289.



FIG. 4 shows the amino acid sequence (SEQ ID NO: 335) of factor X, with residue numbering. Residues 1-31 are a signal peptide (straight underlined). Residues 32-40 are a propeptide (wave underlined). The FX light chain is residues 41-179. The FX heavy chain is residues 183-488. The FXa heavy chain is residues 235-488 (bold).



FIG. 5 shows an embodiment of the invention: bispecific IgG with common light chain.



FIG. 6 summarises the process of optimising the anti-FIXa VH domain sequence N0436H and the anti-FX VH domain sequence T0200 for functional combination with each other and for pairing with the N0128L common VL domain.



FIG. 7 illustrates (A) principles of in vitro assay for FVIII mimetic activity of a bispecific molecule (FXase or tenase assay); and (B) example data from the assay showing positive result for FIXa-FX bispecific molecule compared with negative control.



FIG. 8 shows the results of screening bispecific antibodies having various anti-FX arms in the FXase assay (standard reaction conditions). The bispecific antibody panel comprises a range of anti-FX VH test domains, each in combination with the N0128H anti-FIX VH domain and 0128L common VL domain.



FIG. 9 illustrates the B cell cluster identified for the lineage of the anti-FX T0200H domain.



FIG. 10 shows the results of screening optimised bispecific antibodies in the FXase assay. (A) FXase activity for IgG4 bispecific antibodies comprising named anti-FX VH domain combined with the N0128H, N1172H or N1280H anti-FIX VH domain and 0128L common light chain. OD at 405 nm at 10 minutes (600s). (B) FXase activity for IgG4 bispecific antibodies comprising named anti-FX VH domain combined with the N1280H anti-FIX VH domain and N0128L common light chain.



FIG. 11 is an amino acid sequence alignment of a selection of anti-FX VH domains from the T0200H B cell cluster. Germline sequence (SEQ ID NO: 518) is shown for comparison. CDRs are boxed.



FIG. 12 identifies mutants of the T0201H VH domain in which the terminal four residues of CDR3 were individually mutated to other amino acids. For example the T0590H VH domain is a Cys114Ala mutant of the T0201H VH domain, i.e., in which the cysteine at IMGT position 114 is replaced by alanine.



FIG. 13 shows the amino acid sequence of VH domain T0201H, annotated in (A) to show FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4, and in (B) to show IMGT numbering.



FIG. 14 shows the amino acid sequence of VH domain N0128H, aligned against N192H and N1280H and annotated in (A) to show FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4, and in (B) to show IMGT numbering.



FIG. 15 shows the kinetics of activity of (A) IXAX-1280.0201.0128 and of (B) the comparator antibody AbE in the FXase assay. Antibody was purified by Protein A and is composed of a homodimer/heterodimer mixture.



FIG. 16 shows results of bispecific antibodies in Xase assay. “E” is Antibody E positive control. FXase activities are plotted as OD405 nm at 10 minutes for samples normalised to 12.5 μg/mL (10.4 nM) final concentration. Bispecific antibodies are ranked in order of activity.



FIG. 17 shows the effect of bispecific antibody optimisation on FVIII mimetic activity (FXase). Results are shown for of bispecific antibodies, each having the named VH domain in the anti-FIXa arm and T0638H VH domain in the anti-FX arm, both paired with the 0128L common light chain VL domain. FVIII mimetic activity (FXase) was measured using an in vitro chromogenic Factor X activation assay at 405 nm (Y-axis) as a function of time in seconds (X-axis). Optimised bispecific antibodies are individually labelled. A human IgG4 isotype control demonstrates no FVIII mimetic activity. The key shows the name of the VH domain in the antibody to the right of its corresponding graph in order of maximal FXase activity, i.e., N1333H>N1280H>N1172H>N1091H>N0511H>N0436H>N0128H> control.



FIG. 18 shows aPTT assay results for IgG4 bispecific antibodies comprising named anti-FX VH domain combined with the N0128H, N1172H or N1280H anti-FIX VH domain and 0128L common light chain.



FIG. 19 shows a dose response for IXAX-1280.0201.0128 bispecific antibody (purified on Protein A) in a one-stage activated aPTT clotting assay using FVIII-depleted human plasma.



FIG. 20 shows VH domain amino acid sequences of N0128H, N0436H, N0511H, N1091H, N1172H, N1280H, N1314H, N1327H and N1333H, annotated to identify their framework regions and CDRs.



FIG. 21 is an SPR sensorgram of bispecific antibody binding to antigen, where simultaneous binding to FIX and FX is demonstrated, compared with sensorgram of (A) isotype control antibody or (B) monospecific antibody.



FIG. 22 presents summary results of FXase assays for selected CDR1 and CDR2 sequence variants of T0681H. Except where indicated for AbE controls, samples were purified by Protein A chromatography and their final concentrations normalised to 12.5 μg/mL (10.4 nM). 3 samples of AbE positive control antibody are included: (i) protein A purified; 12.5 μg/mL; (ii) protein A purified; 37.5 μg/mL; (iii) protein A purified followed by further purification by ion exchange chromatography; 37.5 μg/mL. All data shown were sampled at the 10 minute time-point.



FIG. 23 summarises the effect of T0201H CDR1, CDR2 and CDR3 mutagenesis on bispecific antibody FXase activity in vitro. Bispecific antibody anti-FX T0201H variant VH domains were expressed with anti-FIX N01280H arm and N128_IgL common light chain in HEK cells, purified by Protein A chromatography and normalised by concentration to 0.15 mg/ml (125 nM final concentration). In vitro FXase assay was performed using 5 μl of purified material. Data shown are at 10 minute time point. Dotted line represents FXase activity of T0201H.



FIG. 24 presents summary results of aPTT clotting assays investigating the effect of sequence variation in the anti-FX T0201H VH domain on bispecific antibody activity. Clotting time (seconds) was recorded after spiking FVIII deficient plasma with bispecific antibodies comprising the named anti-FX VH arm, anti-FIX N01280H arm and N128_IgL common light chain. Bispecific antibodies were expressed in HEK cells, purified by Protein A chromatography and analysed at three different concentrations 0.1 mg/ml, 0.3 mg/ml and 0.5 mg/ml. Dotted lines indicate the clotting times of FVIII deficient plasma spiked with a human IgG4 isotype control or normal pooled human plasma spiked with PBS.



FIG. 25 identifies CDRs of VH domains which were progressively improved for FVIII mimetic activity during the mutagenesis process. Black shading identifies VH domains better than those in the same sub-table.



FIG. 26 shows the thrombin generation curve of normal pooled plasma using factor IXa as a trigger in a thrombin generation assay (TGA). The thrombogram depicts the generation of thrombin over time in sample plasma, plotted as the concentration (nM) of thrombin generated during clotting over time (minutes).



FIG. 27 describes the thrombin generation of FVIII deficient plasma spiked with bispecific antibodies at final concentration of 133 nM comprising CDR1, CDR2 and CDR3 single and combinatorial variants of T0201H, compared with AbE, isotype control, normal plasma and emicizumab calibrator. FIXa trigger at 0.3 nM. (A) 80 minute thrombogram. (B) 25 minute thrombogram.



FIG. 28 shows thrombin Cmax (nM) and Tmax (min) from TGA carried out on FVIII deficient plasma spiked with bispecific antibodies comprising CDR1, CDR2 and CDR3 single and combinatorial mutants of T0201H, compared with AbE, isotype control, normal plasma and emicizumab calibrator. Test antibodies were purified by Protein A chromatography only and therefore represent a mixture of heterodimer and homodimer. (A) Antibody concentration 133 nM. (B) Antibody concentration 80 nM.



FIG. 29 illustrates Cmax (nM) and Tmax (min) dose responses from TGA carried out on FVIII deficient plasma spiked with (A) bispecific antibody IXAX-1280.0999.0128 and (B) emicizumab calibrator. Isotype control (plus sign) used was a human IgG4 and was spiked into FVIII deficient plasma. Normal pooled plasma (cross sign) was spiked with PBS.



FIG. 30 shows dose response curves for Cmax of IXAX-1280.0999.0325 and AbE in TGA. Vertical dotted lines indicate final antibody concentration corresponding to 4.5 μg/ml (30 nM), 10 μg/ml (66.6 nM) and 45 μg/ml (300 nM). Horizontal lines represent Cmax of normal pooled plasma collected from healthy volunteers.



FIG. 31 shows thrombograms of (A) IXAX-1280.0999.0325 “BiAb_1” and (B) AbE, in human FVIII-depleted plasma, at antibody concentrations of 0.1 nM, 1 nM, 10 nM, 100 nM and 300 nM. Thrombogram of a normal human plasma sample is shown in shadow.



FIG. 32 shows dose response curves for Tmax of IXAX-1280.0999.0325 and AbE in TGA. Vertical dotted lines indicate antibody concentration corresponding to 4.5 μg/ml (30 nM), 10 μg/ml (66.6 nM) and 45 μg/ml (300 nM). Horizontal lines represent Tmax of normal pooled plasma collected from healthy volunteers.



FIG. 33 shows thrombin generation abilities in terms of (A) Cmax and (B) Tmax of BiAb_1 (IXAX-1280.0999.0325), BiAb_2 (IXAX-1454.0999.0325), BiAb_3 (IXAX-1441.0999.0325) and BiAb_4 (IXAX-1442.0736.0325) compared with commercially available emicizumab calibrator in a TGA assay in commercially available human FVIII-depleted plasma.



FIG. 34 shows thrombin generation abilities in terms of (A) Cmax and (B) Tmax of BiAb_1 (IXAX-1280.0999.0325) compared with commercially available emicizumab calibrator in a TGA assay in human FVIII-depleted plasma.



FIG. 35 shows purification yield and % heterodimer for bispecific antibody IXAX-1172.0201.0128 expressed from 8 independent minipools of stably transfected CHO cells.



FIG. 36 plots the correlation between bispecific antibody activity by FXase assay (activity at 10 min) and % heterodimer for bispecific antibody IXAX-1172.0201.0128 normalised to 0.3 mg/ml expressed from 8 independent minipools. Pearson's correlation coefficient was calculated as 0.9939.



FIG. 37 (A) shows separation of IXAX-1280.0999.0128 by ion exchange chromatography on a 1 ml CaptoSP ImpRes column and a linear NaCl gradient up to 500 nM in 20 nM sodium phosphate, pH 6.0. Absorbance, mAU (milli absorbance unit); conductivity, mS/cm (milli Siemens per centimetre). Peak 1 is NINA-1280.0128 monospecific anti-FIX antibody. Peak 2 is IXAX-1280.0999.0128 bispecific antibody. Peak 3 is TINA-0999.0128 monospecific anti-FX antibody. (B) shows separation of IXAX-0436.0202.0128 by ion exchange chromatography with stepwise elution. Peak 1 is NINA-0436.0128 monospecific anti-FIX antibody. Peak 2 is IXAX-0436.0202.0128 bispecific antibody. Peak 3 is TINA-0202.0128 moospecific anti-FX antibody. (C) shows separation of IXAX-1172.0201.0128 by ion exchange chromatography. Peak 1 is NINA-1172.0128 anti-FIX monospecific antibody. Peak 2 is IXAX-1172.0201.0128 bispecific antibody.



FIG. 38 shows cation exchange purification of purified FIX/FX heterodimers for each of bispecific antibodies (A) IXAX-1280.0999.0325 (B) IXAX-1454.0999.0325 (C) IXAX-1441.0999.0325 and (D) IXAX-1442.0736.0325.



FIG. 39 shows dose response in the FXase assay with IXAX-1280.0999.0325 and AbE. Dotted lines indicate antibody concentration corresponding to 4.5 μg/ml, 10 μg/ml and 45 μg/ml.



FIG. 40 shows dose response in a chromogenic FVIII mimetic activity Hyphen assay with IXAX-1280.0999.0325 and AbE.



FIG. 41 shows dose response in the aPTT assay with IXAX-1280.0999.0325 and AbE. Vertical dotted lines represent 66.6 nM (10 μg/ml) and 300 nM (45 μg/ml) final antibody concentration; horizontal lines represent aPTT value of normal pooled plasma collected from healthy volunteers.



FIG. 42 presents results of aPTT clotting time assays investigating the effect of bispecific antibodies IXAX-1280.0999.0325 (circle), IXAX-1441.0999.0325 (diamond) and AbE (cross) in inhibitor plasma. Dose responses are shown for these antibodies in a one-stage aPTT clotting assay using plasma obtained from a patient with haemophilia A demonstrating a specific inhibitor level of 70 BU to FVIII. Dotted horizontal line indicates the clotting time of the inhibitor plasma spiked with a human IgG4 isotype control.



FIG. 43 shows a thrombin peak height (Cmax) dose response for IgG4 bispecific antibodies IXAX-1280.0999.0325, IXAX-1441.0999.0325 and AbE (all purified on Protein A, followed by cation exchange chromatography) in a thrombin generation assay with plasma obtained from a patient with haemophilia A demonstrating a specific inhibitor level of 70 BU to FVIII. Bispecific antibody concentrations in nM are indicated for each dilution.



FIG. 44 shows a dose response for IgG4 bispecific antibodies (A) IXAX-1280.0999.0325, (B) IXAX-1441.0999.0325 and (C) AbE (all purified on Protein A, followed by cation exchange chromatography) in a thrombin generation assay with plasma obtained from a patient with haemophilia A demonstrating a specific inhibitor level of 70 BU to FVIII. Bispecific antibody concentrations analysed are 100, 33.3, 11.1, 3.7 and 1.23 nM. Grey shaded area indicates thrombin generation of normal pooled plasma. TGA trigger is FIXa.





DETAILED DESCRIPTION

Blood Coagulation


The blood coagulation cascade is diagrammed in FIG. 1. Coagulation or clotting is one of the most important biological processes which stops blood loss from a damaged vessel to allow the vessel to be repaired. The mechanism of coagulation involves activation, adhesion, and aggregation of platelets along with deposition and maturation of fibrin. Misregulation of coagulation can result in excessive bleeding (haemophilia) or obstructive clotting (thrombosis). Coagulation is highly conserved in all mammals. It is controlled by a complex network of coagulation factors. Coagulation is initiated when the endothelium lining the blood vessel is damaged. The exposure of subendothelial tissue factor (TF) to plasma factor VII (FVII) leads to primary haemostasis (extrinsic pathway): a loose plug is formed at the site of injury. Activation of additional coagulation factors, especially factor IX (FIX) and factor VIII (FVIII), leads to secondary haemostasis (intrinsic pathway): fibrin strands are formed to strengthen the plug. Extrinsic and intrinsic pathways ultimately converge to a common point: the formation of the factor Xa/Va complex which together with calcium and bound on a phospholipid surface generate thrombin (factor IIa) from prothrombin (factor II).


FVIII is cleaved by thrombin or factor Xa (FXa), and the resultant factor Villa (FVIIIa) presents a heterotrimeric structure consisting of the A1 subunit, the A2 subunit, and the light chain. Upon activation and in the presence of calcium ions and a phospholipid surface (on platelets), FVIIIa binds via its light chain and A2 subunit to FIXa and simultaneously binds via its A1 subunit to FX, forming an active intrinsic “tenase” or “Xase” complex in which the FVIIIa cofactor brings FIXa and FX into proximity and also allosterically enhances the catalytic rate constant of FIXa. See FIG. 2a. Factor X is activated by the serine protease activity of FIXa, and the clotting cascade continues, culminating in the deposition of fibrin, the structural polymer of the blood clot.


Haemophilia arise through a deficiency in the Xase complex, due either to a lack of FVIII cofactor activity (haemophilia A) or a lack of FIX enzyme activity (haemophilia B).


Factor IX (FIX)


Factor IX is a serine protease which requires factor VIII as a cofactor. It circulates in blood as an inactive precursor, which is activated through intrinsic or extrinsic pathway at the time of haemostatic challenge, as discussed above.


Unless the context requires otherwise, factor IX referred to herein is human factor IX, and factor IXa is human factor IXa.


The amino acid sequence of human factor IX is shown in FIG. 3. The factor IX gene is approximately 34 kb in length and contains 8 exons. The transcript comprises a short 5′ untranslated region, an open reading frame plus stop codon and a 3′ untranslated region. The ORF encodes a 461 amino acid pre-pro-protein in which the pre-sequence (signal peptide) directs factor IX for secretion, the propeptide sequence provides a binding domain for a vitamin K dependent carboxylase, which carboxylates certain glutamic acid residues in the adjacent GLA domain, and the remainder represents the factor IX zymogen, which enters into circulation after removal of the pre- and pro-sequences. The mature 415 residue FIX protein contains, from N to C terminus: a GLA domain in which 12 glutamic acid residues are post-translationally γ-carboxylated, two epidermal growth factor (EGF)-like domains, an activation peptide sequence and a catalytic serine protease domain. FIX is activated by either activated factor XI generated through the intrinsic pathway, or by the TF/FVIIa complex of the extrinsic pathway. Either way, activation involves cleavage of the peptide bond following R145 (α-cleavage) and of the peptide bond following R180 (β-cleavage), releasing an activation peptide corresponding to the intervening sequence, and thereby generating the activated FIXa molecule, which has an N terminal light chain (GLA-EGF-EGF) and a C terminal heavy chain (catalytic domain) joined by a disulphide bridge between C132 of the light chain and C289 of the heavy chain. Residue numbering refers to amino acids in the mature FIX polypeptide sequence. On the phospholipid surface where the Xase complex forms, it is the GLA domain of FIXa which associates with the phospholipid, while the catalytic domain stands high (>70 Å) above the phospholipid surface and is modulated by the A2 domain of FVIIIa [7, 8].


The molecular basis of haemophilia B—deficiency in FIXa activity—is diverse, including a variety of point mutations, nonsense mutations, mRNA splice site mutations, deletions, insertions, or mis-sense mutations at activation cleavage sites [9].


The catalytic (protease) domain of activated FIX (FIXa) is involved in binding to FVIIIa. Residue E245 in this domain binds calcium ions, and mutations at this position may reduce binding to FVIII and lead to haemophilia B, for example the substitution E245V. Mutations within the FIX helix formed by residues 330-338 are also linked with reduced binding to FVIII and consequently to haemophilia B.


Non-pathogenic mutations in factor IX have also been reported, including single nucleotide polymorphisms (SNPs) and length polymorphisms—reviewed in [9]. These include the MnII SNP in exon 6, resulting in T/A substitution at residue 148 (Malmo polymorphism), which is relatively common among white and black American populations [9].


Factor X (FX)


Unless the context requires otherwise, factor X referred to herein is human factor X, and factor Xa is human factor Xa. The amino acid sequence of human FX is shown in FIG. 4.


FX is also known as Stuart-Prower factor. It is a serine endopeptidase. FX can be activated, by hydrolysis, into factor Xa by either factor IX (together with its cofactor, factor FVIII, as described above) or factor VII (with its cofactor, tissue factor). FX acts by cleaving prothrombin in two places—at an Arg-Thr bond and then at an Arg-Ile bond, to yield the active thrombin.


Antigen-Binding


A desirable feature of the bispecific antigen-binding molecule is that it binds FIXa and FX in a manner that allows the bound FIXa to activate the bound FX.


To bring FIXa and FX together and thereby promote the activation of FX by FIXa, the bispecific antigen-binding molecule may bind these two cofactors simultaneously. Binding may occur sequentially, e.g., an initial binary complex may form between a first binding arm and its cognate antigen, followed by binding of the second binding arm to its cognate antigen. In principle these two binding events may occur in either sequence, i.e., FIXa followed by FX, or FX followed by FIXa. The molecular choreography is influenced by the relative affinities of the two binding sites for their respective antigens. In a population of bispecific antigen-binding molecules, FIXa and FX, a number of different complexes are expected to exist in parallel. Thus the pool will comprise free antigen-binding molecule, free FIXa, free FX, FIXa complexed with antigen-binding molecule, FX complexed with antigen-binding molecule, and a tertiary complex of FIX, FX and antigen-binding molecule, with each of these species being present in different proportions according to the relative on-rates and off-rates of the individual interactions.


It may be preferable for a bispecific antigen-binding molecule to have a higher affinity for FIXa than for FX. Such a bispecific molecule would be envisaged to form an initial complex with FIXa, which in turn would bind and activate FX. The relatively low affinity for FX reduces the proportion of FX that is bound in incomplete antibody-antigen complexes (i.e., without FIXa). A potential advantage of this is that it allows a greater proportion of FX to remain free to engage with any FVIII that may be present in a patient's blood. Haemophilia A encompasses a range of deficiencies in FVIII, ranging from mild deficiency to total absence of functional FVIII. For those patients who retain some functional FVIII, it may be desirable to retain this natural activity as far as possible. Thus, it may be desirable to provide a bispecific antigen-binding molecule in which the FX binding arm does not compete with FVIII for binding to FX.


Preferably the FX binding arm has a higher affinity for FX than for FXa. A low affinity for FXa promotes release of the activated product, completing the role of the FVIII-mimetic molecule in the coagulation cascade and freeing the FX binding site for re-use. In various embodiments, a bispecific described herein (e.g., antibody IXAX-1280.0999.0325 or antibody IXAX-1441.0999.0325), the FX binding arm of such a bispecific (e.g., binding arm comprising T0999H VH domain), or an anti-FX monospecific antibody comprising a homodimer of two such arms, has at least 2-fold higher, at least 3-fold higher, at least 4-fold higher, at least 5-fold higher, at least 10-fold higher, at least 100-fold higher affinity for FX than for FXa, e.g., at least 1000-fold higher affinity for FX than for FXa, and optionally does not show significant binding to FXa, e.g., as measured by ELISA. For example, in various embodiments the bispecific, FX binding arm or anti-FX monospecific antibody (e.g., TINA-0999.0325) does not bind human FXa as determined by ELISA and with reference to a negative control IgG. As an alternative to ELISA, affinity may be measured by SPR and the affinity for FX compared with affinity for FXa.


FIXa Binding


The FIXa binding arm of a bispecific antigen-binding molecule may bind the light chain and/or the heavy chain of FIXa. Initial studies indicated that FIXa binding arms of the N128 lineage described in the Examples do not bind the FIXa light chain in isolation (in the absence of the heavy chain).


A bispecific antigen-binding molecule of the present invention (or FIXa binding polypeptide arm thereof) may thus be one which binds a FIXa molecule comprising a heavy chain and a light chain, and which does not bind the FIX light chain in the absence of the heavy chain. Optionally, the FIXa binding arm recognises an epitope formed by, or stabilised by, the combination of the FIXa heavy and light chains. It may for example make contact only with the light chain in the FIXa molecule, binding an epitope that is exposed or stabilised only when the light chain is present in combination with the heavy chain in the FIXa molecule. Alternatively, it may contact an epitope comprising one or more residues from both the light chain and the heavy chain, or comprising residues of the heavy chain alone.


An antigen-binding molecule according to the present invention, or a FIXa-binding polypeptide arm thereof, may bind the EC domain of human FIXa with an affinity (measured as KD) of 10 mM or less, preferably 5 mM or less, more preferably 1 mM or less. For example, KD may be between 1 nM and 3 μM.


The KD for binding human FIXa may be between 0.1 μM and 1 μM, e.g., between 0.15 and 0.3 μM. The KD may be 0.6 μM or less, 0.5 μM or less, 0.4 μM or less, 0.3 μM or less, 0.25 μM or less, or 2 μM or less. The KD may be at least 0.1 μM, for example at least 0.2 μM. It may be 0.1 μM-0.5 μM.


The KD may be between 10 and 100 nM, e.g., between 25 and 75 nM.


The KD may be 50 nM or less, 10 nM or less, 5 nM or less, 2 nM or less, or 1 nM or less. The KD may be 0.9 nM or less, 0.8 nM or less, 0.7 nM or less, 0.6 nM or less, 0.5 nM or less, 0.4 nM or less, 0.3 nM or less, 0.2 nM or less, or 0.1 nM or less. The KD may be at least 0.001 nM, for example at least 0.01 nM or at least 0.1 nM. The KD may be between 0.1-10 nM.


An antigen-binding molecule according to the present invention, or a FIXa-binding polypeptide arm thereof, may bind human FIX with an affinity (measured as KD) between 0.1 μM and 1 μM, e.g., between 0.15 and 0.3 μM. The KD may be 0.6 μM or less, 0.5 μM or less, 0.4 μM or less, 0.3 μM or less, 0.25 μM or less, or 2 μM or less. The KD may be at least 0.1 μM, for example at least 0.2 μM.


The KD of interaction with FIX may be comparable to the KD of interaction with FIXa, e.g., there may be difference of less than 25%, optionally less than 10%, in the FIXa-binding arm's affinity for FIX compared with the affinity for FIXa. There may be no statistically significant difference in KD of interaction with FIX compared with FIXa.


As described elsewhere herein, affinity may be determined using surface plasmon resonance (SPR), e.g., with the binding arm coupled to a solid surface, optionally as a dimer (e.g., as monospecific IgG), with the antigen in solution as analyte, at 25° C.


FX Binding


An antigen-binding molecule according to the present invention, or a FX-binding polypeptide arm thereof, may bind the EC domain of human FX with a KD of 10 mM or less, preferably 5 mM or less, more preferably 1 mM or less. For example, KD may be between 5 μM and 1 nM, e.g., between 5 μM and 10 nM.


The KD may be between 0.1 μM and 2 μM, e.g., between 0.1 μM and 1 μM, e.g., between 0.15 and 0.3 μM. The KD may be 0.6 μM or less, 0.5 μM or less, 0.4 μM or less, 0.3 μM or less, or 0.25 μM or less. The KD may be at least 0.1 μM.


The KD may be 50 nM or less, 10 nM or less, 5 nM or less, 2 nM or less, or 1 nM or less. The KD may be 0.9 nM or less, 0.8 nM or less, 0.7 nM or less, 0.6 nM or less, 0.5 nM or less, 0.4 nM or less, 0.3 nM or less, 0.2 nM or less, or 0.1 nM or less. The KD may be at least 0.001 nM, for example at least 0.01 nM or at least 0.1 nM. For example, the KD may be between 1-100 nM. KD may be between 1-10 nM.


As described elsewhere herein, affinity may be determined using surface plasmon resonance (SPR), e.g., with the binding arm coupled to a solid surface, optionally as a dimer (e.g., as monospecific IgG), with the antigen in solution as analyte, at 25° C.


Measurement of Antigen-Binding Affinity


The affinity of an antigen-binding molecule for binding FIX, FIXa, FX and FXa may be quantified in terms of the equilibrium dissociation constant KD, the ratio Ka/Kd of the association or on-rate (Ka) and the dissociation or off-rate (kd) of the binding interaction. KD, Ka and Kd for antigen binding can be measured using surface plasmon resonance (SPR). Example SPR procedure and conditions are set out in Example 10.


Quantification of affinity may be performed using SPR with the antigen-binding polypeptide arm in monovalent form, e.g., antibody Fab or Fv comprising the antigen binding site, or heterodimeric immunoglobulin (e.g., IgG) having a single antigen-binding arm for the antigen in question. Alternatively, it may be convenient to determine affinity for the antigen-binding polypeptide arm in bivalent form, for example IgG comprising homodimeric antigen-binding arms. SPR may comprise coating dimers of the antigen-binding polypeptide arm on to a biosensor chip (directly or indirectly), exposing the antigen-binding polypeptide arms to antigen in buffered solution at a range of concentrations, detecting binding, and calculating the equilibrium dissociation constant KD for the binding interaction. SPR may be performed at 25° C. A suitable buffered solution is 150 mM NaCl, 0.05% detergent (e.g., P20) and 3 mM EDTA, pH 7.6. HBS-P 1× (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% polysorbate 20 pH 7.6) with 2.5 mM CaCl2. is an example buffer. The binding data can be fitted to a 1:1 model using standard algorithms, which may be inherent to the instrument used. A variety of SPR instruments are known, such as Biacore™, ProteOn XPR36™ (Bio-Rad®), and KinExA® (Sapidyne Instruments, Inc).


Cross-Reactivity


Regulatory bodies may require candidate therapeutic molecules to have demonstrated therapeutic efficacy in laboratory animals before they advance to human clinical trials. An example of an acquired haemophilia A animal model is a cynomolgus monkey that is rendered deficient in blood clotting through administration of a FVIII-neutralising antibody or a small molecule inhibitor against FVIII, thereby replicating the phenotype of a human haemophilia A patient. To enable testing of bispecific antigen-binding molecules in animal models, it is desirable for the binding site of each arm to be cross-reactive with the corresponding antigen from one or more non-human mammals. Thus, the FIXa binding site of the antigen-binding molecule may bind murine (e.g., mouse or rat), rabbit or non-human primate (e.g., cynomolgus monkey) FIXa as well as human FIXa, and the FX binding site may bind murine (e.g., mouse or rat), rabbit or non-human primate (e.g., cynomolgus monkey) FXa as well as human FXa.


One way to quantify the extent of species cross-reactivity of an antigen-binding molecule (or, more precisely, of its antigen binding site) is as the fold-difference in its affinity for antigen or one species compared with antigen of another species, e.g., fold difference in affinity for human antigen vs cynomolgus antigen. Affinity may be quantified as KD, referring to the equilibrium dissociation constant of the binding of the antigen to the antigen-binding molecule. KD may be determined by SPR as described elsewhere herein.


A species cross-reactive binding molecule may have a fold-difference in affinity for binding human and non-human antigen that is 30-fold or less, 25-fold or less, 20-fold or less, 15-fold or less, 10-fold or less or 5-fold or less. To put it another way, the KD of binding the extracellular domain of the human antigen may be within 30-fold, 25-fold, 20-fold, 15-fold, 10-fold or 5-fold of the KD of binding the extracellular domain of the non-human antigen.


Preferably, the binding affinities of human and non-human antigen are within a range of 10-fold or less, more preferably within 5-fold or within 2-fold. KD for binding non-human FIXa, e.g., as determined by surface plasmon resonance, may be up to 10-fold (preferably up to 5-fold or up to 2-fold) greater or up to 10-fold lower (preferably up to 5-fold or up to 2-fold lower) than the Kd for binding human FIXa. Similarly, KD for binding non-human FX, e.g., as determined by SPR, may be up to 10-fold (preferably up to 5-fold or up to 2-fold) greater or up to 10-fold (preferably up to 5-fold or up to 2-fold) lower than the Kd for binding human FX. Methods of determining affinity are described elsewhere herein.


Binding molecules can also be considered species cross-reactive if the KD for binding antigen of both species meets a threshold value, e.g., if the KD of binding human antigen and the KD of binding non-human antigen are both 10 mM or less, preferably 5 mM or less, more preferably 1 mM or less. The KD may be 10 nM or less, 5 nM or less, 2 nM or less, or 1 nM or less. The KD may be 0.9 nM or less, 0.8 nM or less, 0.7 nM or less, 0.6 nM or less, 0.5 nM or less, 0.4 nM or less, 0.3 nM or less, 0.2 nM or less, or 0.1 nM or less.


While species cross-reactivity for binding antigen of different species may be advantageous, selectivity of the FIXa binding arm and the FX binding arm for their respective antigens is nevertheless desirable to avoid unwanted side effects. Thus, within the body, FIX/FIXa and FX/FXa are preferably the only antigens bound by the antigen-binding molecule.


Enhancement of FIXa-Mediated Activation of FX


The ability of a bispecific antigen-binding molecule to enhance the FIXa-mediated activation of FX to FXa may be determined in assays in vitro or in vivo.


A suitable in vitro assay is the FX activation assay exemplified in Example 3 and Example 7 and illustrated in FIG. 7. The assay comprises

    • (i) contacting the bispecific antigen-binding molecule with FIXa and FX under conditions suitable for formation of FXa (e.g., in the presence of phospholipid, in buffered solution at 37° C.)
    • (ii) adding substrate that is cleavable by FXa to generate a detectable product, and
    • (iii) detecting, and optionally quantifying, the presence of the detectable product.


A detailed protocol is set out in Example 7.


The level of product may be compared with a control assay in which FIXa-FX bispecific antigen-binding molecule is absent from the reaction mixture. Significant difference in product level in the assay with the bispecific compared with control indicates that the bispecific is able to enhance FIXa-mediated activation of FX. FVIII may be included as a positive control.


The level of product may be compared with an assay in which the FIXa-FX bispecific antigen-binding molecule is emicizumab. A bispecific according to the present invention may enhance the FIXa-mediated activation of FX to FXa to the same or similar extent (e.g., within 10% difference or within 5% difference) as emicizumab, or to a greater extent (e.g., more than 10% more activation of FX to FXa than is achieved with emicizumab as measured by the level of detectable product). Preferably the bispecific antibody enhances the FIXa-mediated activation of FX to FXa to at least the same extent as emicizumab. The assay is typically performed at physiological temperature of 37 degrees C. Suitable concentrations of bispecific for use in the assay are indicated in the Examples herein, e.g., 12.5 μg/ml (10.4 nM) or 125 nM.


Another suitable assay is to measure the activated partial thromboplastin time (aPTT) in FVIII-deficient plasma, which may be performed in the presence or the absence of inhibitors and can be used to compare the activity of bispecific molecules with recombinant human FVIII. This assay is exemplified in Example 8. aPTT is an end point assay which provides a global overview of blood clot formation and provides coagulation time as the assay read-out. FVIII-deficient plasma would typically have a coagulation time of around 80-90 seconds in the aPTT assay. Bispecific antigen binding molecules of the present invention are effective to reduce the coagulation time in an aPTT assay (compared with a negative control). The coagulation time of human FVIII-deficient in an aPTT assay with a bispecific antigen binding molecule according to the present invention may for example be the same as or less than that of the coagulation time with recombinant human FVIIIa. Physiological clotting time for normal (FVIII+) human plasma is typically <40 seconds, e.g., in the range of 37-34 s. Similar values are achievable with FVIII-deficient plasma upon provision of activated FVIIIa, which provides a convenient way of standardising the assay through calibration of the apparatus/measurement against reference values. Alternatively, coagulation time of normal (FVIII+) human plasma may be used for reference, the aPTT assay being begun by induction of coagulation through the addition of calcium. The assay is typically performed at physiological temperature of 37 degrees C. Suitable concentrations of bispecific for use in the assay are indicated in the Examples herein, and include 0.1 mg/ml (44 nM), 0.3 mg/ml (133 nM) and 0.5 mg/ml (222 nM).


A bispecific antigen-binding molecule of the present invention may give a coagulation time in the aPTT assay of within 10 seconds of that of FVIIIa (i.e., up to 10 seconds more than or up to 10 seconds less than the coagulation time of the aPTT assay with FVIIIa). Preferably, the coagulation time in the aPTT assay with a bispecific antigen binding molecule of the invention is less than that with FVIIIa. The bispecific antigen-binding molecule may reduce the coagulation time to less than 40 seconds, less than 35 seconds, or less than 30 seconds. The coagulation time may be between 20 and 40 seconds, e.g., between 20 and 30 seconds. Preferably the coagulation time is 22-28 seconds, e.g., 24-26 seconds.


Another measure of function is the rate at which thrombin is generated in FVIII-deficient blood plasma in the presence of the bispecific antigen-binding molecule. Activity of a bispecific antibody may be measured in a thrombin generation assay (TGA) [10]. A number of thrombin generation assays have been described, as recently reviewed [11]. Essentially, a TGA comprises measuring the conversion (activation) of prothrombin to thrombin over time following addition of a test molecule (here, the candidate bispecific antibody), where thrombin is detected via its cleavage of a substrate to form a detectable product.


With reference to FIG. 1, it will be remembered that the extrinsic tissue factor (TF) pathway exists to initiate the coagulation cascade. Cells expressing TF normally reside outside of the vasculature, and upon tissue damage such TF-bearing cells come into contact with circulating platelets. TF acts as a co-factor to facilitate the activation of small amounts of factors IX and X by factor VIIa. Activated factor Xa and factor V form a prothrombinase complex on TF-bearing cells, generating a limited amount of thrombin. The newly generated thrombin activates platelets which have accumulated at the site of injury and factor XI which is present on the platelets. Platelet bound FXIa is required to ensure further activation of FIXa. Given the TGA is an ex vivo assay, TF-bearing cells are absent and a coagulation trigger must be supplied to initiate the cascade. Commercial assays typically use a recombinant TF/phospholipid mixture to initiate coagulation [11]. The TGA method exemplified herein (see Example 13) uses a factor IXa/phospholipid mixture as the trigger, although other upstream activators such as FXIa could be used.


To perform the TGA, FVIII-deficient plasma is contacted with (i) the trigger reagent, (ii) a substrate convertable by thrombin to a detectable product, e.g., a fluorogenic or chromogenic substrate which produces a visually detectable product on cleavage by thrombin, and (iii) the test molecule (e.g., bispecific antibody), to create conditions under which the presence of FVIII-mimetic activity would result in thrombin generation and hence a signal from the detectable product. Typically, the plasma will lack free metal ions such as calcium, which are required in the blood clotting cascade (FIG. 1). Ca2+ ions may be supplied (e.g., as CaCl2 in solution) to initiate the assay, e.g., it may be contained within the substrate solution. Following initiation, generation of the detectable product (representing generation of thrombin) is monitored (preferably continuously, or at frequent intervals, e.g., about every 20 seconds) over time, e.g., by detecting fluorescence or colour. A plate reader may be used, e.g., to monitor conversion of a fluorogenic substrate into a fluorophore. TGA is performed at physiological temperature of 37 degrees C.


Fluorescence may be converted to thrombin concentration by calibrating against known concentrations of thrombin added to control plasma. A thrombogram may then be generated (FIG. 26, FIG. 27).


Preferably, bispecific antibodies (or other test molecules) are suitably purified for use in the TGA (e.g., by protein A chromatography and ion exchange chromatography or hydrophobic interaction chromatography), e.g., to provide the bispecific in a composition of at least 95 bispecific heterodimer (i.e., no more than 5% homodimeric or other antibody contaminants should be present). Preferably the test molecule is provided as close to 100% purity as possible. It may be about 98, 99% or 100% pure bispecific.


Approximate reference ranges for plasma from healthy individuals in a fluorogenic TGA are Cmax 200 to 450 nM and Tmax 5 to 8 minutes [11]. Activity in a TGA can also be compared against published representative thrombin generation curves for plasma from healthy individuals, patients with severe FVIII deficiency and patients with severe FVIII deficiency after FVIII infusion [12]. For standardisation, performance in the TGA may also be compared against a calibrator which represents a positive control molecule at known concentration. A dilution series of the test bispecific may be compared against the calibrator at a series of known fixed concentrations. A suitable calibrator is an emicizumab calibrator. Emicizumab calibrator is available commercially, prepared from FVIII immunodepleted citrated human plasma spiked with 100 μg/mL emicizumab (Hemlibra®) and further comprising buffer and stabilisers. It is supplied in lyophilised form and is reconstituted in water before use in the TGA. The exact concentration of emicizumab in the calibrator phial is known, so the activity of a test bispecific molecule in the assay can be compared against the activity of the calibrator after normalising for concentration. As an alternative control for comparison of a bispecific antibody against emicizumab, performance of the test bispecific antibody in the TGA may be compared against performance of a control bispecific antibody having the amino acid sequence of emicizumab, wherein the test bispecific antibody and the bispecific antibody having the amino acid sequence of emicizumab are tested under identical conditions in the TGA.


The TGA may be used to characterise six aspects of thrombin generation: lag time (lag), time to peak (Tmax), maximal peak height (Cmax), endogenous thrombin potential (ETP), velocity index (VI) and the “tail start” or return to baseline. The lag time represents the initiation phase before the thrombin peak begins to be generated, where addition of a trigger results in the activation of the coagulation cascade. Once initiated, large amounts of thrombin are quickly generated during the propagation phase. The time to peak represents the time taken (Tmax) to reach maximal thrombin peak height (Cmax), the ETP represents the total amount of thrombin generated and the velocity index characterises the slope between the lag time and the time to peak. The return to baseline (tail start) reflects the inhibition (by activated protein C) of thrombin formation and the inactivation (by antithrombin) of thrombin already formed. The Cmax and/or Tmax is typically the key measure used to represent activity in the TGA. References values in the TGA (e.g., Cmax, Tmax, lagtime etc.) may be determined for the bispecific at a fixed concentration, e.g, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM or 300 nM. Parameters may be measured a series of concentrations, e.g., at 1 nM, 3 nM, 10 nM, 30 nM, 100 nM and 300 nM and/or other concentrations to obtain a complete dose response curve, allowing EC50 values to then be determined. The dose response curve can be fitted using a non-linear log(antibody) vs response variable slope model (e.g., variable slope 4 parameter logistic regression model, which may be performed using GraphPad Prism v8.0.0). EC50 is the concentration of test molecule (e.g., antibody) at which half-maximal effect is reached (half way between baseline and maximal value of the measured parameter). EC50 can be determined from the dose response curve. Worked examples with EC50 data are presented in Example 14 herein.


In one embodiment, the TGA comprises:


(a) contacting FVIII-deficient plasma lacking free calcium ions with






    • (i) a trigger reagent comprising a factor IXa/phospholipid mixture,

    • (ii) a solution comprising a fluorogenic substrate (e.g., 2 nM ZGGR-AMC fluorogenic substrate) which produces a visually detectable fluorophore on cleavage by thrombin, and calcium ions (e.g., 100 mM CaCl2)), (for example, the FluCa reagent from Stago), and

    • (iii) the bispecific antibody (e.g., at a purity of 95%-100%, e.g., 99%-100%),


      (b) incubating the plasma at 37 degrees C. under conditions in which the presence of FVIII-mimetic activity would result in thrombin generation and hence a signal from the fluorophore,


      (c) detecting fluorescence over time to monitor conversion of the fluorogenic substrate to fluorophore,


      (d) calibrating detected fluorescence against fluorescence from solutions of thrombin at predetermined concentrations, and


      (e) determining one or more parameters of a thrombogram, wherein said parameters are:

    • maximal thrombin peak height (Cmax) that is reached,

    • time taken (Tmax) to reach maximal thrombin peak height, and/or

    • length of the initiation phase before the thrombin peak begins to be generated (lag time).





Said one or more parameters are determined at a series of concentrations of the bispecific antibody to obtain a complete dose response curve including baseline and top plateau (maximal value) of response. A dose response curves may be fitted to the data points using a non-linear log [antibody] vs response parameter variable slope model (4 parameter logistic regression model). EC50 is determined from said dose response curve. Said one or more parameters, or EC50 for said one or more parameters, may be compared between the test bispecific antibody and emicizumab (e.g., emicizumab calibrator, as available from Enzyme Research Laboratories).


A bispecific antibody according to the present invention preferably exhibits a potency that is similar to or greater than that of emicizumab in a fluorimetric TGA. Higher potency may be represented by lower EC50 for one or more parameters in said assay, e.g., Cmax, Tmax or lagtime. As demonstrated in the Examples herein, embodiments of the present invention consistently demonstrated greater potency than emicizumab at lower concentrations. See, for example, the results presented in FIG. 29, FIG. 30, FIG. 31, FIG. 33 and FIG. 34.


The maximal response (e.g., highest Cmax, lowest Tmax, shortest lagtime, etc) in the fluorimetric TGA is also noteworthy. Maximal response is the level at which the measured parameter (e.g., Cmax) plateaus with increasing antibody concentration, and represents the maximum achievable level (e.g., the maximal Cmax). An excessive maximal response may be associated with increased risks of overdosing the bispecific molecule, including risk of consumption coagulopathy or disseminated intravascular coagulation (DIC) which is characterised by abnormally increased activation of procoagulant pathways. Hypercoagulability may compromise patient safety through coagulopathy events such as arterial/venous thrombosis, embolism and thrombotic microangiopathy, and would thus narrow the therapeutic window, i.e., the range of dose or plasma concentration at which a beneficial effect is achieved without unacceptable side effects or risk of adverse events.


Since emicizumab has received regulatory approval based on a safety profile deemed acceptable in human clinical trials, the maximal response of emicizumab in the TGA represent established safe limits. Optionally, bispecifics of the present invention have a maximal Cmax and/or maximal Tmax response in the TGA which is not more than 20% (e.g., not more than 15 or not more than 10%) different from that of emicizumab. These reference values may be determined using an emicizumab calibrator or a sequence identical analogue of emicizumab.


Bispecifics of the present invention may demonstrate maximal responses in the TGA as follows:

    • Cmax in the TGA not exceeding 500 nM. Optionally the maximal response for Cmax does not exceed 450 nM, e.g., does not exceed 400 nM. Maximal response for Cmax may be between 200 and 450 nM, e.g., between 250 and 350 nM; and/or
    • Tmax in the TGA not lower than a maximal response of 1 minute. Optionally the maximal response for Tmax is not less than 5 minutes, not less than 4 minutes, not less than 3 minutes or not less than 2 minutes. Maximal response for Tmax may be between 2 and 10 minutes, e.g., between 2 and 8 minutes or between 5 and 8 minutes.


A bispecific antigen-binding molecule according to the present invention may have a Cmax in the range of 100 to 450 nM (e.g., 200 to 450 nM) as determined by fluorimetric TGA, e.g., wherein the bispecific antibody is at a concentration of 100 nM or 300 nM in said assay. The Cmax is preferably at least 200 nM, more preferably at least 250 nM or at least 300 nM. The Cmax of the bispecific may be the same or similar to (e.g., within 10% difference from) the Cmax of emicizumab, or it may be greater than that of emicizumab. The bispecific may have a Cmax EC50 in said assay that is within 10% of the Cmax EC50 of emicizumab, or that is lower. Where the EC50 is lower than that of emicizumab, there may be at least a 2-fold, at least a 3-fold, at least a 4-fold or at least a 5-fold difference in Cmax EC50 in the TGA between the bispecific of the present invention and emicizumab. Optionally the Cmax EC50 in the TGA may be up to 10-fold, up to 15-fold or up to 20-fold different. EC50 of the Cmax for the bispecific antigen-binding molecule in the fluorimetric TGA may be less than 50 nM, e.g., between 1 nM and 50 nM, between 5 nM and 20 nM, or between 5 nM and 10 nM.


A bispecific antigen-binding molecule according to the present invention may have a Tmax of 8 minutes or under, e.g., in the range of 4 to 8 minutes, as determined by fluorimetric TGA, e.g., wherein the bispecific antibody is at a concentration of 100 nM or 300 nM in said assay. The Tmax of the bispecific may be the same or similar to (e.g., within 10% difference from) the Tmax of emicizumab, or it may be less than that of emicizumab. The bispecific may have a Tmax EC50 in said assay that is within 10% of the Tmax EC50 of emicizumab, or that is lower.


EC50 of the Tmax for the bispecific antigen-binding molecule in the fluorimetric TGA may be less than 5 nM, e.g., less than 3 nM or less than 2 nM. It may be between 1 nM and 5 nM, e.g., between 1 nM and 2 nM.


A bispecific antigen-binding molecule according to the present invention may have a lag time of 2-6 minutes as determined by fluorometric TGA, e.g., wherein the bispecific antibody is at a concentration of 100 nM or 300 nM in said assay. The lagtime of the bispecific may be the same or similar to (e.g., within 10% difference from) the lagtime of emicizumab, or it may be lower than that of emicizumab. The bispecific may have a lagtime EC50 in said assay that is within 10% of the lagtime EC50 of emicizumab, or that is lower.


Bispecific Antigen-Binding Molecules


The bispecific antigen-binding molecule comprises a FIXa binding polypeptide arm and a FX binding polypeptide arm. It may be a multi-chain or single-chain polypeptide molecule. While the FIXa binding polypeptide arm and the FX binding polypeptide arm represent different moieties of the bispecific molecule, one polypeptide can optionally form all or part of both the FIXa binding arm and the FX binding arm.


A polypeptide binding arm is the region of the bispecific molecule that comprises the binding site for one of the antigens (FIXa or FX). One or both antigen-binding sites of a bispecific molecule can be provided by a set of complementarity determining regions (or peptide loops) in a polypeptide arm, wherein the polypeptide arm is any suitable scaffold polypeptide whether that of an antibody (e.g., an antibody Fv region) or a non-antibody molecule. A binding arm may comprise one or more than one (e.g., two) polypeptides or parts (e.g., domains) thereof.


The invention is described in detail herein with reference to bispecific antibodies, wherein at least one of the antigen binding polypeptide arms is provided by a set of CDRs in an antibody VH and/or VL domain, optionally an Fv region.


Antibodies are immunoglobulins or molecules comprising immunoglobulin domains. Antibodies may be IgG, IgM, IgA, IgD or IgE molecules or molecules including antigen-specific antibody fragments thereof. The term “antibody” covers any polypeptide or protein comprising an antibody antigen-binding site. An antibody antigen-binding site (paratope) is the part of an antibody that binds to and is complementary to the epitope of its target antigen. The term “epitope” refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids. In certain embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulphonyl groups, and, in certain embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics.


An antibody antigen-binding site is provided by a set of complementarity determining regions (CDRs) in an antibody VH and/or VL domain, and is capable of binding the antigen. In an example, the antibody binding site is provided by a single variable domain, e.g., a heavy chain variable domain (VH domain) or a light chain variable domain (VL domain). In another example, the binding site is provided by a VH/VL pair (an Fv) or two or more such pairs.


The antibody variable domains are the portions of the light and heavy chains of antibodies that include amino acid sequences of complementarity determining regions (CDRs; ie., CDR1, CDR2, and CDR3), and framework regions (FRs). Thus, within each of the VH and VL domains are CDRs and FRs. A VH domain comprises a set of HCDRs, and a VL domain comprises a set of LCDRs. VH refers to the variable domain of the heavy chain. VL refers to the variable domain of the light chain. Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Amino acid positions assigned to CDRs and FRs may be defined according to IMGT nomenclature. An antibody may comprise an antibody VH domain comprising a VH CDR1, CDR2 and CDR3 and a framework. It may alternatively or also comprise an antibody VL domain comprising a VL CDR1, CDR2 and CDR3 and a framework. Example sequences of antibody VH and VL domains and CDRs form part of the present disclosure. The CDRs are defined according to the IMGT system [13]. All VH and VL sequences, CDR sequences, sets of CDRs and sets of HCDRs and sets of LCDRs disclosed herein represent aspects and embodiments of the invention. As described herein, a “set of CDRs” comprises CDR1, CDR2 and CDR3. Thus, a set of HCDRs refers to HCDR1, HCDR2 and HCDR3, and a set of LCDRs refers to LCDR1, LCDR2 and LCDR3. Unless otherwise stated, a “set of CDRs” includes HCDRs and LCDRs.


An antibody may comprise one or more CDRs, e.g. a set of CDRs, within an antibody framework. The framework regions may be of human germline gene segment sequences. Thus, the antibody may be a human antibody having a VH domain comprising a set of HCDRs in a human germline framework. Normally the antibody also has a VL domain comprising a set of LCDRs, e.g. in a human germline framework. An antibody “gene segment”, e.g., a VH gene segment, D gene segment, or JH gene segment refers to oligonucleotide having a nucleic acid sequence from which that portion of an antibody is derived, e.g., a VH gene segment is an oligonucleotide comprising a nucleic acid sequence that corresponds to a polypeptide VH domain from FR1 to part of CDR3. Human v, d and j gene segments recombine to generate the VH domain, and human v and j segments recombine to generate the VL domain. The D domain or region refers to the diversity domain or region of an antibody chain. J domain or region refers to the joining domain or region of an antibody chain. Somatic hypermutation may result in an antibody VH or VL domain having framework regions that do not exactly match or align with the corresponding gene segments, but sequence alignment can be used to identify the closest gene segments and thus identify from which particular combination of gene segments a particular VH or VL domain is derived. When aligning antibody sequences with gene segments, the antibody amino acid sequence may be aligned with the amino acid sequence encoded by the gene segment, or the antibody nucleotide sequence may be aligned directly with the nucleotide sequence of the gene segment. Germline gene segments corresponding to framework regions of example antibodies described herein are indicated in Table S-12.


An antibody may be a whole immunoglobulin, including constant regions, or may be an antibody fragment. An antibody fragment is a portion of an intact antibody, for example comprising the antigen binding and/or variable region of the intact antibody. The antibody fragment may include one or more constant region domains.


An antibody of the invention may be a human antibody or a chimaeric antibody comprising human variable regions and non-human (e.g., mouse) constant regions. The antibody of the invention for example has human variable regions, and optionally also has human constant regions.


Thus, antibodies optionally include constant regions or parts thereof, e.g., human antibody constant regions or parts thereof, such as a human IgG4 constant region. For example, a VL domain may be attached at its C-terminal end to antibody light chain kappa or lambda constant domains. Similarly, an antibody VH domain may be attached at its C-terminal end to all or part (e.g. a CH1 domain or Fc region) of an immunoglobulin heavy chain constant region derived from any antibody isotype, e.g. IgG, IgA, IgE and IgM and any of the isotype sub-classes, such as IgG1 or IgG4.


Digestion of whole (bivalent) immunoglobulins with the enzyme papain results in two identical (monovalent) antigen-binding fragments known as “Fab” fragments, and an “Fc” fragment. The Fc has no antigen-binding activity but has the ability to crystallize. “Fab” when used herein refers to a fragment of an antibody that includes one constant and one variable domain of each of the heavy and light chains. The term “Fc region” herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native-sequence Fc regions and variant Fc regions. The “Fc fragment” refers to the carboxy-terminal portions of both H chains held together by disulphides.


Digestion of antibodies with the enzyme pepsin results in a bivalent F(ab′)2 fragment in which the two arms of the antibody molecule remain linked. The F(ab′)2 fragment is a bivalent fragment including two Fab fragments linked by a disulphide bridge at the hinge region. Single-chain antibodies (e.g., scFv) are another fragment. Two different monovalent monospecific antibody fragments such as scFv may be linked together to form a bivalent bispecific antibody.


“Fv” when used herein refers to the minimum fragment of an antibody that retains both antigen-recognition and antigen-binding sites. This region consists of a dimer of one heavy and one light chain variable domain in tight, non-covalent or covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognise and bind antigen, although usually at a lower affinity than the entire binding site.


Preferably, the bispecific antibody is a dual binding antibody, i.e., a bispecific antibody in which both antigen binding domains are formed by a VH/VL pair. Dual binding antibodies include FIT-Ig (see WO2015/103072, incorporated herein by reference), mAb-dAb, dock and lock, Fab-arm exchange, SEEDbody, Triomab, LUZ-Y, Fcab, Kλ-body, orthogonal Fab, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, Fab-scFv-Fc, Fab-scFv, intrabody, BITE, diabody, DART, TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple body, Miniantibody, minibody, scFv-CH3 KIH, scFv-CH-CL-scFv, F(ab′)2-scFv, scFv-KIH, Fab-scFv-Fc, tetravalent HCab, ImmTAC, knobs-in-holes, knobs-in-holes with common light chain, knobs-in-holes with common light chain and charge pairs, charge pairs, charge pairs with common light chain, DT-IgG, DutaMab, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)IgG, IgG(L,H)-Fv, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv and scFv4-Ig.


In one embodiment, the bispecific antibody is a bispecific IgG comprising a FIXa-binding polypeptide arm and a FX-binding polypeptide arm, each polypeptide arm comprising a heavy chain and a light chain. The IgG is a tetrameric immunoglobulin comprising

    • a first pair of antibody heavy and light chains (heavy-light chain pair) comprising a FIXa binding Fv region,
    • a second heavy-light chain pair comprising a FX binding Fv region,
    • wherein each heavy chain comprises a VH domain and a constant region, and each light chain comprises a VL domain and a constant region, and wherein the first and second heavy-light chain pairs associate through heterodimerisation of their heavy chain constant regions to form the immunoglobulin tetramer.


Optionally, the two polypeptide arms comprise a common light chain, so the light chain of the first and second heavy-light chain pairs has an identical amino acid sequence (FIG. 5). Alternatively the two polypeptide arms may comprise different light chains.


Bispecific antibody may be monovalent for binding FIXa and for binding FX.


Antibody Constant Regions


As discussed above, antibodies can be provided in various isotypes and with different constant regions. The Fc region of antibodies is recognised by Fc receptors and determines the ability of the antibody to mediate cellular effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement dependent cytotoxicity (CDC) activity and antibody-dependent cell phagocytosis (ADCP) activity. These cellular effector functions involve recruitment of cells bearing Fc receptors to the site of the target cells, resulting in killing of the antibody-bound cell.


In the context of the present invention it is desirable to avoid cellular effector functions such as ADCC, ADCP and/or CDC. Therefore, bispecific antigen-binding molecules according to the present invention may lack Fc effector function, for example they may contain Fc regions that do not mediate ADCC, ADCP and/or CDC, or they may lack Fc regions or lack antibody constant regions entirely. An antibody may have a constant region which is effector null.


An antibody may have a heavy chain constant region that binds one or more types of Fc receptor but does not induce cellular effector functions, i.e., does not mediate ADCC, CDC or ADCP activity. Such a constant region may be unable to bind the particular Fc receptor(s) responsible for triggering ADCC, CDC or ADCP activity.


An antibody may have a heavy chain constant region that does not bind Fcγ receptors, for example the constant region may comprise a Leu235Glu mutation (i.e., where the wild type leucine residue is mutated to a glutamic acid residue), which may be referred to as an “E” mutation, e.g., IgG4-E. Another optional mutation for a heavy chain constant region is Ser228Pro (“P” mutation), which increases stability by reducing Fab arm exchange. A heavy chain constant region may be an IgG4 comprising both the Leu235Glu mutation and the Ser228Pro mutation (EU numbering). This “IgG4-PE” heavy chain constant region is effector null. An alternative effector null human constant region is a disabled IgG1.


Antibody constant regions may be engineered to have an extended half life in vivo. Examples include “YTE” mutations and other half-life extending mutations (Dall'Acqua, Kiener & Wu, JBC 281(33):23514-23524 2006 and WO02/060919, incorporated by reference herein). The triple mutation YTE is a substitution of 3 amino acids in the IgG CH2 domain, these mutations providing tyrosine at residue 252, threonine at residue 254 and glutamic acid at residue 256, numbered according to the EU index of Kabat. As described in the referenced publications, the YTE modification increases the half-life of the antibody compared with the half-life of a corresponding antibody having a human CH2 wild type domain. To provide an increased duration of efficacy in vivo, antibodies of the present invention may include antibody constant regions (e.g., IgG constant regions, e.g., IgG CH2 domains) that have one or more mutations that increase the half life of the antibody compared with the corresponding wild type human constant region (e.g., IgG, e.g., IgG CH2 domain). Half-life may be determined by standard methods, such as are described in WO02/060919.


In some embodiments, a gamma-carboxyglutamic acid-rich (Gla) domain or other membrane-binding domain is included in the bispecific antibody (e.g., at the C terminus of the Fc), to promote localisation of the antibody to the phospholipid membrane at the platelet surface (via interaction between the Gla domain and the membrane), thereby increasing the local concentration of bispecific antibody where FIX and FX are naturally present in vivo. WO2018/145125 described a FVIII mimetic protein comprising a FIX/FX bispecific antibody and a membrane binding domain, e.g., a platelet binding domain such as a C1, C2 domain, a PH domain, a GLA domain or a membrane binding domain of a platelet membrane glycoprotein. As described therein, the membrane-binding domain may be linked to the C terminal of one or both of the heavy chain constant domains of the bispecific antibody. Bispecific antigen binding molecules of the present invention may optionally include the features and molecular formats described in WO2018/145125.


As discussed below, in bispecific IgG formats or other antibody formats where the different antigen binding arms are heterodimerised via constant regions, the constant regions may be engineered to promote heterodimer formation over homodimer formation and/or to facilitate purification of heterodimers from a mixture of different species.


The anti-FIXaxFX bispecific antibody emicizumab contains a heavy chain constant region which includes features designed to promote its assembly, purification and/or therapeutic performance. A bispecific antibody according to the present invention may comprise any one or more of these features. Thus it may comprise a human IgG4 (e.g., IgHG4*03) heavy chain constant region amino acid sequence comprising one or more of the following changes (EU numbering):

    • Lys196Gln in CH1;
    • Ser228Pro in the hinge region (P mutation);
    • Phe296Tyr in the DE turn of CH2;
    • Glu356Lys in CH3;
    • Lys439Glu in CH3;
    • Leu445Pro in CH3;
    • Deletion of Gly446;
    • Deletion of Lys447.


One each of the mutations Glu356Lys and Lys439Glu are included in the two oppositely paired heavy chain constant regions within the Fc of the heterodimeric bispecific, i.e., one heavy chain constant region comprises Glu356 and Lys439Glu and the other heavy chain constant region comprises Glu356Lys and Lys439 (see the discussion on charge pairing below).


A bispecific antibody according to the present invention may comprise an Fc region that has any one or more of the features that are present in the Fc region of emicizumab. It may comprise the Fc region of emicizumab. In one embodiment, the amino acid sequences of the heavy chain constant regions are the amino acid sequences of the emicizumab heavy chain constant regions.


Example amino acid sequences for heavy chain constant regions are shown in Table S-100.


Engineering of Bispecific Antibodies to Facilitate Heterodimer Formation and/or Purification


One of the difficulties with using bispecific antibodies in the clinic has historically been the difficulty of producing them in large quantities and at pharmaceutical grade purity. The “traditional” bispecific IgG format comprises two different pairs of heavy and light chains, thus 4 different polypeptide chains, which if expressed together could assemble into 10 different potential antibody molecules. The mixture of species will include homodimers (homodimeric anti-FIXa binding arms and homodimeric anti-FX binding arms), molecules in which one or both light chains are swapped between the H-L pairs, as well as the “correct” bispecific heterodimeric structure.


Alternative molecular formats have been developed which avoid this potential mis-pairing, and several examples are provided herein. These include F(ab′)2, e.g., prepared by chemical coupling or leucine zipper (fos:jun) assembly, diabodies, and scFv heterodimers. Nevertheless, it remains desirable to be able to use bispecific IgG, to reflect the native structure of antibodies in the bloodstream and to minimise immunogenicity of the administered therapeutic molecule. Additionally, a full length bispecific antibody may have a longer serum half-life.


“Knobs into holes” technology for making bispecific antibodies was described in [14] and in U.S. Pat. No. 5,731,168, both incorporated herein by reference. The principle is to engineer paired CH3 domains of heterodimeric heavy chains so that one CH3 domain contains a “knob” and the other CH3 domains contains a “hole” at a sterically opposite position. Knobs are created by replacing small amino acid side chain at the interface between the CH3 domains, while holes are created by replacing large side chains with smaller ones. The knob is designed to insert into the hole, to favour heterodimerisation of the different CH3 domains while destabilising homodimer formation. In in a mixture of antibody heavy and light chains that assemble to form a bispecific antibody, the proportion of IgG molecules having paired heterodimeric heavy chains is thus increased, raising yield and recovery of the active molecule


Mutations Y349C and/or T366W may be included to form “knobs” in an IgG CH3 domain. Mutations E356C, T366S, L368A and/or Y407V may be included to form “holes” in an IgG CH3 domain. Knobs and holes may be introduced into any human IgG CH3 domain, e.g., an IgG1, IgG2, IgG3 or IgG4 CH3 domain. A preferred example is IgG4. As noted, the IgG4 may include further modifications such as the “P” and/or “E” mutations. An example IgG4-PE sequence and other example constant regions including knobs-into-holes mutations are shown in Table S-100. The IgG4 type a (“ra”) sequence contains substitutions Y349C and T366W (“knobs”), and the IgG4 type b (“yb”) sequence contains substitutions E356C, T366S, L368A, and Y407V (“holes”). Both ra and yb also contain the “P” substitution at position 228 in the hinge (S228P), to stabilise the hinge region of the heavy chain. Both ra and yb also contain the “E” substitution in the CH2 region at position 235 (L235S), to abolish binding to FcγR. Thus the relevant sequence of the IgG4-PE heavy chain is ppcpPcpapefEggps (SEQ ID NO: 401). A bispecific antigen binding molecule of the present invention may contain an IgG4 PE human heavy chain constant region (e.g., SEQ ID NO: 143), optionally two such paired constant regions, optionally wherein one has “knobs” mutations and one has “holes” mutations, e.g., wherein one heavy chain constant region has a sequence SEQ ID NO: 144 (knobs) and one heavy chain constant region has a sequence SEQ ID NO: 145 (holes).


A further advance in bispecific IgG engineering was the idea of using a common light chain, as described in WO98/50431. Bispecific antibodies comprising two heavy-light chain pairs were described, in which the variable light chains of both heavy-light chain pairs had a common sequence. WO98/50431 described combining the common light chain approach with specific complementary interactions in the heavy chain heterodimerisation interface (such as knobs-into-holes) to promote heterodimer formation and hinder homodimer formation. In combination, these approaches enhance formation of the desired heterodimer relative to undesired heterodimers and homodimers.


While knobs-into-holes technology involves engineering amino acid side chains to create complementary molecular shapes at the interface of the paired CH3 domains in the bispecific heterodimer, another way to promote heterodimer formation and hinder homodimer formation is to engineer the amino acid side chains to have opposite charges. Association of CH3 domains in the heavy chain heterodimers is favoured by the pairing of oppositely charged residues, while paired positive charges or paired negative charges would make homodimer formation less energetically favourable. WO2006/106905 described a method for producing a heteromultimer composed of more than one type of polypeptide (such as a heterodimer of two different antibody heavy chains) comprising a substitution in an amino acid residue forming an interface between said polypeptides such that heteromultimer association will be regulated, the method comprising:

    • (a) modifying a nucleic acid encoding an amino acid residue forming the interface between polypeptides from the original nucleic acid, such that the association between polypeptides forming one or more multimers will be inhibited in a heteromultimer that may form two or more types of multimers;
    • (b) culturing host cells such that a nucleic acid sequence modified by step (a) is expressed; and
    • (c) recovering said heteromultimer from the host cell culture,
    • wherein the modification of step (a) is modifying the original nucleic acid so that one or more amino acid residues are substituted at the interface such that two or more amino acid residues, including the mutated residue(s), forming the interface will carry the same type of positive or negative charge.


An example of this is to suppress association between heavy chains by introducing electrostatic repulsion at the interface of the heavy chain homodimers, for example by modifying amino acid residues that contact each other at the interface of the CH3 domains, including:

    • positions 356 and 439
    • positions 357 and 370
    • positions 399 and 409,
    • the residue numbering being according to the EU numbering system.


By modifying one or more of these pairs of residues to have like charges (both positive or both negative) in the CH3 domain of a first heavy chain, the pairing of heavy chain homodimers is inhibited by electrostatic repulsion. By engineering the same pairs or pairs of residues in the CH3 domain of a second (different) heavy chain to have an opposite charge compared with the corresponding residues in the first heavy chain, the heterodimeric pairing of the first and second heavy chains is promoted by electrostatic attraction.


Amino acids at the heavy chain constant region CH3 interface were modified to introduce charge pairs, the mutations being listed in Table 1 of WO2006/106905. It was reported that modifying the amino acids at heavy chain positions 356, 357, 370, 399, 409 and 439 to introduce charge-induced molecular repulsion at the CH3 interface had the effect of increasing efficiency of formation of the intended bispecific antibody. For example, one heavy chain constant region may be an IgG4 constant region containing mutation K439E (positively charged Lys replaced by negatively charged Glu) and the other heavy chain constant region may be an IgG4 constant region containing mutation E356K (negatively charged Glu replaced by positively charged Lys), using EU numbering. “Charge pairing” results from spatial proximity of residues 439 and 356 in an Fc region assembled from heterodimerisation of these two constant regions.


Where two different heavy chain constant regions are used, these may be connected to the two different VH domains of the antibody in either orientation. For example,

    • a first heavy chain may comprise an anti-FIX VH domain and a constant region comprising K439E, and a second heavy chain may comprise an anti-FX VH domain and a constant region comprising E356K, or
    • a first heavy chain may comprise an anti-FIX VH domain and a constant region comprising E356K, and a second heavy chain may comprise an anti-FX VH domain and a constant region comprising K439E.


WO2006/106905 also exemplified bispecific IgG antibodies binding FX and FIXa in which the CH3 domains of IgG4 were engineered with knobs-into-holes mutations. Type a Type a (IgG4γa) was an IgG4 substituted at Y349C and T366W, and type b (IgG4γb) was an IgG4 substituted at E356C, T366S, L368A, and Y407V.


In another example, introduction of charge pairs in the antibody VH and VL domains was used to inhibit the formation of “incorrect” VH-VL pairs (pairing of VH from one antibody with VL of the other antibody). In one example, Q residues in the VH and VL were changed to K or R (positive), or to E or D (negative), to inhibit hydrogen bonding between the Q side chains and to introduce electrostatic repulsion.


Further examples of charge pairs were disclosed in WO2013/157954, which described a method for producing a heterodimeric CH3 domain-comprising molecule from a single cell, the molecule comprising two CH3 domains capable of forming an interface. The method comprised providing in the cell

    • (a) a first nucleic acid molecule encoding a first CH3 domain-comprising polypeptide chain, this chain comprising a K residue at position 366 according to the EU numbering system and
    • (b) a second nucleic acid molecule encoding a second CH3 domain-comprising polypeptide chain, this chain comprising a D residue at position 351 according to the EU numbering system,
    • the method further comprising the step of culturing the host cell, allowing expression of the two nucleic acid molecules and harvesting the heterodimeric CH3 domain-comprising molecule from the culture.


Further methods of engineering electrostatic interactions in polypeptide chains to promote heterodimer formation over homodimer formation were described in WO2011/143545.


Another example of engineering at the CH3-CH3 interface is strand-exchange engineered domain (SEED) CH3 heterodimers. The CH3 domains are composed of alternating segments of human IgA and IgG CH3 sequences, which form pairs of complementary SEED heterodimers referred to as “SEED-bodies” [15; WO2007/110205].


Bispecifics have also been produced with heterodimerised heavy chains that are differentially modified in the CH3 domain to alter their affinity for binding to a purification reagent such as Protein A. WO2010/151792 described a heterodimeric bispecific antigen-binding protein comprising

    • a first polypeptide comprising, from N-terminal to C-terminal, a first epitope-binding region that selectively binds a first epitope, an immunoglobulin constant region that comprises a first CH3 region of a human IgG selected from IgG1, IgG2, and IgG4; and
    • a second polypeptide comprising, from N-terminal to C-terminal, a second epitope-binding region that selectively binds a second epitope, an immunoglobulin constant region that comprises a second CH3 region of a human IgG selected from IgG1, IgG2, and IgG4, wherein the second CH3 region comprises a modification that reduces or eliminates binding of the second CH3 domain to Protein A.


The Fc region may thus comprise one or more mutations to promote differential purification of the active heterodimer from homodimer species. The CH3 of one heavy chain constant region may comprise the mutation His435Arg and/or Tyr436Phe (EU numbering) [16] while the CH3 of the other heavy chain constant region lacks said mutations. Emicizumab, for example, comprises an Fc region in which one CH3 comprises His435 and the other CH3 comprises His435Arg.


The bispecifics of the present invention may employ any of these techniques and molecular formats as desired.


Generating and Modifying Antibodies


Methods for identifying and preparing antibodies are well known. Isolated (optionally mutated) nucleic acid encoding antibodies (or heavy-light chain pairs or polypeptide binding arms thereof) described herein may be introduced into host cells, e.g., CHO cells as discussed. Host cells are then cultured under conditions for expression of the antibody (or of the antibody heavy and/or light chain variable domain, heavy-light chain pair, or polypeptide binding arm) to produce the desired antibody format. Some possible antibody formats are described herein, e.g., whole immunoglobulins, antigen-binding fragments, and other designs.


Variable domain amino acid sequence variants of any of the VH and VL domains or CDRs whose sequences are specifically disclosed herein and may be employed in accordance with the present invention, as discussed.


Alterations to nucleic acid encoding the antibody heavy and/or light chain variable domain may be performed, such as mutation of residues and generation of variants, as described herein. There are many reasons why it may be desirable to create variants, which include optimising the antibody sequence for large-scale manufacturing, facilitating purification, enhancing stability or improving suitability for inclusion in a desired pharmaceutical formulation. Protein engineering work can be performed at one or more target residues in the antibody sequence, e.g., to substituting one amino acid with an alternative amino acid (optionally, generating variants containing all naturally occurring amino acids at this position, with the possible exception of Cys and Met), and monitoring the impact on function and expression to determine the best substitution. It is in some instances undesirable to substitute a residue with Cys or Met, or to introduce these residues into a sequence, as to do so may generate difficulties in manufacturing—for instance through the formation of new intramolecular or intermolecular cysteine-cysteine bonds. Where a lead candidate has been selected and is being optimised for manufacturing and clinical development, it will generally be desirable to change its antigen-binding properties as little as possible, or at least to retain the affinity and potency of the parent molecule. However, variants may also be generated in order to modulate key antibody characteristics such as affinity, cross-reactivity or neutralising potency.


One or more amino acid mutations may optionally be made in framework regions of an antibody VH or VL domain disclosed herein. For example, one or more residues that differ from the corresponding human germline segment sequence may be reverted to germline. Human germline gene segment sequences corresponding to VH and VL domains of example antibodies herein are indicated in Table S-12.


In a bispecific antigen binding molecule, an antigen-binding site may comprise a set of H and/or L CDRs of any of the disclosed anti-FIX or anti-FX antibodies with one or more amino acid mutations within the disclosed set of H and/or L CDRs. The mutation may be an amino acid substitution, deletion or insertion. Thus for example there may be one or more amino acid substitutions within the disclosed set of H and/or L CDRs. For example, there may be up to 12, 11, 10, 9, 8, 7, 6, 5, 4, 3 or 2 mutations e.g. substitutions, within the set of H and/or L CDRs. For example, there may be up to 6, 5, 4, 3 or 2 mutations, e.g. substitutions, in HCDR3 and/or there may be up to 6, 5, 4, 3, or 2 mutations, e.g. substitutions, in LCDR3.


An antibody may comprise a VH domain that has at least 60, 70, 80, 85, 90, 95, 98 or 99 amino acid sequence identity with a VH domain as shown in the Tables, and/or comprising a VL domain that has at least 60, 70, 80, 85, 90, 95, 98 or 99% amino acid sequence identity with a VL domain of any of those antibodies. Algorithms that can be used to calculate % identity of two amino acid sequences include e.g. BLAST, FASTA, or the Smith-Waterman algorithm, e.g. employing default parameters. Particular variants may include one or more amino acid sequence alterations (addition, deletion, substitution and/or insertion of an amino acid residue).


Alterations may be made in one or more framework regions and/or one or more CDRs. Variants are optionally provided by CDR mutagenesis. The alterations normally do not result in loss of function, so an antibody comprising a thus-altered amino acid sequence may retain an ability to bind its antigen. It may retain the same quantitative binding ability as an antibody in which the alteration is not made, e.g. as measured in an assay described herein. The antibody comprising a thus-altered amino acid sequence may have an improved ability to bind its antigen.


Alteration may comprise replacing one or more amino acid residue with a non-naturally occurring or non-standard amino acid, modifying one or more amino acid residue into a non-naturally occurring or non-standard form, or inserting one or more non-naturally occurring or non-standard amino acid into the sequence. Examples of numbers and locations of alterations in sequences of the invention are described elsewhere herein. Naturally occurring amino acids include the 20 “standard” L-amino acids identified as G, A, V, L, I, M, P, F, W, S, T, N, Q, Y, C, K, R, H, D, E by their standard single-letter codes. Non-standard amino acids include any other residue that may be incorporated into a polypeptide backbone or result from modification of an existing amino acid residue. Non-standard amino acids may be naturally occurring or non-naturally occurring.


The term “variant” as used herein refers to a peptide or nucleic acid that differs from a parent polypeptide or nucleic acid by one or more amino acid or nucleic acid deletions, substitutions or additions, yet retains one or more specific functions or biological activities of the parent molecule. Amino acid substitutions include alterations in which an amino acid is replaced with a different naturally-occurring amino acid residue. Such substitutions may be classified as “conservative”, in which case an amino acid residue contained in a polypeptide is replaced with another naturally occurring amino acid of similar character either in relation to polarity, side chain functionality or size. Such conservative substitutions are well known in the art. Substitutions encompassed by the present invention may also be “non-conservative”, in which an amino acid residue which is present in a peptide is substituted with an amino acid having different properties, such as naturally-occurring amino acid from a different group (e.g., substituting a charged or hydrophobic amino; acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a non-conventional amino acid. In some embodiments amino acid substitutions are conservative. Also encompassed within the term variant when used with reference to a polynucleotide or polypeptide, refers to a polynucleotide or polypeptide that can vary in primary, secondary, or tertiary structure, as compared to a reference polynucleotide or polypeptide, respectively (e.g., as compared to a wild-type polynucleotide or polypeptide).


In some aspects, one can use “synthetic variants”, “recombinant variants”, or “chemically modified” polynucleotide variants or polypeptide variants isolated or generated using methods well known in the art. “Modified variants” can include conservative or non-conservative amino acid changes, as described below. Polynucleotide changes can result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. Some aspects include insertion variants, deletion variants or substituted variants with substitutions of amino acids, including insertions and substitutions of amino acids and other molecules) that do not normally occur in the peptide sequence that is the basis of the variant, for example but not limited to insertion of ornithine which do not normally occur in human proteins. The term “conservative substitution,” when describing a polypeptide, refers to a change in the amino acid composition of the polypeptide that does not substantially alter the polypeptide's activity. For example, a conservative substitution refers to substituting an amino acid residue for a different amino acid residue that has similar chemical properties (e.g., acidic, basic, positively or negatively charged, polar or nonpolar, etc.). Conservative amino acid substitutions include replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine. Conservative substitution tables providing functionally similar amino acids are well known in the art. For example, the following six groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (VV). (See also Creighton, Proteins, W. H. Freeman and Company (1984), incorporated by reference in its entirety.) In some embodiments, individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids can also be considered “conservative substitutions” if the change does not reduce the activity of the peptide. Insertions or deletions are typically in the range of about 1 to 5 amino acids. The choice of conservative amino acids may be selected based on the location of the amino acid to be substituted in the peptide, for example if the amino acid is on the exterior of the peptide and expose to solvents, or on the interior and not exposed to solvents.


One can select the amino acid that will substitute an existing amino acid based on the location of the existing amino acid, including its exposure to solvents (i.e., if the amino acid is exposed to solvents or is present on the outer surface of the peptide or polypeptide as compared to internally localized amino acids not exposed to solvents). Selection of such conservative amino acid substitutions are well known in the art, for example as disclosed in Dordo et al, J. Mol Biol, 1999, 217, 721-739 and Taylor et al, J. Theor. Biol. 119(1986); 205-218 and S. French and B. Robson, J. Mol. Evol. 19(1983)171. Accordingly, one can select conservative amino acid substitutions suitable for amino acids on the exterior of a protein or peptide (i.e. amino acids exposed to a solvent), for example, but not limited to, the following substitutions can be used: substitution of Y with F, T with S or K, P with A, E with D or Q, N with D or G, R with K, G with N or A, T with S or K, D with N or E, I with L or V, F with Y, S with T or A, R with K, G with N or A, K with R, A with S, K or P.


In alternative embodiments, one can also select conservative amino acid substitutions encompassed suitable for amino acids on the interior of a protein or peptide, for example one can use suitable conservative substitutions for amino acids is on the interior of a protein or peptide (i.e. the amino acids are not exposed to a solvent), for example but not limited to, one can use the following conservative substitutions: where Y is substituted with F, T with A or S, I with L or V, W with Y, M with L, N with D, G with A, T with A or S, D with N, I with L or V, F with Y or L, S with A or T and A with S, G, T or V. In some embodiments, non-conservative amino acid substitutions are also encompassed within the term of variants.


The invention includes methods of producing polypeptide binding arms containing VH and/or VL domain variants of the antibody VH and/or VL domains shown in the Tables herein. FIXa binding polypeptide arms comprising variant VH domains may be produced by a method comprising

    • (i) providing, by way of addition, deletion, substitution or insertion of one or more amino acids in the amino acid sequence of a parent antibody VH domain, an antibody VH domain that is an amino acid sequence variant of the parent antibody VH domain,
    • wherein the parent antibody VH domain is a VH domain shown in FIG. 20, e.g., N1280H, or is a VH domain comprising the heavy chain complementarity determining regions of any of those VH domains,
    • (ii) optionally combining the VH domain thus provided with a VL domain, to provide a VH/VL combination, and
    • (iii) testing the VH domain or VH/VL domain combination thus provided to identify an antibody with one or more desired characteristics.


The VH domain may be any VH domain whose sequence is shown in Table S-9A or FIG. 20, or any VH domain comprising a set of HCDRs (HCDR1, HCDR2 and HCDR3) of a VH domain shown in Table S-9A or FIG. 20.


Desired characteristics of FIXa-binding polypeptide arms, and of bispecific anti-FIXa/FX binding molecules comprising them, are detailed elsewhere herein. For example, the method may comprise confirming that the VH domain or VH/VL domain combination binds FIXa as described herein.


When VL domains are included in the method, the VL domain may be the N0128L VL domain or may be a variant provided by way of addition, deletion, substitution or insertion of one or more amino acids in the amino acid sequence of the N0128L VL domain, or may be a VL domain comprising the light chain complementarity determining regions of the N0128L VL domain. The VL domain may be the 0325L VL domain.


Methods of generating variant antibodies may optionally comprise producing copies of the antibody or VH/VL domain combination. Methods may further comprise producing a bispecific antibody comprising the FIXa binding polypeptide arm, for example by expression of encoding nucleic acid. Suitable methods of expression, including recombinant expression in host cells, are set out in detail herein.


Encoding Nucleic Acids and Methods of Expression


Isolated nucleic acid may be provided, encoding bispecific antigen binding molecules, e.g., bispecific antibodies, according to the present invention. Nucleic acid may be DNA and/or RNA. Genomic DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode an antibody.


The present invention provides constructs in the form of plasmids, vectors, transcription or expression cassettes which comprise at least one polynucleotide as above. Exemplary nucleotide sequences are included in the Tables. Reference to a nucleotide sequence as set out herein encompasses a DNA molecule with the specified sequence, and encompasses a RNA molecule with the specified sequence in which U is substituted for T, unless context requires otherwise.


The present invention also provides a recombinant host cell that comprises one or more nucleic acids encoding the antigen binding molecule. Methods of producing the encoded molecule may comprise expression from the nucleic acid, e.g., by culturing recombinant host cells containing the nucleic acid. The bispecific molecule may thus be obtained, and may be isolated and/or purified using any suitable technique, then used as appropriate. A method of production may comprise formulating the product into a composition including at least one additional component, such as a pharmaceutically acceptable excipient.


Systems for cloning and expression of a polypeptide in a variety of different host cells are well known. Suitable host cells include bacteria, mammalian cells, plant cells, filamentous fungi, yeast and baculovirus systems and transgenic plants and animals.


The expression of antibodies and antibody fragments in prokaryotic cells is well established in the art. A common bacterial host is E. coli. Expression in eukaryotic cells in culture is also available to those skilled in the art as an option for production. Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney cells, NSO mouse melanoma cells, YB2/0 rat myeloma cells, human embryonic kidney cells, human embryonic retina cells and many others.


Vectors may contain appropriate regulatory sequences, including promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. Nucleic acid encoding an antibody can be introduced into a host cell. Nucleic acid can be introduced to eukaryotic cells by various methods, including calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus, e.g. vaccinia or, for insect cells, baculovirus. Introducing nucleic acid in the host cell, in particular a eukaryotic cell may use a viral or a plasmid based system. The plasmid system may be maintained episomally or may be incorporated into the host cell or into an artificial chromosome. Incorporation may be either by random or targeted integration of one or more copies at single or multiple loci. For bacterial cells, suitable techniques include calcium chloride transformation, electroporation and transfection using bacteriophage. The introduction may be followed by expressing the nucleic acid, e.g., by culturing host cells under conditions for expression of the gene, then optionally isolating or purifying the antibody.


Nucleic acid of the invention may be integrated into the genome (e.g. chromosome) of the host cell. Integration may be promoted by inclusion of sequences that promote recombination with the genome, in accordance with standard techniques. Nucleic acid encoding a bispecific may be integrated into genomic DNA of a host (e.g., CHO) cell, e.g., into chromosomal DNA, and the resulting recombinant cell may be cultured to express the bispecific. A cell line development process may comprise introducing nucleic acid encoding the bispecific into multiple host cells, and selecting a cell line which expresses a desired level of bispecific antibody (e.g., at least 95% heterodimer, with no more than 5% homodimeric contaminants) at the desired yield (e.g., at least 0.5 g/L or at least 1 g/L). Preferably the cell line will retain stable expression over a number of generations in cell culture, and thus it may maintain these levels of production over a at least 60 generations for example.


The present invention also provides a method that comprises using nucleic acid described herein in an expression system in order to express the bispecific antigen binding molecule. Desirably, the antigen-binding molecules are expressed at a yield of at least 0.5 g/L in the cell supernatant after initial fermentation, preferably at a yield of >2 g/L. Solubility should be >10 mg/ml, preferably >50 mg/ml, without significant aggregation or degradation of the molecules.


To provide medicines suitable for global treatment, antibodies can be produced on a large scale, for instance in cell culture volumes of at least 100 litres or at least 200 litres, e.g., between 100-250 litres. Batch culture, particularly fed-batch culture, is now commonly used for production of biotherapeutics for clinical and commercial use, and such methods may suitably be used in the present invention to generate the antibodies, followed by purification and formulation steps as noted herein. Bioreactors may be metal (e.g., stainless steel) vessels or may be single-use bioreactors.


Formulation and Administration


The bispecific antigen-binding molecules (“bispecifics”) according to the present invention, and their encoding nucleic acid molecules, will usually be provided in isolated form. The bispecifics VH and/or VL domains, and nucleic acids may be provided purified from their natural environment or their production environment. Isolated antigen-binding molecules and isolated nucleic acid will be free or substantially free of material with which they are naturally associated, such as other polypeptides or nucleic acids with which they are found in vivo, or the environment in which they are prepared (e.g., cell culture) when such preparation is by recombinant DNA technology in vitro. Optionally an isolated antigen-binding molecule or nucleic acid (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature.


Bispecific antibody may be purified (e.g., from cell culture supernatant) by protein A chromatography and/or ion exchange chromatography. The bispecific antibody may be produced by a method comprising

    • expressing two antibody heavy chains and common light chain from cultured host cells comprising encoding nucleic acids,
    • obtaining cell culture comprising the bispecific antibody and monospecific antibodies assembled from the antibody heavy chains and common light chain,
    • isolating the bispecific antibody and monospecific antibodies from the cell culture (e.g., using protein A chromatography), and
    • purifying the bispecific antibody from the monospecific antibodies (e.g., using cation exchange chromatography).


Bispecifics or their encoding nucleic acids may be formulated with diluents or adjuvants and still for practical purposes be isolated—for example they may be mixed with carriers if used to coat microtitre plates for use in immunoassays, and may be mixed with pharmaceutically acceptable carriers or diluents when used in therapy. As described elsewhere herein, other active ingredients may also be included in therapeutic preparations. The antigen binding molecules may be glycosylated, either naturally in vivo or by systems of heterologous eukaryotic cells such as CHO cells, or they may be (for example if produced by expression in a prokaryotic cell) unglycosylated. The invention encompasses antibodies having a modified glycosylation pattern.


Typically, an isolated product constitutes at least about 5%, at least about 10%, at least about 25%, or at least about 50% of a given sample. A bispecific may be substantially free from proteins or polypeptides or other contaminants that are found in its natural or production environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use.


As discussed elsewhere herein, expression of antibody heavy and light chains for a bispecific antibody may generate unwanted homodimeric species (anti-FIX and anti-FX antibodies) in addition to the active heterodimeric bispecific antibody. Preferably a bispecific is provided in a composition in which the heterodimeric bispecific antibody is represents at least 95% of the total antibody, with homodimeric antibody contaminants being present at 5% or less. The composition may comprise at least 98% or at least 99% heterodimeric bispecific, with homodimeric contaminants representing 0-2% or 0-1% respectively.


The invention provides therapeutic compositions comprising the bispecifics described herein. Therapeutic compositions comprising nucleic acid encoding such bispecifics are also provided. Encoding nucleic acids are described in more detail elsewhere herein and include DNA and RNA, e.g., mRNA. In therapeutic methods described herein, use of nucleic acid encoding the bispecific, and/or of cells containing such nucleic acid, may be used as alternatives (or in addition) to compositions comprising the bispecific molecule itself. Cells containing nucleic acid encoding the bispecific, optionally wherein the nucleic acid is stably integrated into the genome, thus represent medicaments for therapeutic use in a patient. Nucleic acid encoding the bispecific may be introduced into human cells derived from the intended patient and modified ex vivo. Administration of cells containing the encoding nucleic acid to the patient provides a reservoir of cells capable of expressing the bispecific, which may provide therapeutic benefit over a longer term compared with administration of isolated nucleic acid or the isolated bispecific molecule. Nucleic acid encoding the bispecific may be provided for use in gene therapy, comprising introducing the encoding nucleic acid into cells of the patient in vivo, so that the nucleic acid is expressed in the patient's cells and provides a therapeutic effect such as compensating for hereditary factor VIII deficiency.


Compositions may contain suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTINT™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. “Compendium of excipients for parenteral formulations” PDA (1998) J Pharm Sci Technol 52:238-311. Compositions may comprise the antibody or nucleic acid in combination with medical injection buffer.


Bispecifics, or their encoding nucleic acids, may be formulated for the desired route of administration to a patient, e.g., in liquid (optionally aqueous solution) for injection. An example buffer in which to formulate the bispecific for injection is an aqueous solution of 20 mM sodium acetate, 150 mM arginine hydrochloride, 0.05% w/v polysorbate 80 pH 5.2.


Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention. Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. The antigen-binding molecules are preferably administered by subcutaneous injection.


The pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see Langer (1990) Science 249:1527-1533; Treat et al. (1989) in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez Berestein and Fidler (eds.), Liss, New York, pp. 353-365; Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).


In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, supra; Sefton (1987) CRC Crit. Ref. Biomed. Eng. 14:201). In another embodiment, polymeric materials can be used; see, Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974). In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138, 1984).


The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared can be filled in an appropriate ampoule. A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. It is envisaged that treatment will not be restricted to use in the clinic. Therefore, subcutaneous injection using a needle-free device is also advantageous. With respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded. Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, Ind.), NOVOPENTMI, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, N.J.), OPTIPENT™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIKT™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly).


Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the aforesaid antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, the aforesaid antibody may be contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.


The bispecific, nucleic acid, or composition comprising it, may be contained in a medical container such as a phial, syringe, IV container or an injection device. In an example, the bispecific, nucleic acid or composition is in vitro, and may be in a sterile container. In an example, a kit is provided comprising the bispecific, packaging and instructions for use in a therapeutic method as described herein.


One aspect of the invention is a composition comprising a bispecific or nucleic acid of the invention and one or more pharmaceutically acceptable excipients, examples of which are listed above. “Pharmaceutically acceptable” refers to approved or approvable by a regulatory agency of the USA Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, including humans. A pharmaceutically acceptable carrier, excipient, or adjuvant can be administered to a patient, together with a bispecific agent, e.g., any antibody or polypeptide molecule described herein, and does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the agent.


In some embodiments, the bispecific will be the sole active ingredient in a composition according to the present invention. Thus, a composition may consist of the antibody or it may consist of the bispecific with one or more pharmaceutically acceptable excipients. However, compositions according to the present invention optionally include one or more additional active ingredients.


Where required (for example, for management of acute bleeds), the bispecific may be combined with one or more other treatments for haemophilia, including recombinant factor VIII (e.g., turoctocog alfa) or recombinant factor VIIa (e.g., eptacog alfa). The functional properties and safety profile of bispecifics described herein are believed to be suitable for their safe combination with such further therapeutic agents. The bispecific may be combined with recombinant factor Va (FVa), for example an activated variant FVa as described in U.S. Ser. No. 10/407,488.


Other therapeutic agents that it may be desirable to administer with bispecific or nucleic acids according to the present invention include analgaesic agents. Any such agent or combination of agents may be administered in combination with, or provided in compositions with antibodies or nucleic acids according to the present invention, whether as a combined or separate preparation. The bispecific or nucleic acid according to the present invention may be administered separately and sequentially, or concurrently and optionally as a combined preparation, with another therapeutic agent or agents such as those mentioned.


Multiple compositions can be administered separately or simultaneously. Separate administration refers to the two compositions being administered at different times, e.g. at least 10, 20, 30, or 10-60 minutes apart, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 hours apart. One can also administer compositions at 24 hours apart, or even longer apart. Alternatively, two or more compositions can be administered simultaneously, e.g. less than 10 or less than 5 minutes apart. Compositions administered simultaneously can, in some aspects, be administered as a mixture, with or without similar or different time release mechanism for each of the components.


Bispecifics, and their encoding nucleic acids, can be used as therapeutic agents. Patients herein are generally mammals, typically humans. A bispecific or nucleic acid may be administered to a mammal, e.g., by any route of administration mentioned herein.


Administration is normally in a “therapeutically effective amount”, this being an amount that produces the desired effect for which it is administered, sufficient to show benefit to a patient. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding). Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors and may depend on the severity of the symptoms and/or progression of a disease being treated. A therapeutically effective amount or suitable dose of bispecific or nucleic acid can be determined by comparing its in vitro activity and in vivo activity in an animal model. Methods for extrapolation of effective dosages in mice and other test animals to humans are known.


Bispecifics may be administered in an amount in one of the following ranges per dose:

    • about 10 μg/kg body weight to about 100 mg/kg body weight,
    • about 50 μg/kg body weight to about 5 mg/kg body weight,
    • about 100 μg/kg body weight to about 10 mg/kg body weight,
    • about 100 μg/kg body weight to about 20 mg/kg body weight,
    • about 0.5 mg/kg body weight to about 20 mg/kg body weight, or
    • about 5 mg/kg body weight or lower, for example less than 4, less than 3, less than 2, or less than 1 mg/kg of the antibody.


The dose of antigen-binding molecule administered may be up to 1 mg/kg. It may be formulated at lower strength for paediatric populations, for example 30-150 mg/mL. The bispecific molecule may be packaged in smaller quantities for a paediatric population, e.g., it may be provided in phials of 25-75 mg, e.g., 30 or 60 mg.


In methods of treatment described herein, one or more doses may be administered. In some cases, a single dose may be effective to achieve a long-term benefit. Thus, the method may comprise administering a single dose of the bispecific, its encoding nucleic acid, or the composition. Alternatively, multiple doses may be administered, usually sequentially and separated by a period of days, weeks or months. Optionally, the bispecific may be administered to a patient once a month, or less frequently, e.g., every two months or every three months.


As used herein, the terms “treat,” “treatment,” “treating,” or “amelioration” refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder. The term “treating” includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder. Treatment is generally “effective” if one or more symptoms or clinical markers are reduced. Alternatively, treatment is “effective” if the progression of a disease is reduced or halted. That is, “treatment” includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilised (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable. The term “treatment” of a disease also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment). For treatment to be effective a complete cure is not contemplated. The method can in certain aspects include cure as well. In the context of the invention, treatment may be preventative treatment.


Long half-life is a desirable feature in the bispecifics of the present invention. Extended half-life translates to less frequent administration, with fewer injections being required to maintain a therapeutically effective concentration of the molecule in the bloodstream. The in vivo half life of antigen-binding molecules of the present invention in humans may be 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 21 days, or longer. The in vivo half life of antigen-binding molecules in non-human primates such as cynomolgus monkeys may be 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 21 days, or longer.


Maintenance of 1% of normal FVIII activity is considered to be a minimum for prophylactic use in haemophilia [1]. In a paper reporting a human clinical trial with ACE910 (emicizumab), in silico population pharmacokinetic modelling and simulations suggested that a weekly dose of 1 mg/kg resulted in a plasma concentration of at least about 300 nM (45 μg/ml), producing a continuous haemostatic effect of at least 10% of normal FVIII activity [4]. This dose was also reported to be well tolerated in patients.


Based on that data, a plasma concentration range of approximately 30 nM (˜4.5 μg/ml) to 300 nM (˜45 μg/ml) would correspond to effective FVIII activity of 1-10%, assuming a linear relationship between antibody concentration and FVIII activity and comparable antibody activity.


Bispecifics according to the present invention exhibit exceptionally high activity at concentrations in the range of 30 nM (˜4.5 μg/ml) to 300 nM (˜45 μg/ml), maintaining strong thrombin generation activity even at relatively low doses. As evidenced by its high potency (see, e.g., Example 14), a bispecific antibody according to the present invention may exhibit therapeutic efficacy at a lower plasma concentration than emicizumab. Therefore it may provide greater therapeutic benefit at an equivalent dose, and it may provide equivalent therapeutic benefit at a lower dose, compared with emicizumab. Patients can thus benefit from smaller and/or less frequent injections, and healthcare providers can benefit from lower associated costs.


The US FDA currently (in guidance issued October 2018) recommends that emicizumab be administered at a loading dose of 3 mg/kg by subcutaneous injection once weekly for the first 4 weeks, followed by a maintenance dose of:

    • 1.5 mg/kg once every week, or
    • 3 mg/kg once every 2 weeks, or
    • 6 mg/kg once every 4 weeks.


Antigen-binding molecules according to the present invention may be provided for administration at regular intervals of one week, two weeks, three weeks, four weeks, or one month.


In a preferred embodiment, the bispecific is administered by subcutaneous injection.


Therapeutic Use


The bispecific antigen-binding molecules of the present invention may be used in a method of treatment of the human or animal body by therapy. Therapeutic indications for the molecules include:

    • use to treat haemophilia A,
    • use to treat hereditary factor VIII deficiency,
    • use to significantly decrease the number of bleeding incidents in haemophilia A patients,
    • use to substitute for factor VIII function,
    • and/or
    • use to promote blood coagulation.


Patients are typically human patients. The patient may be a human diagnosed with haemophilia A or hereditary factor VIII deficiency, or a human who has lower (or absent) factor VIII expression or activity compared with wild type. The patient may be a paediatric patient (e.g., from 2 to less than 18 years of age) or may be an adult. The patient may be a human male. The patient may or may not have inhibitors to factor VIII.


A bispecific molecule of the present invention, or a composition comprising such a bispecific molecule or its encoding nucleic acid, may be used or provided for use in any such method. Use of the bispecific molecule, or of a composition comprising it or its encoding nucleic acid, for the manufacture of a medicament for use in any such method is also envisaged. The method typically comprises administering the antibody or composition to a mammal, e.g., a human patient. Suitable formulations and methods of administration are described elsewhere herein.


There is a presently unmet need for treatment of haemophilia A patients who develop inhibitory allo-antibodies to FVIII. Antigen-binding molecules of the present invention are suitable for use in such patients. Accordingly, in some aspects, a patient treated with a bispecific antigen binding molecule according to the present invention may be resistant to treatment with FVIII owing to the presence of inhibitory antibodies in the bloodstream. Resistance to treatment can be manifested in a reduction of efficacy of the therapy. Such resistance may be detected in in vitro assays (e.g. aPTT assay) with a blood plasma sample from the patient, wherein the therapeutic molecule does not reduce coagulation time to the same level as in an assay with control FVIII-deficient plasma (the latter lacking inhibitory antibodies to the therapeutic molecule).


Patients receiving other treatments for haemophilia, such as bispecific antibodies to FIXa and FX, may also develop inhibitory antibodies to those therapeutic antibodies. As noted, use of human antibodies such as those of the present invention should minimise the risk of this, but inhibitory antibodies may nevertheless be generated in some patients who receive antigen binding molecules of the present invention or other bispecific antigen binding molecules to FIXa and FX. A patient treated with a bispecific antigen binding molecule according to the present invention may be resistant to treatment to a different bispecific antigen binding molecule for FIXa and FX owing to the presence of inhibitory antibodies in the bloodstream. The patient may be resistant to treatment with emicizumab.


Since inhibitory antibodies may be generated through long term therapeutic administration of a drug product, it may be beneficial for patients to alternate or cycle between multiple different treatments, to reduce the risk of their developing inhibitory antibodies. Thus, a bispecific antigen binding molecule of the present invention may be administered to a patient who has previously received treatment with a different FVIIIa-activity replacing polypeptide drug, e.g., a bispecific antigen binding molecule for FIXa and FX, optionally emicizumab, even where the patient has not (yet) developed inhibitory antibodies. Similarly, emicizumab or other bispecific antigen binding molecules for FIXa and FX, and other FVIIIa-activity replacing polypeptide drugs generally, may be administered to patients who were previously treated with a bispecific antigen binding molecule of the present invention. Regiments of treatment may comprise administration of a first FVIII-activity replacing polypeptide drug for a first period (e.g., between one and six months, or between six months and one year), followed by switching to a different FVIII-activity replacing polypeptide drug for a second period (e.g. between one and six months, or between six months and one year), followed by switching back to the first drug or switching to yet another FVIII-activity replacing polypeptide drug. The different amino acid sequences of the different drug treatments should ensure that a patient at risk of developing inhibitory antibodies to one drug is no longer at risk of developing inhibitory antibodies to the first drug (e.g., emicizumab) following switching to a different drug (e.g., a molecule of the present invention). The cycling period may be varied or shortened, according to convenience and the preferences of the patient and doctor.


It will be recognised that administration of the encoding nucleic acid represents an alternative therapy, and may be performed in place of administering the polypeptide drug directly.


As noted, the bispecific antigen-binding molecules of the present invention are believed to have a strong safety profile, associated with no (or minimal) incidents of hypersensitivity reactions, development of allo-antibodies, organ toxicity or other adverse events leading to discontinuation of the therapy.


Clauses


The following numbered clauses represent embodiments of the invention and are part of the description.


1. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein






    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and

    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein

    • the first VH domain comprises a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 406, HCDR2 is SEQ ID NO: 407 and HCDR3 is SEQ ID NO: 408, and/or wherein the first VH domain is at least 95 identical to the N1280H VH domain at the amino acid sequence level;

    • the second VH domain is at least 95% identical to the T0201H VH domain SEQ ID NO: 470 at the amino acid sequence level, and

    • the first VL domain and the second VL domain each comprise a set of LCDRs comprising LCDR1, LCDR2 and LCDR3 with amino acid sequences defined wherein LCDR1 is SEQ ID NO: 6, LCDR2 is SEQ ID NO: 7 and LCDR3 is SEQ ID NO: 8, and/or wherein the first VL domain and the second VL domain are at least 95% identical to the 0128L VL domain SEQ ID NO: 10 at the amino acid sequence level.


      2. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein

    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and

    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein

    • the first VH domain is a product of recombination of human immunoglobulin heavy chain v, d and j gene segments, wherein the v gene segment is IGHV3-7 (e.g., VH3-7*01) and the j gene segment is IGHJ6 (e.g., JH6*02),

    • the second VH domain is a product of recombination of human immunoglobulin heavy chain v, d and j gene segments, wherein the v gene segment is IGHV1-46 (e.g., VH1-46*03) and the j gene segment is IGHJ1 (e.g., JH1*01), and optionally wherein the d gene segment is IGHD6-6 (e.g., DH6-6*01), and

    • the first VL domain and the second VL domain are both products of recombination of human immunoglobulin light chain v and j gene segments, wherein the v gene segment is IGLV3-21 (e.g., VL3-21*d01) and the j gene segment is IGLJ2 (e.g., JL2*01) or IGLJ3 (e.g., JL3*02).


      3. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein

    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, and

    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein

    • the first VH domain has at least 95% amino acid sequence identity with the N1280H VH domain SEQ ID NO: 443,

    • the second VH domain has at least 95% amino acid sequence identity with the T0201H VH domain SEQ ID NO: 470, and

    • the first VL domain and the second VL domain each have at least 95% amino acid sequence identity with the 0128L VL domain SEQ ID NO: 10.


      4. Bispecific antibody according to any preceding clause, wherein the first VH domain comprises a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 406, HCDR2 is SEQ ID NO: 407 and HCDR3 is SEQ ID NO: 408.


      5. Bispecific antibody according to clause 4, wherein the first VH domain comprises HCDR1 SEQ ID NO: 441.


      6. Bispecific antibody according to clause 4 or clause 5, wherein the first VH domain comprises HCDR2 SEQ ID NO: 634.


      7. Bispecific antibody according to any of clauses 4 to 6, wherein the first VH domain comprises HCDR2 SEQ ID NO: 436.


      8. Bispecific antibody according to any of clauses 4 to 7, wherein the first VH domain comprises HCDR3 SEQ ID NO: 635.


      9. Bispecific antibody according to any of clauses 4 to 8, wherein the first VH domain comprises HCDR3 SEQ ID NO: 433.


      10. Bispecific antibody according to any preceding clause, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1280H.


      11. Bispecific antibody according to any preceding clause, wherein the the first VH domain comprises a set of N1280H HCDRs comprising N1280H HCDR1 SEQ ID NO: 441, N1280H HCDR2 SEQ ID NO: 436 and N1280H HCDR3 SEQ ID NO: 433.


      12. Bispecific antibody according to clause 10 or clause 11, wherein the first VH domain is the N1280H VH domain SEQ ID NO: 443.


      13. Bispecific antibody according to any of clauses 1 to 11, wherein the first VH domain is the N1454H VH domain SEQ ID NO: 454.


      14. Bispecific antibody according to any of clauses 1 to 11, wherein the first VH domain is the N1441H VH domain SEQ ID NO: 456.


      15. Bispecific antibody according to any of clauses 1 to 11, wherein the first VH domain is the N1442H VH domain SEQ ID NO: 458.


      16. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1333H.


      17. Bispecific antibody according to clause 16, wherein the first VH domain comprises a set of N1333H CDRs comprising N1333H CDR1, N1333H CDR2 and N1333H CDR3.


      18. Bispecific antibody according to clause 16 or clause 17, wherein the first VH domain is the N1333H VH domain.


      19. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1327H.


      20. Bispecific antibody according to clause 19, wherein the the first VH domain comprises a set of N1327H HCDRs comprising N1327H HCDR1, N1327H HCDR2 and N1327H HCDR3.


      21. Bispecific antibody according to clause 19 or clause 20, wherein the first VH domain is the N1327H VH domain.


      22. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1314H.


      23. Bispecific antibody according to clause 22, wherein the the first VH domain comprises a set of N1314H HCDRs comprising N1314H HCDR1, N1314H HCDR2 and N1314H HCDR3.


      24. Bispecific antibody according to clause 22 or clause 23, wherein the first VH domain is the N1314H VH domain.


      25. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1172H.


      26. Bispecific antibody according to clause 25, wherein the the first VH domain comprises a set of N1172H HCDRs comprising N1172H HCDR1, N1172H HCDR2 and N1172H HCDR3.


      27. Bispecific antibody according to clause 25 or clause 26, wherein the first VH domain is the N1172H VH domain.


      28. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N1091H.


      29. Bispecific antibody according to clause 28, wherein the the first VH domain comprises a set of N1091H HCDRs comprising N1091H HCDR1, N1091H HCDR2 and N1091H HCDR3.


      30. Bispecific antibody according to clause 28 or clause 29, wherein the first VH domain is the N1091H VH domain.


      31. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N0511H.


      32. Bispecific antibody according to clause 31, wherein the the first VH domain comprises a set of N0511H HCDRs comprising N0511H HCDR1, N0511H HCDR2 and N0511H HCDR3.


      33. Bispecific antibody according to clause 31 or clause 32, wherein the first VH domain is the N0511H VH domain.


      34. Bispecific antibody according to any of clauses 1 to 3, wherein the first VH domain has at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to N0436H.


      35. Bispecific antibody according to clause 34, wherein the the first VH domain comprises a set of N0436H HCDRs comprising N0436H HCDR1, N0436H HCDR2 and N0436H HCDR3.


      36. Bispecific antibody according to clause 34 or clause 35, wherein the first VH domain is the N0436H VH domain.


      37. Bispecific antibody according to any preceding clause, wherein the second VH domain has at least 95%, at least 96%, at least 97%, at least 98% or at least 99% amino acid sequence identity to T0201H VH domain SEQ ID NO: 470.


      38. Bispecific antibody according to clause 37, wherein the second VH domain comprises an HCDR1 which is the T0201H HCDR1 SEQ ID NO: 462, an HCDR2 which is the T0201H HCDR2 SEQ ID NO: 467, and/or an HCDR3 which is the T0201H HCDR3 SEQ ID NO: 468.


      39. Bispecific antibody according to any preceding clause wherein the second VH domain comprises HCDR1 SEQ ID NO: 636.


      40. Bispecific antibody according to clause 39, wherein the second VH domain comprises HCDR1 SEQ ID NO: 598.


      41. Bispecific antibody according to any preceding clause, wherein the second VH domain comprises HCDR2 SEQ ID NO: 467.


      42. Bispecific antibody according to any preceding clause, wherein the second VH domain comprises HCDR3 SEQ ID NO: 637.


      43. Bispecific antibody according to clause 42, wherein the second VH domain comprises HCDR3 SEQ ID NO: 638.


      44. Bispecific antibody according to clause 43, wherein the second VH domain comprises HCDR3 SEQ ID NO: 639.


      45. Bispecific antibody according to clause 44, wherein the second VH domain comprises HCDR3 SEQ ID NO: 565.


      46. Bispecific antibody according to clause 44, wherein the second VH domain comprises HCDR3 SEQ ID NO: 583.


      47. Bispecific antibody according to any of clauses 37 to 45, wherein the second VH domain comprises SEQ ID NO: 632.


      48. Bispecific antibody according to any of clauses 37 to 45, wherein the second VH domain comprises SEQ ID NO: 600.


      49. Bispecific antibody according to any of clauses 37 to 46, wherein the second VH domain comprises SEQ ID NO: 585.


      50. Bispecific antibody according to clause 38, wherein the the second VH domain comprises a set of T0201H HCDRs comprising T0201H HCDR1, T0201H HCDR2 and T0201H HCDR3.


      51. Bispecific antibody according to clause 37, clause 38 or clause 50, wherein the second VH domain is the T0201H VH domain, optionally with a substitution at Cys114.


      52. Bispecific antibody according to clause 51, wherein the substitution at Cys114 is Ile, Gln, Arg, Val or Trp.


      53. Bispecific antibody according to any of clauses 1 to 38, wherein the second VH domain comprises a set of T0638H HCDRs comprising T0638H HCDR1, T0638H HCDR2 and T0638H HCDR3.


      54. Bispecific antibody according to clause 53, wherein the second VH domain is the T0638 VH domain, optionally with a substitution at Cys114.


      55. Bispecific antibody according to clause 54, wherein the substitution at Cys114 is Ile, Gln,





Arg, Val or Trp.


56. Bispecific antibody according to any preceding clause, wherein the first VL domain and the second VL domain each have at least 96%, at least 97%, at least 98% or at least 99 amino acid sequence identity with 0128L SEQ ID NO: 10.


57. Bispecific antibody according to any preceding clause, wherein the first VL domain and the second VL domain each comprise a set of 0128L CDRs comprising 0128L LCDR1 SEQ ID NO: 6, 0128L LCDR2 SEQ ID NO: 7 and 0128L LCDR3 SEQ ID NO: 8.


58. Bispecific antibody according to any preceding clause, wherein the first VL domain and the second VL domain are identical in amino acid sequence.


59. Bispecific antibody according to clause 58, wherein the first VL domain and the second VL domain comprise the 0325L amino acid sequence SEQ ID NO: 416.


60. Bispecific antibody according to clause 58 or clause 59, wherein the first VL domain and the second VL domain comprise the 0128L amino acid sequence SEQ ID NO: 10.


61. Bispecific antibody according to any preceding clause, wherein each heavy-light chain pair further comprises a CL constant domain paired with a CH1 domain.


62. Bispecific antibody according to any preceding clause, wherein the heavy-light chain pairs comprise a common light chain.


63. Bispecific antibody according to clause 62, wherein the common light chain comprises the CL amino acid sequence SEQ ID NO: 146 of the 0128L light chain.


64. Bispecific antibody according to clause 63, wherein the common light chain is the 0325L light chain SEQ ID NO: 414.


65. Bispecific antibody according to clause 63, wherein the common light chain is the 0128L light chain SEQ ID NO: 405.


66. Bispecific antibody according to any preceding clause, wherein the heavy chain of each heavy-light chain comprises a heavy chain constant region and wherein the first and second heavy-light chain pairs associate to form tetrameric immunoglobulin through dimerisation of the heavy chain constant regions.


67. Bispecific antibody according to clause 66, wherein the heavy chain constant region of the first heavy-light chain pair comprises a different amino acid sequence from the heavy chain constant region of the second heavy-light chain pair, wherein the different amino acid sequences are engineered to promote heterodimerisation of the heavy chain constant regions.


68. Bispecific antibody according to clause 67, wherein the heavy chain constant regions comprise knobs-into-holes mutations or charge pair mutations.


69. Bispecific antibody according to clause 67, wherein the heavy chain constant region of one (e.g., the first) heavy-light chain pair is a human IgG4 constant region comprising substitution K439E and wherein the heavy chain constant region of the other (e.g., the second) heavy-light chain pair is an IgG4 region comprising substitution E356K, wherein constant region numbering is according to the EU numbering system.


70. Bispecific antibody according to any of clauses 66 to 69, wherein the heavy chain constant region of one or both heavy-light chain pairs is a human IgG4 constant region comprising substitution S228P, wherein constant region numbering is according to the EU numbering system.


71. Bispecific antibody according to any of clauses 66 to 70, wherein the heavy chain constant region of one (e.g., the first) heavy-light chain pair comprises SEQ ID NO: 409 and the heavy chain constant region of the other (e.g., the second) heavy-light chain pair comprises SEQ ID NO: 410.


72. Bispecific antibody according to any of clauses 66 to 71, comprising

    • a first heavy chain comprising a first VH domain amino acid sequence SEQ ID NO: 443 or SEQ ID NO: 456,
    • a second heavy chain comprising a second VH domain amino acid sequence SEQ ID NO: 632, and
    • a common light chain comprising a VL domain amino acid sequence SEQ ID NO: 416.


      73. Bispecific antibody according to any of clauses 66 to 72, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 419,
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 421, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      74. Bispecific antibody according to any of clauses 66 to 71, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 424
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 421, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      75. Bispecific antibody according to any of clauses 66 to 72, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 426
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 421, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      76. Bispecific antibody according to any of clauses 66 to 71, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 428
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 430, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      77. Bispecific antibody according to any of clauses 66 to 71, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 428
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 432, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      78. Bispecific antibody according to clause 66, wherein the heavy chain constant region of the first heavy-light chain pair is identical to the heavy chain constant region of the second heavy-light chain pair.


      79. Bispecific antibody according to any of clauses 1 to 68, wherein the antibody is human IgG.


      80. Bispecific antibody according to clause 79, wherein the antibody is human IgG4.


      81. Bispecific antibody according to clause 79 or clause 80, wherein the IgG comprises the IgG4-PE heavy chain constant region SEQ ID NO: 143, optionally engineered with one or more amino acid substitutions to promote heterodimerisation.


      82. Bispecific antibody according to clause 79 or clause 80, wherein the antibody comprises the Fc region of emicizumab.


      83. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1280H VH domain SEQ ID NO: 443, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0999H VH domain SEQ ID NO: 632, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0325L light chain amino acid sequence SEQ ID NO: 414.


      84. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1454H VH domain SEQ ID NO: 454, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0999H VH domain SEQ ID NO: 632, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0325L light chain amino acid sequence SEQ ID NO: 414.


      85. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1441H VH domain SEQ ID NO: 456, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0999H VH domain SEQ ID NO: 632, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0325L light chain amino acid sequence SEQ ID NO: 414.


      86. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1442H VH domain SEQ ID NO: 458, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0736H VH domain SEQ ID NO: 600, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0325L light chain amino acid sequence SEQ ID NO: 414.


      87. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1442H VH domain SEQ ID NO: 458, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0687H VH domain SEQ ID NO: 585, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0325L light chain amino acid sequence SEQ ID NO: 414.


      88. Bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein
    • a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, wherein the first VH domain is at least 98% identical in amino acid sequence to the N1333H VH domain, and
    • a second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, wherein the second VH domain is at least 98 identical in amino acid sequence to the T0638H VH domain, and wherein
    • the first and second heavy-light chain pairs each comprise a common light chain comprising the 0128L light chain amino acid sequence SEQ ID NO: 405.


      89. Bispecific antibody according to any preceding clause, which reduces the coagulation time of FVIII-deficient human blood plasma to less than 40 seconds in an aPTT assay.


      90. Bispecific antibody according to clause 89, which reduces the coagulation time of FVIII-deficient human blood plasma to less than 30 seconds in an aPTT assay.


      91. Bispecific antibody according to clause 90, which reduces the coagulation time of FVIII-deficient human blood plasma to 22-28 seconds in an aPTT assay.


      92. Bispecific antibody according to clause 91, which reduces the coagulation time of FVIII-deficient human blood plasma to 24-26 seconds in an aPTT assay.


      93. Bispecific antibody according to any preceding clause, which enhances the FIXa-mediated activation of FX to FXa to the same or similar extent as emicizumab in a FXase assay.


      94. Bispecific antibody according to any preceding clause, which enhances the FIXa-mediated activation of FX to FXa to at least the same extent as emicizumab.


      95. Bispecific antibody according to any of clauses 89 to 94, wherein said coagulation time or FIXa-mediated activation is as determined at an antibody concentration of 0.1 mg/ml, 0.3 mg/ml or 0.5 mg/ml at 37 degrees C.


      96. Bispecific antibody according to any preceding clause, wherein the antibody has an EC50 for Cmax in a fluorometric thrombin generation assay (TGA) that is within 10% of or is lower than the Cmax EC50 of emicizumab in said assay, and/or wherein the antibody generates a maximal response of Cmax between 200 and 450 nM thrombin in a fluorometric TGA.


      98. Bispecific antibody according to clause 96, wherein the antibody has an EC50 of less than 50 nM for Cmax in a fluorometric TGA.


      99. Bispecific antibody according to clause 98, which has an EC50 of less than 10 nM for Cmax in a fluorimetric TGA.


      100. Bispecific antibody according to any preceding clause, wherein the maximal response of Cmax is between 250 nM and 400 nM.


      101. Bispecific antibody according to any preceding clause, wherein the antibody has an EC50 for Tmax in a fluorimetric TGA that is within 10% of, or is lower than, the Tmax EC50 of emicizumab in said assay, and/or wherein the antibody generates a maximal response of Tmax between 1 and 10 minutes.


      102. Bispecific antibody according to any preceding clause, wherein the antibody has an EC50 of less than 5 nM for Tmax in a fluorimetric TGA.


      103. Bispecific antibody according to clause 102, wherein the EC50 for Tmax is less than 2 nM.


      104. Bispecific antibody according to any preceding clause, wherein the antibody generates a maximal response of Tmax between 2 and 8 minutes in a fluorimetric TGA.


      105. Anti-FIXa antibody comprising two copies of the first heavy-light chain pair as defined in any preceding clause.


      106. Anti-FX antibody comprising two copies of the second heavy-light chain pair as defined in any of clauses 1 to 104.


      107. Isolated nucleic acid encoding an antibody according to any preceding clause.


      108. A host cell in vitro comprising recombinant DNA encoding an antibody heavy chain comprising a first VH domain as defined in any of clauses 1 to 104,
    • an antibody heavy chain comprising a second VH domain as defined in any of clauses 1 to 104, and/or
    • an antibody light chain comprising a first or second VL domain as defined in any of clauses 1 to 104.


      109. A host cell according to clause 108 comprising recombinant DNA encoding
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 419 or SEQ ID NO: 426,
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 421, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414.


      110. A population of host cells in vitro, wherein each host cell comprises recombinant DNA encoding a bispecific antibody according to any of clauses 1 to 104.


      111. A kit for production of a bispecific antibody according to any of clauses 1 to 104, comprising
    • an antibody heavy chain comprising a first VH domain as defined in any of clauses 1 to 104, or nucleic acid encoding said heavy chain,
    • an antibody heavy chain comprising a second VH domain as defined in any of clauses 1 to 104, or nucleic acid encoding said heavy chain,
    • an antibody light chain comprising a first VL domain as defined in any of clauses 1 to 104, or nucleic acid encoding said light chain, and
    • an antibody light chain comprising a second VL domain as defined in any of clauses 1 to 104, or nucleic acid encoding said light chain.


      112. A kit according to clause 111, comprising
    • a first heavy chain comprising amino acid sequence SEQ ID NO: 419 or SEQ ID NO: 426, or nucleic acid encoding said first heavy chain,
    • a second heavy chain comprising amino acid sequence SEQ ID NO: 421, or nucleic acid encoding said second heavy chain, and
    • a common light chain comprising amino acid sequence SEQ ID NO: 414, or nucleic acid encoding said common light chain.


      113. A kit according to clause 111 or clause 112, wherein said amino acid sequences or said nucleic acids are provided in cells.


      114. A kit according to clause 111 or clause 112, wherein said amino acid sequences or said nucleic acids are provided in cell-free buffered aqueous media.


      115. A kit according to any of clauses 111 to 114, wherein each of said amino acid sequences or each of said nucleic acids is provided in a separate phial.


      116. A method of producing a bispecific antibody according to any of clauses 1 to 104, comprising culturing host cells according to clause 108 or clause 109 under conditions for expression of the bispecific antibody, and recovering the bispecific antibody from the host cell culture.


      117. A method according to clause 116, comprising culturing the host cells in a vessel comprising a volume of at least 100 litres.


      118. A method according to clause 117, wherein the vessel is of stainless steel or is a single-use bioreactor.


      119. A composition comprising a bispecific antibody according to any of clauses 1 to 104, or isolated nucleic acid according to clause 107, in solution with a pharmaceutically acceptable excipient.


      120. A composition according to clause 119, wherein the bispecific antibody or nucleic acid is in sterile aqueous solution.


      121. A composition according to clause 119 or clause 120, comprising a bispecific antibody according to any of clauses 1 to 104 wherein the bispecific antibody is at least 95% pure such that the composition comprises no more than 5% homodimeric antibody contaminants.


      122. A composition according to clause 121, wherein the bispecific antibody is at least 99 pure such that the composition comprises no more than 1% homodimeric antibody contaminants.


      123. A method of controlling bleeding in a patient, comprising administering a composition according to any of clauses 119 to 122 to the patient.


      124. A composition according to any of clauses 119 to 122 for use in a method of treatment of the human body by therapy.


      125. A composition according to any of clauses 119 to 122 for use in a method of controlling bleeding in a patient.


      125. Use of a bispecific antibody according to any of clauses 1 to 104 for the manufacture of a medicament for controlling bleeding in a haemophilia A patient.


      126. A method according to clause 123, or a composition for use or use according to clause


      125, wherein the patient is a haemophilia A patient.


      127. A method or a composition for use according to clause 126, wherein the patient is resistant to treatment with FVIII owing to the presence of inhibitory antibodies in the bloodstream.


      128. A method or a composition for use according to clause 126 or clause 127, wherein the patient is resistant to treatment with another bispecific antibody to FIXa and FX owing to the presence of inhibitory antibodies in the bloodstream.


      129. A method or a composition for use according to clause 128, wherein the patient is resistant to treatment with emicizumab.


      130. A method of reducing development of inhibitory anti-drug antibodies in a haemophilia A patient undergoing treatment with a polypeptide that replaces FVIIIa activity, comprising
    • administering a first FVIIIa-activity replacing polypeptide drug to the patient for a period of 1-12 months,
    • switching the patient to a second, different FVIIIa-activity replacing polypeptide drug for a period of 1-12 months, and
    • switching the patient to either the first antigen-binding molecule or to a third, different FVIIIa-activity replacing polypeptide drug for a period of 1-12 months, wherein
    • the first, second or third FVIIIa-activity replacing polypeptide drug is a bispecific antibody according to any of clauses 1 to 104,
    • and wherein in each case the FVIIIa-activity replacing polypeptide drug or its encoding nucleic acid is administered in a therapeutically effective amount to functionally replace FVIIIa in the patient, and wherein the risk of the patient developing inhibitory anti-drug antibodies to any of the FVIIIa-activity replacing polypeptide drug is reduced compared with a patient continuing to receive treatment with that FVIIIa-activity replacing polypeptide drug.


      131. A composition comprising a FVIIIa-activity replacing polypeptide drug or its encoding nucleic acid, for use in a method of treating a haemophilia A patient while reducing development of inhibitory anti-drug antibodies, or use of a FVIIIa-activity replacing polypeptide drug or its encoding nucleic acid for the manufacture of a medicament for use in a method of treating a haemophilia A patient while reducing development of inhibitory anti-drug antibodies, the method comprising
    • administering a first FVIIIa-activity replacing polypeptide drug to the patient for a period of 1-12 months,
    • switching the patient to a second, different FVIIIa-activity replacing polypeptide drug for a period of 1-12 months, and
    • switching the patient to either the first antigen-binding molecule or to a third, different FVIIIa-activity replacing polypeptide drug for a period of 1-12 months, wherein
    • the first, second or third FVIIIa-activity replacing polypeptide drug is a bispecific antibody according to any of clauses 1 to 104,
    • and wherein in each case the FVIIIa-activity replacing polypeptide drug or its encoding nucleic acid is administered in a therapeutically effective amount to functionally replace FVIIIa in the patient, and wherein the risk of the patient developing inhibitory anti-drug antibodies to any of the FVIIIa-activity replacing polypeptide drug is reduced compared with a patient continuing to receive treatment with that FVIIIa-activity replacing polypeptide drug.


      132. A method according to clause 130, or a composition for use or use according to clause


      131, wherein the first, second and third FVIIIa-activity replacing polypeptide drugs are recombinant or plasma-derived FVIII, emicizumab, and a bispecific antibody according to any of clauses 1 to 104, in any order.


      133. A method, composition for use or use according to any of clauses 123 to 132 wherein the treatment comprises subcutaneous administration of the composition to the patient.


Equivalents: Those skilled in the art will recognise, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be within the scope of protection of the appended claims.


EXAMPLES

Bispecific IgG antibodies comprising Fv binding sites for human FIXa and human FX were generated as described in PCT/EP2018/066836 filed on 22 Jun. 2018 entitled “Bispecific antibodies for factor IX and factor X” (WO2018/234575). As described therein, an extensive campaign of immunisation and screening led to the identification of an anti-FIXa antibody NINA-0128 which, when paired in IgG format with any of a selection of different anti-FX binding Fvs, showed outstanding activity in functional screens including a tenase assay and aPTT assay. NINA-0128 comprises VH domain N0128H and VL domain 0128L. A number of variants of the N0128H VH domain were generated and tested, resulting in further improvements in function in a bispecific format, including for example the N0436H VH domain.


Building on that work, bispecific IgG were designed with the VL domain of NINA-0128 as a common light chain. A panel of anti-FX antibodies were generated in vivo in a transgenic mouse comprising human immunoglobulin genes. These were co-expressed with NINA-0128 as the anti-FIX binding arm, using the 0128L VL domain in a common light chain including a human constant region. One VH domain, T0200, showed outstanding activity in the bispecific format and was selected for further development. Structurally related antibodies obtained from the same immunised animal as the T0200H clone, included further anti-FX VH domains that performed even better than the T0200H VH domain in bispecific IgG4 with an anti-FIX VH domain and the 0128L common light chain.


Meanwhile, further anti-FIXa antibody variants were generated, introducing mutations in the VH domain while retaining the common 0128L VL domain. The anti-FIXa N0436H VH domain sequence was optimised by substituting all possible amino acids at each position in CDR1, CDR2 and CDR3, expressing the resulting VH domain variants in the context of bispecific antibodies comprising the common light chain, evaluating the variant bispecific antibodies in a range of functional assays, identifying mutations associated with increased functional activity, and generating further variants including combinations of mutations associated with increased functional activity.


Improved T0200H VH domain variants were combined with improved N0436H VH domain variants, each paired with the N0128L common light chain, and repeated rounds of optimisation, screening and selection were conducted.



FIG. 6 shows a simplified overview of the screening program.


Very strong FVIII mimetic activity was achieved with common light chain bispecific antibodies including the optimised sequences. The following bispecific antibodies are examples of strong performers, as indicated by functional characterisation in a range of disease-relevant assays. Nomenclature of the bispecific antibodies which have a common light chain is IXAX-nnnn.tttt.llll, wherein nnnn is a 4 digit numerical identifier of the anti-FIX VH domain, tttt is a 4 digit identifier of the anti-FX VH domain, and 1111 is a 4 digit numerical identifier of the common VL domain:

    • IXAX-0128.0201.0128 (anti-FIXa VH domain N0128H; anti-FX VH domain T0201H; 0128L common light chain)
    • IXAX-0436.0201.0128
    • IXAX-0511.0201.0128
    • IXAX-1091.0201.0128
    • IXAX-1172.0201.0128
    • IXAX-1280.0201.0128
    • IXAX-1341.0201.0128
    • IXAX-1327.0201.0128
    • IXAX-1333.0201.0128


Other high performing anti-FX VH domains which combine well with the above and other anti-FIX VH domains in bispecific antibodies were those of the T0201H lineage and variants thereof such as those listed in FIG. 11 and other related sequences. Particularly good results were obtained with bispecific antibodies including an anti-FIX VH domain, an anti-FX VH domain and a common light chain selected from the following:














anti-FIX VH domain:
anti-FX VH domain:
common VL domain:







N0436H
T0201H
0128L


N0511H
T0596H
0325L


N1091H
T0616H


N1172H
T0638H


N1280H
T0666H


N1327H
T0678H


N1333H
T0681H


N1341H
T0687H


N1441H
T0736H


N1442H
T0999H


N1454H









For example,

    • IXAX-1280.0999.0325
    • IXAX-1454.0999.0325
    • IXAX-1441.0999.0325
    • IXAX-1441.0736.0325
    • IXAX-1442.0687.0325


The bispecific antibodies described here represent candidate pharmaceutical drug molecules for therapeutic use as described herein. They may offer a vital healthcare option for patients by providing an alternative to existing treatments such as emicizumab, especially in patients for whom such existing treatments are no longer effective due to the presence of anti-drug antibodies.


In these Examples, the reference antibody AbE or Antibody E is a bispecific antibody having the heavy and light chain amino acid sequences of emicizumab [3].


Example 1. Creation of Anti-FX Antibody Panel with Common Light Chain

Transgenic mice expressing a common light chain comprising the 0128L VL domain of were immunised with human factor X. Antigen specific B cells were single cell sorted by flow cytometry and the VH and VL sequences were retrieved by next generation sequencing (NGS). 200 anti-FX heavy chains were identified by NGS analysis of the single cell sorted lymphocytes. Further bulk NGS analysis was performed on bone marrow and lymph node tissues harvested from the same transgenic animals.


Example 2. Creation of Anti-FIXaxFIX Bispecific Antibodies with Common Light Chain

Each anti-FX heavy chain was expressed in HEK293 cells as bispecific antibody comprising the anti-FIX N0128H heavy chain and the 0128L common light chain. The bispecific antibodies were purified by Protein A substantially as described in PCT/EP2018/066836 filed on 22 Jun. 2018 entitled “Bispecific antibodies for factor IX and factor X”, which is incorporated by reference herein.


Example 3. Initial Screening of Anti-FX Arms Using Activation Coagulation Factor VIII (FVIIIa)-Like Activity Assay (FXase or Tenase Assay)

200 bispecific antibodies comprising a range of different anti-FX heavy chains, each in combination with the N0128H anti-FIX heavy chain and 0128L common VL domain, were screened using a factor Xa generation assay. This functional screening detects FVIIIa-mimetic activity, i.e., ability to enhance (catalyse) the FIXa-mediated activation of FX to FXa, in vitro by enzymatic “FXase” assay. In this assay, the test bispecific molecule is contacted with FIXa and FX in the presence of phospholipid, under conditions suitable for formation of FXa. A substrate for FXa is added which, when cleaved by FXa, generates a detectable product. Detection of this product in the presence of test bispecific antibody is compared with a negative control in which no test antibody is present (a control antibody may be included). The detected signal is quantified by recording absorbance of the reaction solution at 405 nm. Absorbance is measured across a range of antibody concentrations in the assay and an EC50 value is calculated as a measure of the bispecific antibody potency in this assay. Significant difference of EC50 between test antibody and control indicates that the test antibody is able to enhance FIXa-mediated activation of FX. FIG. 7.


Results


Among all the bispecific antibodies assayed, a single one showed outstanding FXase activity: the N0128H anti-FIX heavy chain and T0200H anti-FX heavy chain, paired with 0128L common VL domain, had markedly higher FXase activity than all others in the panel. FIG. 8.


Materials & Methods—Standard FXase Reaction Conditions


7.5 μL FIX (3.75 μg/mL) and 5 μL supernatant from the Expi293 cells producing the recombinant antibodies (Example 8) were added to each well of an assay plate and incubated at room temperature for 1 hour. A mixture of 2.5 μL FXIa (10 ng/mL), 5 μL FX (50 ng/mL), 0.05 μL phospholipid (10 mg/mL) and 5 μL TBSB-S buffer was added to each well to initiate enzymatic reaction (FIXa cleavage of FX to generate FXa), and incubated at 37° C. for 1 hour. After 60 minutes, the reaction was terminated by adding 5 μL of 0.5 M EDTA. After adding 10 μL S2765 substrate solution to each well, absorbance at 405 nm (reference wavelength 655 nm) was measured for 30 minutes (one reading per 10 minutes). All reactions were performed at 37° C. unless otherwise stated.


TBSB:


Tris buffered saline containing 0.1% bovine serum albumin


To make 7.5 mL TBSB:


0.1 mL 7.5% BSA solution (Sigma)


7.4 mL 1×TBS solution (diluted from 20×TBS solution ThermoFisher)


TBSB-S:


TBSB containing 5 mM CaCl2) and 1 mM MgCl2


To make 100 mL TBSB-S:


99.4 mL TBSB


0.5 mL 1M CaCl2) (Sigma)


0.1 mL 1M MgCl2 (Sigma)


FXIa Stock Solution (10 μg/mL):


Add 10 mL TBSB-S to 0.1 mg FXIa (Enzyme Research Laboratories) to make 10 μg/mL stock solution.


Dilute to 10 ng/mL (1:1,000) working solution before use.


F.IXa Stock Solution (5 μg/mL)


Add 100 mL TBSB-S to 0.5 mg FIXa (HFIXa 1080) (Enzyme Research Laboratories) to make 5 μg/mL stock solution.


Dilute to 1.0 μg/mL (1:5) working solution before use.


FIX Stock Solution (37.5 μg/mL):


Add 13.3 mL TBSB-S to 0.5 mg FIX (Enzyme Research Laboratories) to make 37.5 μg/mL stock solution.


Dilute to 3.75 μg/mL (1:10) working solution before use.


FX Working Solution (50 μg/mL):


Add 16 mL TBSB-S to 0.8 mg FX (Enzyme Research Laboratories) to make 50 μg/mL working solution.


No further dilution is needed before use.


S2765 Stock Solution:


25 mg S2765 (Chromogenix) chromogenic substrate (0.035 mmol)


To make 2 mM stock solution:


Add 17.493 mL water to the vial and dissolve with shaking.


Polybrene Solution:


To make 0.6 g/L hexadimethrine bromide stock solution:


Add 0.15 g hexadimethrine bromide (Sigma) to 250 mL water.


Dilute to 0.6 mg/L (1:1,000) working solution before use.


S2765 Substrate Working Solution


A 1:1 mixture of 2 mM S-2765 stock solution and 0.6 mg/L polybrene solution.


Example 4. Identification of Anti-FX T0200H VH Domain

The bispecific antibody designated IXAX.0128.0200.0128, comprising N0128H anti-FIX VH domain, T0200H anti-FX VH domain and 0128L common light chain, demonstrated high FXase activity compared with the other bispecific antibodies. The T0200H VH domain was chosen for further development to attempt production of yet further improved bispecific antibodies.


Example 5. Optimisation of Anti-FX T0200H VH Domain

Phylogenetic Analysis


From the bulk NGS (Example 1) and phylogenetic analysis, 113 anti-FX heavy chains were identified as belonging to the same lymphocyte cluster as the anti-FX heavy chain T0200H. The cluster represents B cells that appear to share a common evolutionary lineage. The anti-FX heavy chains within the cluster shared approximately 95% sequence identity with T0200H at the amino acid level. FIG. 9.


The 113 anti-FX heavy chains were expressed in bispecific antibodies with a panel of different anti-FIX heavy chains and the 0128L common light chain, and screened by FXase assay.


We identified several anti-FX-heavy chains that showed increased FXase activity compared with the T0200H VH domain when assayed as bispecific antibodies. FIG. 10 shows example data from the Xase assay.


A selection of the most active FX arm sequences is shown in FIG. 11. These VH domains were designated T0201H to T0217H respectively. Those with the strongest activity in bispecific format were T0204, T0207, T0205 and T0201 (FIG. 10b).


Using amino acid sequence comparisons, and supported by the functional data, we identified several amino acid residues in frameworks and CDR regions of the anti-FX heavy chains that differ in the most active VH domains and may contribute to the enhanced biological activity compared with T0200H. For example, one or more of the following amino acid features of the VH domain may increase the FVIII-mimetic activity of bispecific antibodies containing the VH domain (IMGT residue numbering):

    • Replacement of valine (V) by isoleucine (I) at position 5 in FR1;
    • Replacement of lysine (K) by glutamine (Q) at position 13 in FR1;
    • Replacement of leucine (L) by methionine (M) at position 39 in FR2;
    • Replacement of threonine (T) by serine (S) at position 62 in CDR2;
    • Replacement of aspartate (D) by serine (S) at position 64 in CDR2;
    • Replacement of threonine (T) by serine (S) at position 85 in FR3;
    • Replacement of alanine (A) by serine (S) at position 112 in the CDR3.


Nevertheless it is clear that activity is high even without these amino acid substitutions, since T0200H itself shows strong activity in a bispecific antibody, and none of these substitutions was consistently present in all of the top VH domains (FIG. 11).


Targeted Mutagenesis for Functional Optimisation


The CDR3 of VH domain T0201H was systematically mutated to provide a library of VH domains in which the residue at each position was individually replaced by another amino acid. The resulting VH domains were named TOXXXH, where XXX numbers are shown in FIG. 12 for the mutants of IMGT positions 114 (Cys), 115 (Leu), 116 (Gln) and 117 (Leu). Refer to FIG. 13 for IMGT numbering.


Removal of Potential Developmental Liability


An unpaired cysteine (C) residue present in CDR3 was identified as a high-risk sequence motif. This unpaired cysteine, present at position 114 in the CDR3 of T0200H and all 113 further anti-FX VH domains identified from the bulk NGS analysis, represents a liability for the development of the bispecific antibody. We screened VH domains containing substitutions of all other amino acids for the cysteine at this position in T0201H. These new variants were expressed with N1280H (see Example 6) and 0128L common light chain as IgG4 bispecific antibodies, purified by Protein A and screened for FVIII mimetic activity by FXase assay. Replacement of cysteine at position 114 with isoleucine (I), glutamine (Q), arginine (R), valine (V) or tryptophan (VV) resulted in bispecifics antibodies with FVIII mimetic activity similar to bispecific antibodies having the T0201H or T0202H VH domains. We conclude C114 can be replaced with a variety of other amino acids and still maintain FVIII mimetic activity.


Example 6. Systematic Sequence Optimisation of Anti-FIX VH

Each amino acid residue in CDR1, CDR2 and CDR3 was individually mutated to generate single position mutants of the anti-FIX N0128H heavy chain. The anti-FIX heavy chain variants thus generated were expressed in bispecific format, paired with anti-FX heavy chain T0201H and N0128L common VL domain in HEK293.


Protein A purified bispecific antibodies were assayed for biological activity by FXase (Example 7) and aPTT to look for amino acid changes that improved the FVIII-mimetic activity of the bispecific antibody. Improved variants were then combined to generate double or triple mutants in the CDR1, CDR2 and CDR3 regions.


Table N identifies mutants of the N0128H VH domain in which one or more residues of the CDRs are mutated to other amino acids. For example the N0436H VH domain is a Ser→Ile mutant of the N0128H VH domain, i.e., in which the serine at IMGT position 111A in CDR3 is replaced by isoleucine. Further residue mutations were introduced on top of initial single mutations. For example the N0511H VH domain is a Ser112ALys mutant of the N0436H VH domain, i.e., in which the serine at IMGT position 112A in CDR3 is replaced by lysine. N1172H is a Glu64Arg mutant of the N0511H VH domain, i.e., in which the glutamate at IMGT position 64 in CDR2 is replaced by arginine. N1280H is a Thr29Arg mutant of the N1172H VH domain, i.e., in which the Thr at IMGT position 29 in CDR1 is replaced by arginine. The other named VH domains can be identified from Table N in the same manner.


Refer to FIG. 14 for IMGT numbering.


Example 7. Screening of Improved Bispecific Antibodies in FXase Assay

Anti-FX arms comprising the VH domain variants generated as described in Example 5 were combined with anti-FIX arms comprising the VH domain variants generated as described in Example 6, each paired with the 0128L common VL domain, to generate FIXAxFX bispecific antibodies, and screened for functional activity in the tenase assay.


Results


Example data are shown:

    • FIG. 10.
    • FIG. 15.
    • FIG. 16.


Highly active bispecific antibodies were identified for several combinations of anti-FIX VH and anti-FX VH domains, each paired with the 0128L common VL domain. Examples of anti-FIX VH and anti-FX VH domain combinations are shown in FIG. 16.


The identity of the anti-FX VH domain appeared to have a stronger influence than the identity of the anti-FIX VH domain for these bispecific arm combinations, with T0638H, T0616H, T0596H and T0663H being among the highest-performing anti-FX VH domains. These anti-FX domains performed well in combination with a variety of anti-FIX arms, including variants of N1280H such as those indicated in FIG. 16. Anti-FIX VH domain sequences are identified by reference to appended Table N. Anti-FX VH domain sequences are identified by reference to FIG. 12.


FVIII-mimetic activity of N128 bispecific antibody was sequentially optimised by modifying amino acid residues in any of the three CDRs. Several amino acid residues were identified to increase FVIII mimetic activity across the CDRs and these mutations were combined to maximise activity. The FVIII mimetic activity of antibodies with the N0128H VH domain was progressively improved with further VH domains in the following order: N0128H→N0436H→N0511H→N1091H→N01172H→N1280H→N1333H. FIG. 17.


Materials & Methods—Modified FXase Reaction Conditions.


Initial screening for bispecific antibody FVIII mimetic activity was assessed using the Standard FXase Reaction Conditions set out above in Example 3. As the FVIII mimetic activity of the bispecific antibody increased, the Standard FXase reaction conditions were no longer sufficient to detect improvements in FXase activity. Therefore, more sensitive Modified FXase Reaction Conditions were established.


This modified assay differs from the Standard FXase Reaction Conditions in the following ways: FXIa is not used, the activated form of Factor IX (FIXa) is used and there is no incubation step. All FXase reagents are mixed with a bispecific antibody and the generation of FXa is detected by recording the absorbance of the reaction solution 40 to 50 times every 30 seconds at 405 nm using an Envision plate reader set to 37° C.


18.45 μl TBSB-S buffer was mixed with 0.05 μl phospholipid (10 mg/ml) and mixed vigorously by pipetting to disperse the phospholipid. To this mixture 1.5 μl FIXa (1 μg/ml) and 5 μl of FX (50 μg/ml), was combined with 5 μl of polybrene (0.6 mg/L) and 5 μl S2765 (4 mM), all pre-warmed to 37° C. Finally, 5 ul of bispecific antibody being investigated for FXase activity was added. Absorbance at 405 nm (reference wavelength 655 nm) was recorded 40 to 50 times every 30 seconds.


Example 8. Screening of Improved Bispecific Antibodies in Plasma Coagulation Assay

Anti-FX arms comprising the VH domain variants generated as described in Example 5 were combined with anti-FIX arms comprising the VH domain variants generated as described in Example 6, each paired with the 0128L common VL domain, to generate FIXaxFX bispecific antibodies. To determine the ability of the bispecific antibodies of the present invention to correct the coagulation ability of the blood of haemophilia A patients, the effect of these antibodies on the activated partial thromboplastin time (aPTT) using FVIII deficient plasma was examined.


A mixture of 5 μL of bispecific antibody solution having a variety of concentrations, 20 μL of FVIII deficient plasma (Helena Biosciences), and 25 μL of aPTT reagent (APTT Si L Minus, Helena Biosciences) was warmed at 37° C. for 3 minutes. The coagulation reaction was initiated by adding 25 μL of 25 mM CaCl2 (Helena Biosciences) to the mixture. The time period until coagulation was measured. Apparatus used for this was C-4 4 channel coagulation analyser (Helena Biosciences).


A sample of results is shown in FIG. 18.


Concentration dependency was subsequently determined for bispecific antibodies that exhibited the highest coagulation time-reducing effect.


For example, IXAX-1280.0201.0128 IgG4 antibody demonstrated a dose dependent decrease in aPTT, comparable to the reference antibody AbE (positive control). FIG. 19. No reduction in aPTT was observed for an isotype control antibody. Note that the antibody preparation used for this assay was the result of a one-step purification on Protein A and as such contained residual anti-FIX monospecific antibodies and residual anti-FX monospecific antibodies in addition to the desired bispecific fraction.


Example 9. Analysis of Anti-FIX VH Domains in Bispecific Antibodies

Considering data from a variety of functional assays including those described in Example 7 and Example 8, it was noted that the anti-FX VH domain T0201 and its sequence variants performed well in combination with a variety of anti-FIX VH domains in bispecific antibodies with the common light chain. For example, anti-FIX VH domains N0128H, N0436H, N0511H, N1091H, N1172H, N1280H, N1314H, N1327H and N1333H all gave good functional activity in the bispecific antibodies. These anti-FIX VH domains share a close structural relationship. FIG. 20. Their performance could be further enhanced by fine tuning of residues through substitution (Table N) and combining substitutions associated with improved activity.


Example 10. Affinity for Antigen-Binding

Binding affinity and the kinetics of antibody-antigen interaction were determined using SPR. Affinity and kinetics of purified test antibodies (all IgG4PE) were compared to comparator anti-FIX antibody AbN or comparator anti-FX antibody AbT as positive control and to an isotype control (ISTC) as negative control.


Binding Affinity for FIX


The anti-FIX antibodies analysed showed binding to FIX in the affinity range of approximately 0.18 μM to 0.3 μM and fast association (kon) and dissociation (koff) rates for FIX. The anti-FIX antibodies analysed showed slightly higher binding affinity to FIX and higher association rate compared to the comparator antibody AbN. No binding to FIX was observed with ISTC. Table E-10-1.









TABLE E-10-1







Binding affinity and kinetic constants on-rate (kon) and off-


rate (koff) of anti-FIX antibodies. Anti-FIXa monospecific


antibody nomenclature: NINA-hhhh.llll, wherein hhhh is the


numeric identifier of the VH domain (e.g., N0436H) and llll


is the numeric identifier of the VL domain (e.g., 0128L),










Captured anti-FIX antibody
kon (1/Ms)
koff (1/s)
KD (M)





NINA-0128 (n = 2 average)
2.92 × 105
5.76 × 10−2
1.98 × 10−7


NINA-0436.0128
2.46 × 105
4.53 × 10−2
1.84 × 10−7


NINA-0438.0128
2.30 × 105
6.73 × 10−2
2.93 × 10−7


NINA-0440.0128
1.85 × 105
5.35 × 10−2
2.89 × 10−7


NINA-0442.0128
1.94 × 105
4.71 × 10−2
2.42 × 10−7


NINA-0444.0128
2.16 × 105
4.45 × 10−2
2.06 × 10−7


NINA-0445.0128
2.04 × 105
5.44 × 10−2
2.67 × 10−7


NINA-0456.0128
1.51 × 105
3.96 × 10−2
2.63 × 10−7


NINA-0460.0128
1.75 × 105
3.18 × 10−2
1.81 × 10−7


AbN
3.06 × 104
4.26 × 10−2
1.39 × 10−6


ISTC
No binding
No binding
No binding










Binding Affinity for FX


The anti-FX antibodies analysed showed binding to FX in the affinity range of approximately 0.1 μM to 1.4 μM and fast association (kon) and dissociation (koff) rate for FX. No binding to FX was observed with ISTC.


The anti-FX antibodies analysed similar binding affinity to FX compared to the benchmark antibody AbT.









TABLE E-10-2







Binding affinity and kinetic constants on-rate (kon) and off-


rate (koff) of anti-FX antibodies. Anti-FX monospecific antibody


nomenclature: TINA-hhhh.llll, wherein hhhh is the numeric


identifier of the VH domain (e.g., N0201H) and llll is the


numeric identifier of the VL domain (e.g., 0128L).










Captured anti-FX antibody
kon
koff
KD


(IgG4PE)
(1/Ms)
(1/s)
(M)





TINA-0200.0128 (n = 2
1.03 × 105
1.15 × 10−1
1.13 × 10−6


average)


TINA-0215.0128
6.84 × 104
7.87 × 10−2
1.15 × 10−6


TINA-0211.0128
6.57 × 104
4.47 × 10−2
6.80 × 10−7


TINA-0210.0128
7.64 × 104
7.44 × 10−2
9.74 × 10−7


TINA-0203.0128
6.80 × 104
5.98 × 10−2
8.80 × 10−7


TINA-0206.0128
6.72 × 104
6.67 × 10−2
9.92 × 10−7


TINA-0205.0128
6.26 × 104
8.53 × 10−2
1.36 × 10−7


TINA-0219.0128
1.01 × 105
9.11 × 10−2
9.05 × 10−7


TINA-0217.0128
1.02 × 105
5.74 × 10−2
5.64 × 10−7


TINA-0209.0128
5.90 × 104
6.79 × 10−2
1.15 × 10−6


TINA-0204.0128
1.09 × 105
7.85 × 10−2
7.18 × 10−7


TINA-0220.0128
5.38 × 104
5.60 × 10−2
1.04 × 10−6


TINA-0201.0128
8.67 × 104
5.02 × 10−2
5.79 × 10−7


TINA-0202.0128
8.87 × 104
7.20 × 10−2
8.12 × 10−7


TINA-0213.0128
9.69 × 104
1.33 × 10−1
1.37 × 10−6


TINA-0207.0128
1.66 × 105
1.41 × 10−1
8.47 × 10−7


TINA-0214.0128
1.20 × 105
5.58 × 10−2
4.66 × 10−7


AbN
No binding
No binding
No binding


AbT
4.13 × 104
2.72 × 10−2
6.60 × 10−7


hIgG4PE ISTC
No binding
No binding
No binding










Materials & Methods


SPR was used to determine the binding affinity (KD) to FIX or FX respectively, the kinetic constants on-rate (kon) and off-rate (koff). Analyses was performed using a Biacore 8K (GE Healthcare) system.


Anti-human IgG Fc antibody was immobilised on CM4 chip (GE Healthcare) according to the manufacturer's instructions. The chip surface was activated by amine coupling and subsequently blocked with 1M ethanolamine. The immobilisation run was performed at 25° C. using HBS-EP as immobilisation running buffer.


Monospecific antibodies (referred as ligand) which had been purified on Protein A were captured onto the anti-human IgG Fc CM4 surface at approximately 2 μg/ml. The ligands were injected for 60 seconds at 10 μl/min in all the active channels of all 8 flow channels. The run was performed at 25° C. using neutral pH HBS-P 1×+CaCl2 2.5 mM as running buffer.


Human FIX (MW ˜55 KDa) or human FX (MW ˜58 KDa) was reconstituted at 1 mg/ml in the running buffer and used as analyte. The analyte was injected in multiple cycle kinetics (MCK) mode at 3 concentrations (1.5 μM, 500 nM and 166.7 nM) with 120 seconds association phase and 200 seconds (for FIX) or 300 seconds (for FX) dissociation phase, at flow rate 30 μl/sec in both active and reference channels. Three injections of 10 mM Glycine pH 1.5 for 60 sec. at 10 μl/min were used for the regeneration phase.


For the anti-FIX analysis, ISTC antibody hIgG4PE was captured at 1 μg/ml for 60 seconds at 10 μl/min in the reference channel. hIgG4PE ISTC and hIgG1 ISTC were also captured in the active channel as a negative control. The monospecific antibody AbN was used as positive control.


For the anti-FX analysis, the hIgG4PE ISTC was also captured in the active channel as a negative control. The monospecific antibody AbT was used as positive control.


The values for association rate constant (kon), dissociation rate constant (koff) and dissociation constant (KD) were calculated from the binding data by BIAevaluation software. Data were reference and buffer subtracted and fitted into one step biomolecular reaction (Langmuir 1:1) model. The first 30 seconds of dissociation were evaluated in the model.


Example 11. Simultaneous Binding of Bispecific Antibody to FX and FIX

The ability of FIXxFX bispecific antibody IXAX-0436.0202.0128 to bind simultaneously to FIX and FX was demonstrated using SPR. The binding kinetics of the purified bispecific antibody was compared to an isotype control (ISTC). Sensorgrams of the binding indicated that the bispecific antibody bound simultaneously to FIX and FX while no binding to FIX and FX was observed with ISTC. FIG. 21A.


FIX was flown over the surface captured with the bispecific antibody to allow the binding with the first analyte. The interaction between the bispecific antibody generated a baseline response as indicated in the sensogram FIG. 21. The following injection of the second analyte, FX, generated a further increase in signal indicating that FX binds the bispecific antibody already in complex with FIX.


Contrarily no binding to FIX or FX was observed when FIX and FX were flown over the surface where an isotype control was captured, demonstrating the specificity of interaction between FI and FX to the bispecific antibody. FIG. 21A.


Sensorgram for the bispecific antibody can also be compared with sensorgram for monospecific antibody. When the antibody captured is an anti-FX monospecific the same series of injection does not give any significant response when FIX is flown over instead when the second injection is performed (1:1 mixture) approximately 50 response units (RU) are observed while with the bispecific the response is 25 RU higher. FIG. 21B.


A key feature of the FVII-mimetic bispecific antibody is the ability to bind simultaneously FIX and FX, to promote the conversion of FX into FXa by FIXa. The binding observed represents a biophysical confirmation that the bispecific antibodies described herein can interact simultaneously with Factor IX and Factor IX, which is in agreement with the functional data described in the accompanying Examples.


Materials & Methods


SPR analysis was performed using a Biacore 8K (GE Healthcare) system.


An anti-human IgG Fc antibody was immobilised on CM4 chip (GE Healthcare) according to the manufacturer's instructions. The chip surface was activated by amine coupling and subsequently blocked with 1M ethanolamine. The immobilisation run was performed at 25° C. using HBS-EP as immobilisation running buffer.


Bispecific antibody (ligand), which had been purified by Protein A capture followed by ion exchange chromatography, was captured on to the anti-human IgG Fc CM4 surface at approximately 2 μg/ml. The ligand was injected at 10 μg/ml for 60 seconds at 10 μl/min in one active channel. The run was performed at 25° C. using neutral pH HBS-P 1×+CaCl2 2.5 mM as running buffer.


Human FIX and human FX (analytes) were reconstituted at 1.15 mg/ml in the running buffer and used as analytes. Analytes were injected at 10 μM alone or mixed 1:1 (10 μM 10 μM) at 10 μl/min for 180 seconds.


An isotype control hIgG4PE antibody was captured at 10 μg/ml for 60 seconds at 10 μl/min in the reference channel as negative control. A blank injection of buffer was performed for all the samples to be used in the double referencing process. Three injections of 10 mM glycine pH 1.5 for 30 seconds at 30 μl/min were used for the regeneration phase. The data were referenced and buffer subtracted and fitted into Langmuir 1:1 model.


Example 12. Further Optimisation of Anti-FX VH

The anti-FIX binding arm of the bispecific antibody was “fixed” as a VH domain comprising the CDRs of N1280H and a VL domain comprising the CDRs of 0128L, while further refinements were made to the anti-FX VH domain to improve performance. 0128L was used as a common light chain.


Table T identifies mutants of the T0201H VH domain in which one or more residues of the CDRs are mutated to other amino acids. The table shows the name given to each variant VH domain having the identified mutation. In each case, residues other than those indicated are left unchanged. For example, the T0616H VH domain is a Leu115Ile mutant of the T0201H VH domain, i.e., in which the leucine (L) at IMGT position 115 in CDR3 is replaced by isoleucine (I). Further residue changes were introduced to the variants containing the single mutations in the T0201H VH domain, resulting in further variants representing combinations of different mutations in the T0201H VH domain. For example, the T0687H VH domain is a Ser111APhe, Cys114Val, Leu115Ile mutant of the T0201H VH domain, i.e., in which the serine at IMGT position 111A in CDR3 is replaced by phenylalanine (T0537H mutation), the cysteine at IMGT position 114 in CDR3 is replaced by valine (T0606H mutation), and the leucine at IMGT position 115 is replaced by isoleucine (T0616H mutation). Sequences of other named anti-FX VH domains can be identified from Table T in the same manner. Refer to FIG. 13 for IMGT numbering.


Bispecific antibodies, purified by Protein A chromatography, were tested for functional activity to look for improvement over the parent bispecific comprising T0201H VH domain.


Improved antibodies were identified in the FXase assay (using Modified FXase Reaction Conditions as detailed in Example 7) and aPTT assay (method as detailed in Example 8).


Mutagenesis of HCDR3 produced improvements in FVIII mimetic activity. HCDRs of VH domains demonstrating improved activity are indicated in FIG. 25. For example, each of the following substitutions and combinations of substitutions in the T0201H VH domain CDR3 was found to improve FVIII mimetic activity (name of resulting VH domain indicated in brackets) (non-exhaustive list):

    • Gln116Met in CDR3 (T0638H VH);
    • Leu115Ile in CDR3 (T0616H VH);
    • Ser111APhe in CDR3 (T0537H VH);
    • Cys114Ile Leu115Ile (T0666H VH);
    • Ser111APhe Cys114Ile Leu115Ile (T0678H VH);
    • Ser111APhe Cys114Leu Leu115Ile (T0681H VH);
    • Ser111APhe Cys114Val Leu115Ile (T0687H).


Concluding the HCDR3 mutagenesis of T0201H, the VH domains T0687H, T0678H and T0681H demonstrated the strongest activity in the bispecific antibodies.


Functional activity of the bispecific antibodies was still further improved through mutagenesis of HCDR1 and HCDR2 in the anti-FX arm. Starting with T0681H, each amino acid residue of CDR1 and CDR2 was systematically replaced by all other possible amino acids, generating the VH domains numbered T0690H to T0993H identified in Table T.


aPTT and TGA analyses were also conducted to support functional assessment of HCDR1 variants. The VH domains T0736 (S29K mutation), T0713, T0734, T0742, T0774 and T0785 showed improved activity compared with T0681H. Based on the functional analyses of HCDR1 variants of T0681H, VH domain T0736H was selected as the top performer. As compared with T0201H, T0736H combines a Ser29Lys substitution in CDR1 with the Ser111APhe Cys114Val and Leu115Ile substitutions in CDR3.


FXase, aPTT and TGA analyses were also conducted to support functional assessment of HCDR2 variants. Based on the functional analyses of HCDR2 variants of T0681H, the following VH domains were identified to have improved activity compared with T0681H: T0926H (S62K), T850H (156L), T0925H (S62L), T0951H (G63S), T0958H (S64D), T0989 (T65R) and T0990H (T65S).


Selected CDR1 and CDR2 variants were then combined with selected CDR3, generating further VH domain variants to investigate possible further improvements in activity.


FXase assay data for high-performing antibodies are summarised in FIG. 22 and FIG. 23. The aPTT assay data are summarised in FIG. 24.


Bispecific antibodies comprising the VH domains shown in FIGS. 22 and 23 demonstrated improved or similar clotting times compared with bispecific antibodies comprising T0201H, with T0999H demonstrating the shortest clotting time in aPTT assay.


FXase activity and clotting times were comparable with the comparator bispecific antibody AbE.



FIG. 25 identifies CDRs of VH domains which were progressively improved for FVIII mimetic activity during the mutagenesis process.


Example 13. Strong Activity of Bispecific Antibodies in a Thrombin Generation Assay

The thrombin generation assay (TGA) detects the activation of prothrombin to thrombin in blood plasma. As thrombin is generated it converts a fluorogenic substrate into a fluorophore, which is continuously monitored by a plate reader. The TGA provides a robust measure of the ability of bispecific antibodies to substitute for FVIII in the coagulation cascade in FVIII-deficient plasma, and kinetics of thrombin generation in the TGA are believed to be highly reliable as an indicator of in vivo therapeutic performance of FVIII-mimetic drugs.


Results


To establish a suitable concentration for factor IXa as a TGA trigger, we initially performed TGAs with a fixed concentration of bispecific antibody whilst varying the concentration of FIXa present in the trigger reagent. We determined that a stock solution of 1 ml MP reagent containing 222 nM FIXa is sufficient to trigger thrombin generation for normal pooled human plasma (final concentration, 0.33 nM FIXa) with a Cmax of 418.11 nM thrombin, a Tmax of 7.67 minutes and a lagtime of 5.83 minutes. FIG. 26. These values are comparable with the reference range in healthy adults (see, e.g., Table 3 of ref [11]) and validate the use of FIXa as a TGA trigger.


Bispecific antibody VH domain T0201H and CDR1, CDR2 and CDR3 combinatorial variants of T0201H were expressed with FIX N1280H arm and N0128 common light chain in HEK cells, purified by protein A chromatography and analysed at a final concentration of 133 nM and 80 nM. The VH domain variants exhibited shortening lagtime, increasing Cmax and shorter time to peak compared with T0201H, with T0999 demonstrating the largest thrombin peak height and shortest time to peak at both concentrations analysed. Performance of at least IXAX-1280.0999.0128 was comparable with that of AbE and of the emicizumab calibrator. AbE demonstrated a lagtime, peak height and time to peak of 2.5 mins, 291.8 nM and 6.0 minutes respectively, and IXAX-1280.0999.0128 demonstrated a lagtime, peak height and time to peak of 2.0 mins, 317.2 nM and 5 minutes. FIG. 27. FIG. 28. As illustrated in FIG. 27 and in order of increasing Tmax, we observed a Tmax of 5, 6.83, 6.83, 7, 7.67, 13.17, 15 and 15.67 minutes for bispecific antibodies comprising T0999, T0687, T0736, T0678, T0681, T0666, T0201 and T0596 respectively.









TABLE E13-1







Recorded parameters from TGA carried out on FVIII deficient plasma spiked with CDR1,


CDR2 and CDR3 single and combinatorial mutants of T0201H in bispecific antibody IXAX-


1280.0201.0128 at final concentration of 133 nM. ETP = endogenous thrombin potential.



























Isotype


VH
T0201
T0596
T0666
T0678
T0681
T0687
T0736
T0999
AbE
Control




















Lagtime (min)
5.0
5.2
4.5
2.7
3.0
2.7
2.7
2.0
2.5
18.0


ETP (nmol/L
1774.4
1724.2
1883.6
2053.5
1932.4
2077.5
1805.4
2099.8
1951.9
−1.0


thrombin × min)


Maximal Peak
134.9
126.4
160.4
259.6
235.6
267.8
237.5
317.2
291.8
19.9


Height (nM)


Time to peak
15.0
15.7
13.2
7.0
7.7
6.8
6.8
5.0
6.0
38.3


(min)


Velocity Index
13.5
12.0
18.5
59.9
50.5
64.4
57.1
105.7
83.6
1.0


(nM/min)


Tail Start (min)
39.0
39.8
37.0
29.8
30.2
29.5
28.2
26.7
27.3
−1.0
















TABLE E13-2







Recorded parameters from TGA carried out on FVIII deficient plasma spiked with CDR1, CDR2 and


CDR3 single and combinatorial mutants of T0201H in bispecific antibody IXAX-1280.0201.0128


at final concentration of 80 nM. ETP = endogenous thrombin potential. Refer to FIG. 27.



























Isotype


VH
T0201
T0596
T0666
T0678
T0681
T0687
T0736
T0999
AbE
Control




















Lagtime (min)
5.0
5.3
4.7
2.7
3.0
2.7
2.7
2.0
3.0
19.0


ETP (nmol/L
1766.2
1793.8
1757.9
1975.4
1891.7
1927.1
1933.3
1986.1
1878.6
−1.0


thrombin × min)


Maximal Peak
126.6
125.9
148.2
269.7
231.4
266.2
248.9
308.0
255.8
19.7


Height (nM)


Time to peak
15.7
16.0
13.5
6.7
7.8
6.7
6.7
4.8
7.2
39.0


(min)


Velocity Index
11.9
11.8
16.8
67.4
47.9
66.5
62.2
109.2
61.6
1.0


(nM/min)


Tail Start (min)
41.0
41.5
37.0
28.7
29.8
29.5
30.0
26.8
29.8
−1.0
















TABLE E13-2







Recorded parameters from TGA carried out with (i) emicizumab


calibrator and (ii) normal pooled plasma spiked with PBS. The


emicizumab calibrator is originally 100 ug/ml = 0.1 mg/ml


= 666.666 nM. Dilution 125/80 = 1.5625 (80 plasma,


20 Calibrator/MP, 20 FluCa, 5 PBS spike) provides final emicizumab


concentration of 426.6 nM for the calibrator. Refer to FIG. 27.










Calibrator
Normal Plasma















Lagtime (min)
2.0
4.8



Endogenous Thrombin Potential
1538.0
1425.7



(ETP) (nmol/L thrombin × min)



Maximal Peak Height (nM)
308.6
371.2



Time to peak (min)
4.5
6.5



Velocity Index (nM/min)
124.1
222.7



Tail Start (min)
23.7
22.7










For a dose response TGA, bispecific antibody IXAX-1280.0999.0128 was expressed in HEK cells, purified by Protein A chromatography and bispecific heterodimer purified by ion exchange chromatography. Using 0.3 nM FIXa trigger, dose response of Cmax (nM) and Tmax (min) in the TGA was carried out on FVIII deficient plasma spiked with bispecific antibody IXAX-1280.0999.0128 and compared against emicizumab calibrator. Both bispecific antibodies demonstrated a linear decrease in Cmax with increasing antibody concentration. IXAX-1280.0999.0128 achieved a greater Cmax than the calibrator antibody, this increase being more pronounced at lower bispecific antibody concentrations. See FIG. 29.









TABLE E13-3







Recorded parameters from TGA carried out on FVlll deficient plasma spiked


with CDR1, CDR2 and CDR3 single and combinatorial mutants of T0201H


in bispecific antibody IXAX-1280.0201.0128. Refer to FIG. 29.









IXAX-1280.0999.0128 Dose Response Flxa Trigger (0.3 nM)






















Normal
Isotype



300 nM
100 nM
30 nM
10 nM
3 nM
1 nM
Plasma
Control



















Lagtime (min)
2
1.83
2.17
3.33
4.5
5.83
6.17
18


Endogenous
2703
2170
2266
2311
2208
2088
1629
−1


Thrombin


Potential (ETP)


(nmol/L


thrombin × min)


Maximal Peak
377.14
348.38
327.7
274.76
208.45
124.11
466.31
23.47


Height (nM)


Time to peak
5.33
4.33
5.5
8
12
18.83
7.83
39.17


(min)


Velocity Index
113.14
140.01
98.31
58.88
27.82
9.62
279.78
1.11


(nM/min)


Tail Start (min)
28.67
26.83
28.67
31.5
35.33
44.5
23.33
−1
















TABLE E13-4







Recorded parameters from TGA carried out with


emicizumab calibrator. Refer to FIG. 29









Emicizumab Calibrator Dose Response Flxa Trigger (0.3 nM)






















Normal
Isotype



300 nM
100 nM
30 nM
10 nM
3 nM
1 nM
Plasma
Control



















Lagtime (min)
2
2.33
3
4.33
5.5
6.67
6.17
18


Endogenous
1884
2363
2075
1733
1524
1634
1629
−1


Thrombin


Potential (ETP)


(nmol/L


thrombin ×


min)


Maximal Peak
343.94
351.58
255.87
152.08
89.33
67.38
466.31
23.47


Height (nM)


Time to peak
4.17
5.5
8.17
12.5
18.33
23
7.83
39.17


(min)


Velocity Index
160.26
111.69
50.03
18.67
6.96
4.13
279.78
1.11


(nM/min)


Tail Start (min)
25
27.67
29.33
35.33
43.33
58.17
23.33
−1










Materials & Methods


For the initial experimental work to establish a suitable concentration of factor IXa as a TGA trigger, 80 μl normal pooled plasma, taken from healthy individuals (Helena Biosciences), was mixed with 20 μl of trigger reagent (Microparticle (MP) reagent which is composed of phospholipids only containing varying amounts of FIXa) in Immulon 2HB transparent U-bottom 96 well plates (ThermoFisher #3665). All reagents were used according to manufacturers instructions, pre-warmed to 37° C. in a water bath.


Once a final concentration of 0.33 nM FIXa was determined to be sufficient to trigger thrombin generation for normal plasma, the same assay conditions including 0.3 nM FIXa were applied with FVIII-depleted plasma in calibrated automated thrombogram assays.


FVIII immunodepleted plasma (Helena Biosciences) was mixed with 20 μl of trigger reagent (Microparticle (MP) reagent which is composed of phospholipids only containing 222 nM FIXa, final concentration 0.33 nM) in Immulon 2HB transparent U-bottom 96 well plates. All reagents were used according to manufacturers instructions, pre-warmed to 37° C. in a water bath. A TGA dose response was carried out starting at 300 nM of test bispecific antibody or of emicizumab calibrator ((emicizumab spiked into FVIII deficient plasma (Enzyme Research Laboratories)) with a 1 in 3 dilution series over five points. A human IgG4 isotype control antibody was used as negative control, and normal (FVIII+ve) pooled plasma spiked with PBS was used as positive control.


Samples were measured in duplicate, accompanied by duplicate calibrator wells containing a thrombin calibrator (containing a pre-determined quantity of thrombin) in the same plasma. The 96 well plate was warmed to 37° C. in a Fluoroskan Ascent plate reader (Thermo) for 10 minutes. Thrombin generation commenced upon addition of 20 μl FluCa reagent (fluorogenic substrate, ZGGR-AMC (2.5 mM), in buffer containing 100 mM CaCl2). TGA reagents were obtained from Stago. Increase in fluorescence over time was monitored by the plate reader.


A thrombin calibrator curve was run alongside each sample being investigated. Using a calibrator, with a known concentration of thrombin, the amount of thrombin generated in a sample under investigation can be calculated from the fluorescent signal obtained using software ThrombinoscopeBV. Fluorescence from test wells was calibrated against fluorescence from the thrombin calibrator wells, to determine the equivalent thrombin generated in the test wells.


Run data were analysed using Stago analysis software. The amount of thrombin generated was determined using the thrombin calibrator curve with known activity. The following aspects of the thrombogram were determined: lag time (minutes), endogenous thrombin potential (ETP; area under the thrombogram, nM thrombin/minute), peak height (Cmax; nM thrombin), time to peak (Tmax/minutes), velocity index (VI; nM/minute, slope between lag time and time to peak) and tail start (minutes; time at which the thrombin generation has come to an end).


Example 14. Dose Response and Potency in Thrombin Generation Assay

To evaluate the maximal thrombin peak height (Cmax, nM Thrombin) and time to peak (Tmax, minutes) of bispecific antibody IXAX-1280.0999.0325 we performed thrombin generation assays (TGA) in human FVIII-depleted plasma using a full antibody concentration dose response according to the method set out in Example 13. Data generated from dose response curves was fitted using a non-linear log [antibody] vs response parameter variable slope model (4 parameter logistic regression model). AbE was included for comparison. IXAX-1280.0999.0325 and AbE used in this assay were determined by mass spectrometry to be close to 100% heterodimer, with no homodimeric contaminants detected.


Over a prospective therapeutic window spanning 300 to 30 nM, equivalent to 45 to 4.5 μg/ml, we observed equivalent (within 10%) or greater Cmax (nM Thrombin) values for IXAX-1280.0999.0325 compared to AbE at all concentrations analysed (FIG. 30). Cmax of IXAX-1280.0999.0325 was close to that of a normal plasma control when the concentrations of the bispecific antibody were between 100 and 300 nM (FIG. 30 and FIG. 31). In contrast, Cmax of AbE only reached the normal level when IgG concentration is 300 nM. In this study, the EC50 of IXAX-1280.0999.0325 (8.0 nM) was approximately 15% of the EC50 of AbE (54.4 nM).


Using the Cmax curve, it can be predicted that IXAX-1280.0999.0325 can achieve the same activity as 45 μg/mL of emicizumab when its concentration is equal to or greater than 8 μg/mL, which suggests a potential efficacy advantage with IXAX-1280.0999.0325 compared with emicizumab.


Analysis of the same dose response but with respect to Tmax, we observed equivalent (within 10%) or less than (or reduced) Tmax values for IXAX-1280.0999.0325 compared to AbE at all concentrations analysed (FIG. 32). Calculated EC50 values based on Tmax values obtained are 1.65 nM for IXAX-1280.0999.0325 (circle) compared to 2.8 nM for AbE (square).


In respect to the therapeutic ranges indicated in FIGS. 30 and 32, we observe with IXAX-1280.0999.0325 Cmax and Tmax dose response curves which are greater and lower compared to AbE, respectively.









TABLE E14-1







Non-linear fit of Cmax. Best fit values for log of antibody


concentration vs Cmax. Variable slope (4 parameters).










IXAX-1280.0999.0325
Ab_E















Bottom
18.20
4.053



Top
392.0
399.9



LogEC50
−8.098
−7.264



HillSlope
1.111
1.135



EC50
7.984e−009
5.440e−008



Span
373.8
395.8

















TABLE E14-2







Non-linear fit of Tmax. Best fit values for log of antibody


concentration vs Cmax. Variable slope (4 parameters).










IXAX-1280.0999.0325
Ab_E















Bottom
2.888
−0.2454



Top
37.14
62.16



LogEC50
−8.781
−8.548



HillSlope
−0.7713
−0.5577



EC50
1.654e−009
2.829e−009



Span
34.25
62.41










The activities of three further bispecific antibodies (BiAb 2, 3 and 4) were also assessed in the TGA and compared against the performance of IXAX-1280.0999.0325 (BiAb 1) and commercially available emicizumab calibrator (Enzyme Research Laboratories) in commercially available human FVIII-depleted plasma (Helena Biosciences). BiAbs were as follows, each including heavy chain constant regions SEQ ID NO: 409 and SEQ ID NO: 410 respectively in the two heavy chains, and lambda light chain constant region SEQ ID NO: 146 in the common light chain:

  • 1. IXAX-1280.0999.0325. Anti-FIX heavy chain SEQ ID NO: 419, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 2. IXAX-1454.0999.0325. Anti-FIX heavy chain SEQ ID NO: 424, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 3. IXAX-1441.0999.0325. Anti-FIX heavy chain SEQ ID NO: 426, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 4. IXAX-1442.0736.0325. Anti-FIX heavy chain SEQ ID NO: 428, anti-FX heavy chain SEQ ID NO: 430, common light chain SEQ ID NO: 414.


BiAb_1, 2, 3 and 4 dose-dependently increased thrombin peak height (Cmax), and dose-dependently decreased time to peak (Tmax) in the same manner as emicizumab. The top of Cmax curve of BiAb_1 was measured at about 368 nM, higher than that of emicizumab (334.8 nM). EC50 (Cmax) of BiAb_1, 2, 3, and 4 were similar to each other and had calculated EC50s of 6.45 nM, 5.87 nM, 5.2 nM and 4.81 nM respectively, representing EC50s between 26% and 35% of the EC50 of emicizumab (18.33 nM). FIG. 33 A. Calculated EC50 (Tmax) values for BiAb_1 to BiAb_4 were 0.56 nM, 0.65 nM, 1.08 nM and 0.93 nM respectively, compared with 2.53 nM for emicizumab. FIG. 33 B.


In a third study, BiAb_1 (IXAX-1280.0999.0325) was again compared with commercially available emicizumab calibrator by using TGA assay in human FVIII-depleted plasma. BiAb_1 dose-dependently increased thrombin peak height (Cmax), and dose-dependently decreased time to peak (Tmax). FIG. 34. The top of Cmax curve for BiAb_1 was about 396.5 nM, higher than that of emicizumab (286.3 nM). EC50 of BiAb_1 was 7.7 nM, approximately 30% of the EC50 of emicizumab (25.9 nM).


Assay to assay variation is observed between the TGA as shown in FIG. 34, FIG. 33 and FIG. 30, in which BiAb_1 exhibited Cmax of approximately 400 nM, 375 nM and 375 nM respectively and in which emicizumab exhibited Cmax of 275 nM, 300 nM and 350 nM. Despite variation in the absolute readings, the trends observed were the same in each instance of the TGA.


In summary, TGA data with either the commercially available emicizumab calibrator or the generated reference antibody AbE consistently indicated an efficacy advantage for BiAb_1 (IXAX-1280.0999.0325) compared with emicizumab. An advantage was also observed with the other antibodies tested (BiAb_2, BiAb_3 and BiAb_4).


According to an FDA multi-disciplinary review of emicizumab, a median annualized bleeding rate (ABR) of 0 would be achieved at emicizumab steady state trough plasma concentration ≥45 μg/mL[17]. Using the Cmax curves from the TGA described above, it is predicted that BiAb_1 can achieve the same activity as 45 μg/mL of emicizumab when its concentration is equal to or greater than about 2-4 μg/mL. This observation suggests a potential efficacy and/or dosing advantage with respect to emicizumab. The differences in activity potentially mean that the bispecific antibody can achieve the same therapeutic effect when administered at lower dose and/or less frequently than emicizumab, representing a clinical advantage. Although the higher Cmax indicates the potential for a more powerful procoagulant capability, the magnitude of this increase is unlikely to be associated with safety concerns.


Example 15. Affinities of Optimised Antibody Arms

Affinity and kinetics of purified anti-FIX and anti-FX antibodies for binding to their respective antigens was determined by SPR as described in Example 10 above.


The anti-FIX antibodies showed binding to FIX with an affinity range of approximately


0.05 μM-0.3 μM (50-300 nM), with a general trend of increasing affinity (lower KD) and faster off-rate correlating with greater activity in the bispecific antibody. Table E15-1.












TABLE E15-1





Captured anti-FIX IgG
kon (1/MS)
koff (1/s)
KD (M)







Isotype control antibody
No binding
No binding
No binding


AbN
3.64 × 104
6.48 × 10−2
1.78 × 10−6


NINA-0128
1.37 × 105
4.92 × 10−2
3.59 × 10−7


NINA-0436.0128
1.46 × 105
5.23 × 10−2
3.59 × 10−7


NINA-0511.0128
1.34 × 105
1.75 × 10−2
1.31 × 10−7


NINA-1091.0128
1.61 × 105
3.52 × 10−2
2.18 × 10−7


NINA-1172.0128
2.25 × 105
1.71 × 10−2
7.64 × 10−8


NINA-1280.0128
1.92 × 105
1.00 × 10−2
5.23 × 10−8









The anti-FX antibodies showed binding to FX with an affinity range of approximately 0.3-3 μM. Table E15-2. Anti-FX antibody MONA was included as a control low affinity antibody with VH and VL domains from an IgM clone obtained from the single cell sorting (Example 1).












TABLE E15-2





Captured anti-FX IgG
kon (1/MS)
koff (1/s)
KD (M)







Isotype control antibody
No binding
No binding
No binding


AbT
2.50 × 104
3.85 × 10−2
1.54 × 10−6


TINA-0200.0128
4.43 × 104
1.12 × 10−1
2.52 × 10−6


TINA-0201.0128
5.90 × 104
4.82 × 10−2
8.16 × 10−7


TINA-0202.0128
5.13 × 104
7.09 × 10−2
1.38 × 10−6


TINA-0616.0128
4.19 × 104
2.22 × 10−2
5.30 × 10−7


TINA-0638.0128
6.99 × 104
2.32 × 10−2
3.33 × 10−7


TINA-0666.0128
4.49 × 104
4.17 × 10−2
9.27 × 10−7


MONA_IgG4PE
5.36 × 104
5.24 × 10−2
9.78 × 10−7









Example 16. Initial Biophysical Assessment

To evaluate expression of the bispecific antibodies, IXAX-1172.0201.0128 was chosen as a representative antibody for minipool analysis. Minipool analysis allows screening of CHO stably transfected cells expressing large amounts (at least 1 g/I) of heterodimeric bispecific antibody and represents a means of evaluating stable bispecific antibody expression.


Using standard Lonza fed-batch overgrowth protocols for stably transfected CHO-K1 cells, bispecific antibodies were expressed. After transfection, 5000 viable cells were aliquoted per well to generate multiple minipools. 8 were taken forward based on antibody titres as measured by Octet.


Cells were harvested, filtered and purified by Protein A chromatography to isolate the antibodies from the supernatant. Antibody concentration (mg) was quantified by OD280, total amount of antibody (mg) was calculated accordingly based on volume of sample and a purification yield (mg/L) assigned according to cell culture volume. The relative percentages of heterodimer and homodimers in each of the 8 minipool samples was determined using imaged capillary isoelectic focusing (icIEF) (Protein Simple, Maurice). Homodimer and heterodimer peaks were assigned using transiently expressed reference homodimer arms for FIX and FX.


We were able to isolate stably transfected cells expressing approximately 1 g/L bispecific antibody with up to approximately 95% heterodimer (e.g., as shown for MP_1 and MP_7, FIG. 35).


Bispecific antibody activity in FXase assay correlated with % heterodimer with a Pearson's correlation coefficient of 0.99 (FIG. 36).


Example 17. Purification of Bispecific Antibody

Co-expression of the two heavy chains and one common light chain of a bispecific antibody generates a composition comprising the bispecific antibody plus monospecific antibody byproducts. These may be separated by ion exchange chromatography, exploiting differences in the isoelectric point of the bispecific heterodimer compared with the monospecific homodimers.


Bispecific antibody IXAX-1280.0999.0128 comprises anti-FIX heavy chain SEQ ID NO: 419, anti-FX heavy chain SEQ ID NO: 421 and common light chain SEQ ID NO: 405. The bispecific antibody was purified following co-expression of these polypeptides in HEK cells, using protein A chromotography to isolate the antibodies from cell supernatant, followed by ion exchange chromatography to isolate the heterodimer.


Bispecific antibody IXAX-0436.0201.0128 comprises anti-FIX heavy chain comprising VH domain SEQ ID NO: 324 and an IgG4 human heavy chain constant region with P (hinge) mutation and K439E, anti-FX heavy chain comprising VH domain SEQ ID NO: 470 and IgG4 human heavy chain constant region with P (hinge) mutation and E356K, and common light chain SEQ ID NO: 405.


Bispecific antibody IXAX-0436.0202.0128 comprises anti-FIX heavy chain comprising VH domain SEQ ID NO: 324 and an IgG4 human heavy chain constant region with P (hinge) mutation and K439E, anti-FX heavy chain comprising VH domain SEQ ID NO: 472 and IgG4 human heavy chain constant region with P (hinge) mutation and E356K, and common light chain SEQ ID NO: 405.


Bispecific antibody IXAX-1172.0201.0128 comprises anti-FIX heavy chain comprising VH domain SEQ ID NO: 440 and an IgG4 human heavy chain constant region with P (hinge) mutation and K439E, anti-FX heavy chain comprising VH domain SEQ ID NO: 470 and an IgG4 human heavy chain constant region with P (hinge) mutation and E356K, and common light chain SEQ ID NO: 405.


Ion exchange chromatography cleanly separated each antibody composition into its component parts. Baseline separation was observed. Anti-FIXxFX heterodimeric bispecific antibody is separated from homodimeric contaminant anti-FIX and/or anti-FX monospecific antibodies.



FIG. 37a shows successful purification of IXAX-1280.0999.0128 from a composition comprising the bispecific antibody mixed with anti-FIX homodimer NINA-1280.0128 and anti-FX homodimer TINA-0999.0128.



FIG. 37b shows successful purification of IXAX-0436.0202.0128 from a composition comprising the bispecific antibody mixed with anti-FIX homodimer NINA-0436.0128 and anti-FX homodimer TINA-0202.0128. The chromatogram represents cation ion exchange purification of N436 bispecific antibody from homodimer contaminants using a series of stepwise elutions using increasing concentrations of NaCl up to 500 nM in Sodium acetate pH 5. Peak 1 represents anti-FIX homodimer antibody; peak 2, anti-FIX/FX bispecific antibody and peak 3 represents anti-FX homodimer antibody. Peak 1, 2 and 3 make up 18%, 79% and 3% total peak area respectively.



FIG. 37c shows successful purification of IXAX-1172.0201.0128 from a composition comprising the bispecific antibody and anti-FIX homodimer NINA-1172.0128. The column purification here yielded 31.5% anti-FIX homodimer and 68.5% bispecific heterodimer. The chromatogram represents cation ion exchange purification of N1172 bispecific antibody from anti-FIX homodimer contaminants using an initial stepwise elution to remove weakly bound Peak 1 (anti-FIX homodimer) followed by a gradient elution using increasing concentrations of NaCl to elute the anti-FIX/FX bispecific. The presence of anti-FX homodimer was not detected.


Materials & Methods


For IXAX-1280.0999.0128 purification, bispecific antibody was transiently expressed in Expi293F HEK cells. Cell culture supernatant was harvested, filtered and loaded on to a 5 ml HiTrap MabSelect Sure (MSS) column (GE Healthcare) equilibrated with 1× phosphate buffered saline (PBS). The column was washed with 5 column volumes of PBS and bound antibody was eluted using IgG elute (ThermoFisher). Eluted bispecific antibody was dialysed into 1×PBS overnight at 4° C. and concentrated using a centrifugal filter unit with a 10 kDa molecular weight cut off.


Chromatography was performed at room temperature. A 1 ml HiTrap Capto SP column (GE Healthcare) was equilibrated with 20 mM sodium phosphate, pH 6.0 and 0.5 mg of Protein A purified material, diluted 1:20 in equilibration buffer (20 mM sodium phosphate, pH 6.0), was loaded on to the column. The column was subsequently washed with 10 column volumes of equilibration buffer followed by a linear gradient (100% B over 90 column volumes to 500 mM NaCl) to elute the bispecific antibody and monospecific contaminants. In this process, buffer is progressively changed from A (20 mM sodium phosphate, pH 6.0, no salt) to B (buffer A with the addition of 500 mM NaCl) over 90 cv at a flow rate of 1 ml/min for the 1 ml column.


For IXAX-0436.0202.0128 purification, a stepwise gradient including washes at three different ionic strengths was applied using varied proportions of Buffer A (50 mM sodium acetate, pH 5) and Buffer B (50 nM sodium acetate and 500 mM sodium chloride).


For IXAX-1172.0201.0128 purification. an initial stepwise elution was used to remove weakly bound Peak 1 (anti-FIX homodimer) followed by a gradient elution using increasing concentrations of NaCl to elute the anti-FIX/FX bispecific.


Subsequently, the following bispecific antibodies were expressed in CHO cells:

  • 5. IXAX-1280.0999.0325. Anti-FIX heavy chain SEQ ID NO: 419, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 6. IXAX-1454.0999.0325. Anti-FIX heavy chain SEQ ID NO: 424, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 7. IXAX-1441.0999.0325. Anti-FIX heavy chain SEQ ID NO: 426, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.
  • 8. IXAX-1442.0736.0325. Anti-FIX heavy chain SEQ ID NO: 428, anti-FX heavy chain SEQ ID NO: 430, common light chain SEQ ID NO: 414.
  • 9. IXAX-1442.0687.0325. Anti-FIX heavy chain SEQ ID NO: 428, anti-FX heavy chain SEQ ID NO: 421, common light chain SEQ ID NO: 414.


Each of these bispecific antibodies includes heavy chain constant regions SEQ ID NO:


409 and SEQ ID NO: 410 respectively for the two heavy chains, and lambda light chain constant region SEQ ID NO: 146 in the common light chain.


The titres observed from transient expression of each of antibodies 1 to 5 above in CHO cells were comparable to titres for a monospecific isotype control antibody. Stable pools and mini-pools (up to 4,000 cells seeded after transfection) were also generated. Although the stable pools produced low percentages (11-19%) of heterodimeric antibody, mini-pools with titres up to 4.9 g/I and percentages of heterodimers up to 82% were established from a limited number of screened mini-pools.


After protein A purification, cation exchange chromatography was used to remove homodimeric by-products to generate high-purity materials suitable for use in functional assays and for developability screening.


Using a gradient cation exchange method, antibodies 1 to 4 were separated from the homodimeric by-products, providing 91-96% heterodimer in the eluted material. Thus, even with this preliminary purification method we were able to obtain 91-96% pure heterodimer. FIG. 38. No comparable homodimer/heterodimer separation was observed for antibody 5 using this technique.


Example 18. Quality Assessment by Mass Spectrometry

The structural integrity of therapeutic monoclonal antibodies can be compromised by multiple types of post-translational modifications which result in product heterogeneity. Mass spectrometry (MS) was used to characterize and evaluate the quality of the bispecific antibodies after cation exchange purification.


After cation exchange separation as described in Example 17, the three different species (anti-FIX/anti-FX heterodimer, anti-FIX homodimer and anti-FX homodimer respectively) in the eluted composition of BiAb_1 IXAX-1280.0999.0325 were analysed by MS. Molecular weights (MW) of the three molecules determined by MS matched the theoretical MW predicted by amino acid sequences of BiAb_1. MS results thus confirmed the identity and the purity of FIX/FX heterodimer after cation exchange purification.


Example 19. Stability Assessment

After purification as described in Example 17, BiAb_1, 2, 3 and 4 respectively were buffer exchanged to either buffer 1 (sodium acetate, pH 5.5) or buffer 2 (citrate/phosphate, pH 6.0), stored for 2 weeks at 4° C., for 4 weeks at 25° C., or underwent 1× freeze/thaw cycle. The concentration of IgG was measured before and after treatment to calculate the loss of antibodies due to the treatment. SEC-HPLC was also performed before and after treatment to monitor for bispecific antibody degradation and aggregation. No obvious loss or degradation of BiAb_1, 2, 3 or 4 was observed. These four bispecific antibodies were thus all stable in both buffer 1 and buffer 2.


Example 20. Dose Response and Potency in FXase Assay

A FXase kinetic assay was conducted to measure the factor VIII mimetic activity of IXAX-1280.0999.0325 and AbE in a dose response to determine their EC50 values as per Example 7. Data generated from dose response curves was fitted using a non-linear log[antibody] vs response parameter variable slope model (4 parameter logistic regression model). FIG. 39. The y-axis are plotted OD405 nm values at a 600 second assay timepoint. The EC50 values for both IXAX-1280.0999.0325 and AbE were calculated from a non-linear regression curve of the data, giving an EC50 of 3.99 nM for IXAX-1280.0999.0325 and EC50 of 261.2 nM for AbE. These are approximations since the dose response curve was incomplete. Despite this it is evident that IXAX-1280.0999.0325 has a significantly lower EC50 than AbE. The activity of IXAX-1280.0999.0325 and AbE is dose dependent. IXAX-1280.0999.0325 demonstrated higher FVIII mimetic activity, in particular at lower concentrations, compared with AbE.









TABLE E20-1







Kinetic FXase best fit values for log of antibody concentration


vs response. Variable slope (4 parameters).










IXAX-1280.0999.0325
Ab_E















Bottom
0.1620
0.1103



Top
0.6872
0.9858



LogEC50
−8.399
−6.583



HillSlope
2.707
1.087



EC50
3.993e−009
2.612e−007



Span
0.5252
0.8756










Example 21. Hyphen Assay Dose Response

A chromogenic assay (HYPHEN BioMed), which analyses factor Xa production in human plasma, was used to measure the factor VIII mimetic activity of IXAX-1280.0999.0325 and AbE. In this assay, FXa generation is proportional to the OD405 measured after chromogenic substrate addition. Antibody concentration dose response curves were generated and fitted using a non-linear log[antibody] vs response parameter variable slope model (4 parameter logistic regression model). EC50 values based on the dose responses were calculated. An EC50 value of 5.92 nM was calculated for IXAX-1280.0999.0325 compared with 15.43 nM for AbE.


IXAX-1280.0999.0325 consistently achieved greater FVIII mimetic ability than AbE over almost all concentrations. At 60 nM the A405 nm had saturated at 4.988 for both molecules. IXAX-1280.0999.0325 retained this saturation at 20 nM while AbE presented with a decreased A405 nm of 3.457. At the lowest concentration of 0.028 nM, IXAX-1280.0999.0325 displayed over 4-fold greater absorbance than AbE. The calculated EC50 values confirm that IXAX-1280.0999.0325 shows a superior potency when comparing to AbE across a dose response assay. FIG. 40.









TABLE E21-1







Hyphen FXase EC50. Best fit values for log of antibody concentration


vs response. Variable slope (4 parameters).










IXAX-1280.0999.0325
Ab_E















Bottom
0.7007
0.2581



Top
5.195
5.861



LogEC50
−8.227
−7.812



HillSlope
1.848
1.231



EC50
5.924e−009
1.543e−008



Span
4.495
5.603











Materials & Methods


The BIOPHEN FVIII:C (Ref. 221402) kit was used following manufacture's assay protocol. Briefly, FVIII deficient plasma (Helena Biosciences Europe) was diluted 1:40 using Tris-BSA buffer (R4) and 45 μl was added to a clear bottom 96-well plate. 5 μl of bispecific antibody was added to the diluted plasma. 50 μl each of reagent R1 (FX) and R2 (FIXa), pre-incubated to 37° C., was added to each well and incubated at 37° C. for five minutes. Subsequently, 50 μl of reagent R3 (SXa-11, chromogenic reagent) was added, mixed and incubated for an additional five minutes, exactly. Addition of 50 μl 20% acetic acid terminated the reaction. Generation of Factor Xa was monitored through the ability of factor Xa to cleave a specific factor Xa substrate (SXa-11). Cleavage of this substrate releases the coloured product, pNA, which can be monitored using a spectrophotometer at 405 nM and compared to a blank sample.


IXAX-1280.0999.0325 and AbE used in this assay were determined by mass spectrometry to be close to 100% heterodimer, with no (or low levels of) homodimeric contaminants detected.


IXAX-1280.0999.0325 and AbE samples were diluted using a 1:3 dilution series with PBS as diluent. 5 μL volume was added to 45 μL factor VIII deficient plasma. The final concentrations (nM) of each sample in the dilution series (when assayed) were: 60.0, 20.0, 6.67, 2.22, 0.741, 0.247, 0.082, and 0.028. Concentrations were converted to log(M) and plotted. A non-linear regression was plotted on the graph to enable EC50 calculation.


Example 22. Dose Response and Potency in Plasma Coagulation Assay

We evaluated the activated partial thromboplastin time (aPTT) of bispecific antibody AbE against IXAX-1280.0999.0325 using a full antibody concentration dose response (method according to Example 8). Data generated from dose response curves were fitted using a non-linear log[antibody] vs response parameter variable slope model (4 parameter logistic regression model).


Over the concentration values analysed we observed equivalent aPTT values (within 10%) for IXAX-1280.0999.0325 compared to AbE at all concentrations analysed (FIG. 41). Dose response curves were compared to a human IgG4 monoclonal antibody isotype control, which demonstrated no haemostatic efficacy. Calculated EC50 values based on aPTT values obtained were 2.1 nM for IXAX-1280.0999.0325 (circle) compared with 2.0 nM for AbE (square).


With respect to a prospective therapeutic range of 30-300 nM, we observe with IXAX-1280.0999.0325 an aPTT dose response curve equivalent to that of AbE.


IXAX-1280.0999.0325 and AbE used in this assay were determined by mass spectrometry to be 100% heterodimer, with no homodimeric contaminants detected.


Example 23. Activity in the Presence of Anti-FVIII Inhibitory Antibodies

Factor VIII replacement therapy can become ineffective for treating patients with haemophilia A if the patient develops alloantibodies against the exogenously administered FVIII. Inhibitory anti-FVIII alloantibodies may block the binding of FIX, phospholipid and von Willebrand factor to FVIII, rendering it inactive.


Advantageously, therapeutic bispecific antibodies are insensitive to the presence of FVIII alloantibodies in a patient's blood, as the alloantibodies have specificity to FVIII. This is confirmed by the ability of a bispecific antibody to functionally restore haemostasis in plasma taken from an inhibitor patient. In this Example, we demonstrate this using two haemostatic assays: activated partial thromboplastin time (aPTT) and Thrombin Generation Assay (TGA) using plasma from a patient with haemophilia A having inhibitory alloantibodies (referred to as “inhibitor plasma”). A restoration of clotting time indicated that the bispecific antibodies analysed are functional in the presence of a FVIII inhibitory alloantibody. Thus, the data presented here indicate that IXAX-1280.0999.0325 and IXAX-1441.0999.0325 will be able to functionally rescue clotting time in patients who have inhibitory alloantibodies against FVIII.


The Bethesda assay or the Nijmegen-Modified Bethesda assay is used measure the titre of alloantibodies against FVIII. In these assays, different dilutions of patient's plasma are mixed with an equal volume of ‘normal’ plasma and left to incubate for a period of time and the level of FVIII is measured. Presence of an inhibitor is indicated when a decrease in residual FVIII is observed. The unit of measurement in these assays are known as Bethesda Units (BU)—a higher BU indicating greater inhibition and lower residual FVIII activity. The experiments described here used patient plasma having a specific inhibitor level of 70 BU.


aPTT


IgG4 bispecific antibodies IXAX-1280.0999.0325, IXAX-1441.0999.0325 and AbE were expressed in CHO cells then purified by Protein A chromatography followed by cation exchange chromatography to separate active heterodimer from contaminating homodimers and analysed at six different concentrations 300, 100, 33.3, 11.1, 3.7 and 1.23 nM by aPTT. aPTT was carried out as per Example 8. Data generated from dose response curves were fitted using a non-linear log[antibody] vs response parameter variable slope model (4 parameter logistic regression model). Both IXAX-1280.0999.0325 and IXAX-1441.0999.0325 IgG4 antibodies were able to rescue the clotting defect in the inhibitor patient sample in a similar manner to AbE. FIG. 42.


Thrombin Generation Assay


Thrombin generation in inhibitor plasma (70 BU) was determined using for IXAX-1280.0999.0325, IXAX-1441.0999.0325 and AbE IgG4 bispecific antibodies following purification on Protein A followed by cation exchange chromatography. A thrombin generation assay was used as per Example 13. A thrombin peak was observed for all bispecific antibodies, indicating that both IXAX-1280.0999.0325 and IXAX-1441.0999.0325 can functionally restore haemostasis in plasma containing inhibitory alloantibodies to FVIII, in a similar way to AbE.


A dose response for each bispecific antibody was carried out and the peak thrombin height (Cmax) was determined. FIG. 43. In the concentration range analysed, the Cmax dose responses for IXAX-1280.0999.0325 and IXAX-1441.0999.0325 were greater than the Cmax of AbE, indicating greater thrombin burst, and the Tmax dose responses for IXAX-1280.0999.0325 and IXAX-1441.0999.0325 were lower than the Tmax of AbE, indicating faster thrombin burst. FIG. 44.


REFERENCES



  • 1 Kitazawa et al., A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in hemophilia A model, Nat. Med. 18(10):1570-1574 2012

  • 2 Sampei et al., Identification and Multidimensional Optimization of an Asymmetric Bispecific IgG Antibody Mimicking the Function of Factor VIII Cofactor Activity, PLOS ONE 8(2) 2013

  • 3 WHO Drug Information, Recommended INN List 75, Vol 30 No 1 2016

  • 4 Uchida et al., A first-in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects, Blood 127(13):1633-1641 2015

  • 5 Shima et al., Factor VIII-Mimetic Function of Humanized Bispecific Antibody in Hemophilia A, N Engl J Med 374:2044-2053 2016

  • 6 Diagram by Dr Graham Beards, based on information in Pallister CJ and Watson MS (2010) Haematology, UK: Scion Publishing, pp. 336-347 ISBN: 1-904842-39-9

  • 7 Fay, Activation of factor VIII and mechanisms of cofactor action, Blood Reviews, 18:1-15 2004

  • 8 Brandstetter et al., X-ray structure of clotting factor IXa: Active site and module structure related to Xase activity and hemophilia B, PNAS 92:9796-9800 1995

  • 9 Bowen, Haemophilia A and haemophilia B: molecular insights, Mol. Pathol. 55:1-18 2002

  • 10 Tripodi, A. Thrombin Generation Assay and Its Application in the Clinical Laboratory, Clinical Chemistry 62(5):699-707 2016

  • 11 Kintigh, Monagle & Ignjatovic, A review of commercially available thrombin generation assays, Res Pract Thromb Haemost 2:42-48 2018.

  • 12 Young, et al., Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: current state of art and future perspectives, Blood 121(11):1944-1950 2013

  • 13 Lefranc MP, IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Dev Comp Immunol. 27(1):55-77 2003

  • 14 Ridgway et al., Protein Eng. 9:617-621 1996

  • 15 Davis J H et al., PEDS 23:195-202

  • 16 Smith, et al., A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys, Scientific Reports 5:17943 2015

  • 17 FDA multidisciplinary review of emicizumab, Center for Drug Evaluation and Research, application number 761083Orig1s000 (BLA 761083, Hemlibra®, emicizumab-kxwh), currently available at accessdata.fda.gov/drugsatfda_docs/nda/2017/761083Orig1s000MultidisciplineR.pdf



FIXa Binding Arm VH Domain Polypeptide Sequences








TABLE S-9A







Anti-FIXa VH domain sequences and CRDs

















VH amino


Ab VH
HCDR1
HCDR2
HCDR3
VH nucleotide sequence
acid sequence





N0192H
SEQ ID
SEQ ID
SEQ ID





NO: 11
NO: 12
NO: 13
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFSSY
IKQDGSE
AREGYSS
GAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCT
RLSCAASGFTFSSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAGCAA
VRQAPGKGLEWVANIKQD





V
GATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTC
GSEKYYVDSVKGRFTISR






CAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCG
DNAKNSLYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGCAGTTACTACTAC
TAVYYCAREGYSSYYYYG






TACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0212H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 16
SEQ ID NO: 17



NO: 11
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFSSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCT
RLSCAASGFTFSSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTC
GSEKYYVDSVKGRFTISR






CAGAGACAACGCCAAGAACTCACTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSLYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0205H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 19
SEQ ID NO: 20



NO: 18
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFIFSSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGTAGCCTCTGGATTCATCTTTAGTAGCTATTGGATGAGCT
RLSCVASGFIFSSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAATATAAATCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTC
GSEKYYVDSVKGRFTISR






CAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCG
DNAKNSLYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGCAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0211H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 21
SEQ ID NO: 22



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAACTCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0203H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 25
SEQ ID NO: 26



NO: 23
NO: 2
NO: 24
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNNY
INQDGSE
AREGYTD
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAACTATTGGATGAGCT
RLSCAVSGFTFNNYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCATCATCTC
GSEKFYVASVKGRFIISR






CAGAGACAACGCCAAAAATTCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATACCGATTCGTCCTAT
TAVYYCAREGYTDSSYYG






TATGGAATGGACGTCTGGGGCCAAGGGACCACGGTCTCCGTCTCCTCA
MDVWGQGTTVSVSS





N0128H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 4
SEQ ID NO: 5



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0215H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 27
SEQ ID NO: 28



NO: 11
NO: 12
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFSSY
IKQDGSE
AREGYSS
GAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCT
RLSCAASGFTFSSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAGCAA
VRQAPGKGLEWVANIKQD





V
GATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTC
GSEKYYVDSVKGRFTISR






CAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCG
DNAKNSLYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGCAGTTCGTCCTAC
TAVYYCAREGYSSSSYYG






TACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0216H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 29
SEQ ID NO:



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAACTCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0217H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 31
SEQ ID NO:



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAACTCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0218H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 33
SEQ ID NO:



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAAATCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0219H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 35
SEQ ID NO: 36



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAACTCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0220H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 37
SEQ ID NO: 38



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0221H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 39
SEQ ID NO: 40



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAACTCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0222H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 41
SEQ ID NO: 42



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0223H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 43
SEQ ID NO: 44



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0224H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 45
SEQ ID NO: 46



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAACTCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0225H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 47
SEQ ID NO: 48



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAAATCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0226H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 49
SEQ ID NO: 50



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAACTCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0227H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 51
SEQ ID NO: 52



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATCTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYLQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0228H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 53
SEQ ID NO: 54



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAACTCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKNSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N0229H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 55
SEQ ID NO: 56



NO: 1
NO: 2
NO: 3
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGLVQPGGSL



GFTFNSY
INQDGSE
AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW



W
K
SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATCTC
GSEKFYVASVKGRFTISR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTCCTAT
TAVYYCAREGYSSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS












SEQ ID NO:
SEQ ID NO:
SEQ ID NO: 142


140
141
HCDR3 consensus


HCDR1
HCDR2
AREGYSSSSYYGMDV


consensus
consensus
TDYY


GFTFSSYWI NN
INQDGSEK
AREGY(S/T)(S/D)(S/Y)YYGMDV


GF(T/I)F
K



(S/N)(S/N)YW
I(N/K)QDGSEK
















N0420H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 238
SEQ ID NO: 314



NO: 1
NO: 2
NO: 161
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYAS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATGCCAGTTCGTCCTAT
TAVYYCAREGYASSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0421H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 239
SEQ ID NO: 315



NO: 1
NO: 2
NO: 162
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSA
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTGCCTCGTCCTAT
TAVYYCAREGYSASSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0422H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 240
SEQ ID NO: 316



NO: 1
NO: 2
NO: 163
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





ASYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTGCCTCCTAT
TAVYYCAREGYSSASYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0423H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 241
SEQ ID NO: 317



NO: 1
NO: 2
NO: 164
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SAYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGGCCTAT
TAVYYCAREGYSSSAYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0430H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 242
SEQ ID NO: 318



NO: 1
NO: 2
NO: 165
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





CSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTGCTCCTAT
TAVYYCAREGYSSCSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0431H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 243
SEQ ID NO: 319



NO: 1
NO: 2
NO: 166
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





DSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTGACTCCTAT
TAVYYCAREGYSSDSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0432H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 244
SEQ ID NO: 320



NO: 1
NO: 2
NO: 167
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





ESYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTGAGTCCTAT
TAVYYCAREGYSSESYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0433H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 245
SEQ ID NO: 321



NO: 1
NO: 2
NO: 168
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





FSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTTCTCCTAT
TAVYYCAREGYSSFSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0434H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 246
SEQ ID NO: 322



NO: 1
NO: 2
NO: 169
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





GSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTGGCTCCTAT
TAVYYCAREGYSSGSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0435H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 247
SEQ ID NO: 323



NO: 1
NO: 2
NO: 170
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





HSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTCACTCCTAT
TAVYYCAREGYSSHSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0436H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 248
SEQ ID NO: 324



NO: 1
NO: 2
NO: 171
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





ISYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCTCCTAT
TAVYYCAREGYSSISYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0437H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 249
SEQ ID NO: 325



NO: 1
NO: 2
NO: 172
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





KSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTAAGTCCTAT
TAVYYCAREGYSSKSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0438H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 250
SEQ ID NO: 326



NO: 1
NO: 2
NO: 173
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





LSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTCTGTCCTAT
TAVYYCAREGYSSLSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0439H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 251
SEQ ID NO: 327



NO: 1
NO: 2
NO: 174
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





MSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATGTCCTAT
TAVYYCAREGYSSMSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0440H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 252
SEQ ID NO: 328



NO: 1
NO: 2
NO: 175
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





NSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTAACTCCTAT
TAVYYCAREGYSSNSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0441H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 253
SEQ ID NO: 329



NO: 1
NO: 2
NO: 176
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





PSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTCCCTCCTAT
TAVYYCAREGYSSPSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0442H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 254
SEQ ID NO: 340



NO: 1
NO: 2
NO: 177
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





QSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTCAGTCCTAT
TAVYYCAREGYSSQSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0443H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 255
SEQ ID NO: 341



NO: 1
NO: 2
NO: 178
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





RSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTAGATCCTAT
TAVYYCAREGYSSRSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0444H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 256
SEQ ID NO: 342



NO: 1
NO: 2
NO: 179
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





TSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTACCTCCTAT
TAVYYCAREGYSSTSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0445H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 257
SEQ ID NO: 343



NO: 1
NO: 2
NO: 180
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





VSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTGTGTCCTAT
TAVYYCAREGYSSVSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0446H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 258
SEQ ID NO: 344



NO: 1
NO: 2
NO: 181
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





WSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTGGTCCTAT
TAVYYCAREGYSSWSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0447H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 259
SEQ ID NO: 345



NO: 1
NO: 2
NO: 182
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





YSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTACTCCTAT
TAVYYCAREGYSSYSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0448H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 260
SEQ ID NO: 346



NO: 1
NO: 2
NO: 183
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SCYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTGCTAT
TAVYYCAREGYSSSCYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0449H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 261
SEQ ID NO: 347



NO: 1
NO: 2
NO: 184
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SDYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGGACTAT
TAVYYCAREGYSSSDYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0450H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 262
SEQ ID NO: 348



NO: 1
NO: 2
NO: 185
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SEYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGGAGTAT
TAVYYCAREGYSSSEYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0451H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 263
SEQ ID NO: 349



NO: 1
NO: 2
NO: 186
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SFYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTTCTAT
TAVYYCAREGYSSSFYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0452H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 264
SEQ ID NO: 350



NO: 1
NO: 2
NO: 187
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SGYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGGGCTAT
TAVYYCAREGYSSSGYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0453H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 265
SEQ ID NO: 351



NO: 1
NO: 2
NO: 188
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SHYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGCACTAT
TAVYYCAREGYSSSHYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0454H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 266
SEQ ID NO: 352



NO: 1
NO: 2
NO: 189
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SIYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGATCTAT
TAVYYCAREGYSSSIYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0455H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 267
SEQ ID NO: 353



NO: 1
NO: 2
NO: 190
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SKYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGAAGTAT
TAVYYCAREGYSSSKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0456H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 268
SEQ ID NO: 354



NO: 1
NO: 2
NO: 191
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SLYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGCTGTAT
TAVYYCAREGYSSSLYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0457H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 269
SEQ ID NO: 355



NO: 1
NO: 2
NO: 192
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SMYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGATGTAT
TAVYYCAREGYSSSMYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0458H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 270
SEQ ID NO: 356



NO: 1
NO: 2
NO: 193
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SNYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGAACTAT
TAVYYCAREGYSSSNYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0459H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 271
SEQ ID NO: 357



NO: 1
NO: 2
NO: 194
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SPYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGCCCTAT
TAVYYCAREGYSSSPYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0460H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 272
SEQ ID NO: 358



NO: 1
NO: 2
NO: 195
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SQYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGCAGTAT
TAVYYCAREGYSSSQYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0461H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 273
SEQ ID NO: 359



NO: 1
NO: 2
NO: 196
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SRYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGAGATAT
TAVYYCAREGYSSSRYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0462H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 274
SEQ ID NO: 360



NO: 1
NO: 2
NO: 197
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





STYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGACCTAT
TAVYYCAREGYSSSTYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0463H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 275
SEQ ID NO: 361



NO: 1
NO: 2
NO: 198
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SVYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGGTGTAT
TAVYYCAREGYSSSVYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0464H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 276
SEQ ID NO: 362



NO: 1
NO: 2
NO: 199
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SWYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTGGTAT
TAVYYCAREGYSSSWYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0465H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 277
SEQ ID NO: 363



NO: 1
NO: 2
NO: 200
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SYYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTTCGTACTAT
TAVYYCAREGYSSSYYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0467H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 278
SEQ ID NO: 364



NO: 1
NO: 2
NO: 201
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYCS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATTGCAGTTCGTCCTAT
TAVYYCAREGYCSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0468H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 279
SEQ ID NO: 365



NO: 1
NO: 2
NO: 202
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYDS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATGACAGTTCGTCCTAT
TAVYYCAREGYDSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0469H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 280
SEQ ID NO: 366



NO: 1
NO: 2
NO: 203
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYES
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATGAGAGTTCGTCCTAT
TAVYYCAREGYESSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0470H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 281
SEQ ID NO: 367



NO: 1
NO: 2
NO: 204
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYFS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATTTCAGTTCGTCCTAT
TAVYYCAREGYFSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0471H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 282
SEQ ID NO: 368



NO: 1
NO: 2
NO: 205
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYGS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATGGCAGTTCGTCCTAT
TAVYYCAREGYGSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0472H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 283
SEQ ID NO: 369



NO: 1
NO: 2
NO: 206
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYHS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATCACAGTTCGTCCTAT
TAVYYCAREGYHSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0473H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 284
SEQ ID NO: 370



NO: 1
NO: 2
NO: 207
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYIS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATATCAGTTCGTCCTAT
TAVYYCAREGYISSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0474H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 285
SEQ ID NO: 371



NO: 1
NO: 2
NO: 208
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYKS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAAGAGTTCGTCCTAT
TAVYYCAREGYKSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0465H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 286
SEQ ID NO: 372



NO: 1
NO: 2
NO: 209
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYLS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATCTGAGTTCGTCCTAT
TAVYYCAREGYLSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0476H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 287
SEQ ID NO: 373



NO: 1
NO: 2
NO: 210
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYMS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATATGAGTTCGTCCTAT
TAVYYCAREGYMSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0477H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 288
SEQ ID NO: 374



NO: 1
NO: 2
NO: 211
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYNS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAACAGTTCGTCCTAT
TAVYYCAREGYNSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0478H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 289
SEQ ID NO: 375



NO: 1
NO: 2
NO: 212
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYPS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATCCCAGTTCGTCCTAT
TAVYYCAREGYPSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0479H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 290
SEQ ID NO: 376



NO: 1
NO: 2
NO: 213
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYQS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATCAGAGTTCGTCCTAT
TAVYYCAREGYQSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0480H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 291
SEQ ID NO: 377



NO: 1
NO: 2
NO: 214
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYRS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGAAGTTCGTCCTAT
TAVYYCAREGYRSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0481H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 292
SEQ ID NO: 378



NO: 1
NO: 2
NO: 215
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYTS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATACCAGTTCGTCCTAT
TAVYYCAREGYTSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0482H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 293
SEQ ID NO: 379



NO: 1
NO: 2
NO: 216
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYVS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATGTGAGTTCGTCCTAT
TAVYYCAREGYVSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0483H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 294
SEQ ID NO: 380



NO: 1
NO: 2
NO: 217
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYWS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATTGGAGTTCGTCCTAT
TAVYYCAREGYWSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0484H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 295
SEQ ID NO: 381



NO: 1
NO: 2
NO: 218
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYYS
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATTACAGTTCGTCCTAT
TAVYYCAREGYYSSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0485H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 296
SEQ ID NO: 382



NO: 1
NO: 2
NO: 219
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSC
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTTGCTCGTCCTAT
TAVYYCAREGYSCSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0486H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 297
SEQ ID NO: 383



NO: 1
NO: 2
NO: 220
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSD
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTGACTCGTCCTAT
TAVYYCAREGYSDSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0487H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 298
SEQ ID NO: 384



NO: 1
NO: 2
NO: 221
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSE
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTGAGTCGTCCTAT
TAVYYCAREGYSESSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0488H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 299
SEQ ID NO: 385



NO: 1
NO: 2
NO: 223
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSF
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTTTCTCGTCCTAT
TAVYYCAREGYSFSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0489H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 300
SEQ ID NO: 386



NO: 1
NO: 2
NO: 224
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSG
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTGGCTCGTCCTAT
TAVYYCAREGYSGSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0490H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 301
SEQ ID NO: 387



NO: 1
NO: 2
NO: 225
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSH
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTCACTCGTCCTAT
TAVYYCAREGYSHSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0491H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 302
SEQ ID NO: 388



NO: 1
NO: 2
NO: 226
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSI
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTATCTCGTCCTAT
TAVYYCAREGYSISSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0492H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 303
SEQ ID NO: 389



NO: 1
NO: 2
NO: 227
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSK
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAAGTCGTCCTAT
TAVYYCAREGYSKSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0493H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 304
SEQ ID NO: 390



NO: 1
NO: 2
NO: 228
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSL
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTCTGTCGTCCTAT
TAVYYCAREGYSLSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0494H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 305
SEQ ID NO: 391



NO: 1
NO: 2
NO: 229
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSM
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTATGTCGTCCTAT
TAVYYCAREGYSMSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0495H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 306
SEQ ID NO: 392



NO: 1
NO: 2
NO: 230
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSN
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAACTCGTCCTAT
TAVYYCAREGYSNSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0496H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 307
SEQ ID NO: 393



NO: 1
NO: 2
NO: 231
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSP
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTCCCTCGTCCTAT
TAVYYCAREGYSPSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0497G
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 308
SEQ ID NO: 394



NO: 1
NO: 2
NO: 232
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSQ
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTCAGTCGTCCTAT
TAVYYCAREGYSQSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0498H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 309
SEQ ID NO: 395



NO: 1
NO: 2
NO: 233
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSR
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGATCGTCCTAT
TAVYYCAREGYSRSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0499H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 310
SEQ ID NO: 396



NO: 1
NO: 2
NO: 234
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYST
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTACCTCGTCCTAT
TAVYYCAREGYSTSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0500H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 311
SEQ ID NO: 397



NO: 1
NO: 2
NO: 235
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSV
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTGTGTCGTCCTAT
TAVYYCAREGYSVSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0501H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 312
SEQ ID NO: 398



NO: 1
NO: 2
NO: 236
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSW
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTTGGTCGTCCTAT
TAVYYCAREGYSWSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS





N0502H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 313
SEQ ID NO: 399



NO: 1
NO: 2
NO: 237
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL





AREGYSY
GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW





SSYYGMD
GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD





V
GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTTACTCGTCCTAT
TAVYYCAREGYSYSSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG
MDVWGQGTTVTVSS

















SEQ ID NO: 400 Consensus HCDR3 of N436 and selected






variants with parent N128H






AREGYSSXSYYGMDV






X is I, L, V, R, W, Q, K, H, E, N, M, S






Representing the N436H CDR3 sequence AREGYSSISYYGMDV in






which the Ile is retained or replaced by Leu, Val, Arg, Trp,






Gln, Lys, His, Glu, Asn, Met or Ser.









SEQ ID NO: 401 Consensus HCDR3 of N436 and selected






variants AREGYSSXSYYGMDV






X is I, L, V, R, W, Q, K, H, E, N or M






Representing the N436H CDR3 sequence AREGYSSISYYGMDV in






which the Ile is retained or replaced by Leu, Val, Arg, Trp,






Gln, Lys, His, Glu, Asn or Met.









SEQ ID NO: 402 Consensus HCDR3 of N436 and selected






hydrophobic or positively charged variants






AREGYSSXSYYGMDV






X is I, L, V, R, W, Q or K






Representing the N436H CDR3 sequence AREGYSSISYYGMDV in






which the Ile is retained or replaced by Leu, Val, Arg, Trp,






Gln or Lys.









SEQ ID NO: 403 Consensus HCDR3 of initial most active






variants AREGYSSXSYYGMDV






X is I, L or V






Representing the N436M CDR3 sequence AREGYSSISYYGMDV in






which the Ile is retained or replaced by Leu or Val.













SEQ ID NO: 406 Consensus HCDR1



GFXGNSYW



X is T or R



Representing the N1280H CDR1 sequence GFRFNSYW (SEQ ID NO: 441) in which the Arg is



retained or replaced by Thr.














SEQ ID NO: 407 Consensus HCDR2




INQX1GX2X3K




X1 is D, G or W. X2 is S or F. X3 is E or R.




Representing the N1280H CDR2 sequence INDGSRK (SEQ ID NO: 436) in which the Asp is




retained or replaced by Gly or Trp, the Ser is retained or replaced by Phe and the




Arg is retained or replaced by Glu.







SEQ ID NO: 634 Consensus HCDR2




INQDGSXK




X is R or E.




Representing the N1280H CDR2 sequence INQDGSRK (SEQ ID NO: 436) in which the Arg is




retained or replaced by Glu.
















SEQ ID NO: 408 Consensus HCDR3





AREGYSSX1X2YYGMDV





X1 is S or I. X2 is S or K.





Representing the N1280H CDR3 sequence AREGYSSIKYYGMDV (SEQ ID NO: 433) in





which the Ile is retained or replaced by Ser and the Lys is retained or





replaced by Ser.








SEQ ID NO: 635 Consensus HCDR3





AREGYSSIXYYGMDV





X is K or S.





Reprsenting the N1280H CDR3 sequence AREGYSSIKYYGMDV (SEQ ID NO: 433) in





which the Lys is retained or replaced by Ser.















N0511H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 434
SEQ ID NO: 435



NO: 1
NO: 2
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL






GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW






GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANIKQD






GATGGAAGTGAGAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSEKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1091H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 437
SEQ ID NO: 438



NO: 1
NO: 436
NO: 171
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL






GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW






GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD






GATGGAAGTAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCTCCTAT
TAVYYCAREGYSISSYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1172H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 439
SEQ ID NO: 440



NO: 1
NO: 436
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL






GAGACTCTCCTGTGCAGTCTCTGGATTCACCTTTAATAGCTATTGGATGAGCT
RLSCAVSGFTFNSYWMSW






GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD






GATGGAAGTAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1280H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 442
SEQ ID NO: 443



NO: 441
NO: 436
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL






GAGACTCTCCTGTGCAGTCTCTGGATTCAGATTTAATAGCTATTGGATGAGCT
RLSCAVSGFRFNSYWMSW






GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD






GATGGAAGTAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1314H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 445
SEQ ID NO: 446



NO: 441
NO: 444
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL




INQGGS

GAGACTCTCCTGTGCAGTCTCTGGATTCAGATTTAATAGCTATTGGATGAGCT
RLSCAVSGFRFNSYWMSW




RK

GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQG






GGCGGAAGTAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1327H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 448
SEQ ID NO: 449



NO: 441
NO: 447
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL




INQWGS

GAGACTCTCCTGTGCAGTCTCTGGATTCAGATTTAATAGCTATTGGATGAGCT
RLSCAVSGFRFNSYWMSW




RK

GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQW






TGGGGAAGTAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GSRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1333H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 451
SEQ ID NO: 452



NO: 441
NO: 450
NO: 433
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTTGTCCAGCCTGGGGGGTCCCT
EVQLVESGGGFVQPGGSL




INQDGF

GAGACTCTCCTGTGCAGTCTCTGGATTCAGATTTAATAGCTATTGGATGAGCT
RLSCAVSGFRFNSYWMSW




RK

GGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCAA
VRQAPGKGLEWVANINQD






GATGGATTCAGAAAATTCTATGTGGCCTCTGTGAAGGGCCGATTCACCATGTC
GFRKFYVASVKGRFTMSR






CAGAGACAACGCCAAGAAATCAGTGTATGTACAAATGAACAGCCTGAGAGCCG
DNAKKSVYVQMNSLRAED






AGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGTATAGTAGTATCAAGTAT
TAVYYCAREGYSSIKYYG






TATGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA
MDVWGQGTTVTVSS





N1454H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 453
SEQ ID NO: 454



NO: 441
NO:436
NO: 433
GAGGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCT
EVQLVESGGGFVQPGGSL






GAGACTGAGCTGTGCCGTGTCCGGCTTCCGGTTCAACAGCTACTGGATGTCCT
RLSCAVSGFRFNSYWMSW






GGGTCCGACAGGCCCCTGGCAAAGGACTTGAGTGGGTCGCCAACATCAACCAG
VRQAPGKGLEWVANINQD






GACGGCAGCCGGAAGTTTTACGTGGCCTCTGTGAAGGGCAGATTCACCATGAG
GSRKFYVASVKGRFTMSR






CCGGGACAACGCCAAGAAAGAGGTGTACGTGCAGATGAACAGCCTGAGAGCCG
DNAKKEVYVQMNSLRAED






AGGACACCGCCGTGTACTATTGTGCCAGAGAGGGCTACAGCAGCATCAAGTAC
TAVYYCAREGYSSIKYYG






TACGGCATGGACGTGTGGGGCCAGGGCACAACAGTGACAGTCTCTTCT
MDVWGQGTTVTVSS





N1441H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 455
SEQ ID NO: 456



NO: 441
NO: 436
NO: 433
GAGGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCT
EVQLVESGGGFVQPGGSL






GAGACTGAGCTGTGCCGTGTCCGGCTTCCGGTTCAACAGCTACTGGATGTCCT
RLSCAVSGFRFNSYWMSW






GGGTCCGACAGGCCCCTGGCAAAGGACTTGAGTGGGTCGCCAACATCAACCAG
VRQAPGKGLEWVANINQD






GACGGCAGCCGGAAGTTTTACGTGGCCTCTGTGAAGGGCAGATTCACCATGAG
GSRKFYVASVKGRFTMSR






CCGGGACAACGCCGACAAAAGCGTGTACGTGCAGATGAACAGCCTGAGAGCCG
DNADKSVYVQMNSLRAED






AGGACACCGCCGTGTACTATTGTGCCAGAGAGGGCTACAGCAGCATCAAGTAC
TAVYYCAREGYSSIKYYG






TACGGCATGGACGTGTGGGGCCAGGGCACAACAGTGACAGTCTCTTCT
MDVWGQGTTVTVSS





N1442H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 457
SEQ ID NO: 458



NO: 441
NO: 436
NO: 433
GAGGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCT
EVQLVESGGGFVQPGGSL






GAGACTGAGCTGTGCCGTGTCCGGCTTCCGGTTCAACAGCTACTGGATGTCCT
RLSCAVSGFRFNSYWMSW






GGGTCCGACAGGCCCCTGGCAAAGGACTTGAGTGGGTCGCCAACATCAACCAG
VRQAPGKGLEWVANINQD






GACGGCAGCCGGAAGTTTTACGTGGCCTCTGTGAAGGGCAGATTCACCATGAG
GSRKFYVASVKGRFTMSR






CCGGGACAACGCCGAGAAAAGCGTGTACGTGCAGATGAACAGCCTGAGAGCCG
DNAEKSVYVQMNSLRAED






AGGACACCGCCGTGTACTATTGTGCCAGAGAGGGCTACAGCAGCATCAAGTAC
TAVYYCAREGYSSIKYYG






TACGGCATGGACGTGTGGGGCCAGGGCACAACAGTGACAGTCTCTTCT
MDVWGQGTTVTVSS
















TABLE S-9B







Anti-FIXa VH domain framework sequences











Ab VH
FR1
FR2
FR3
FR4





N0192H
SEQ ID NO: 148
SEQ ID NO: 133
SEQ ID NO: 149
SEQ ID NO: 135



EVQLVESGGGLVQP

YYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC




GGSLRLSCAAS








N0212H
SEQ ID NO: 148
SEQ ID NO: 133
SEQ ID NO: 149
SEQ ID NO: 135





N0205H
SEQ ID N: 150
SEQ ID NO: 133
SEQ ID NO: 149
SEQ ID NO: 135



EVQLVESGGGLVQP






GGSLRLSCVAS








N0211H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 152
SEQ ID NO: 135



EVQLVESGGGLVQP

FYVASVKGRFTISRDNAKNSVYLQMNSLRAEDTAVYYC




GGSLRLSCAVS








N0203H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 153
SEQ ID NO: 154





FYVASVKGRFIISRDNAKNSVYLQMNSLRAEDTAVYYC
WGQGTTVSVSS





N0128H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135



EVQLVESGGGFVQP
MSWVRQAPGKGLEWVAN
FYVASVKGRFTMSRDNAKKSVYVQMNSLRAEDTAVYYC
WGQGTTVTVSS



GGSLRLSCAVS








N0215H
SEQ ID NO: 148
SEQ ID NO: 133
SEQ ID NO: 149
SEQ ID NO: 135





N0216H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 152
SEQ ID NO: 135





N0217H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 155
SEQ ID NO: 135





FYVASVKGRFTMSRDNAKNSVYLQMNSLRAEDTAVYYC






N0218H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 156
SEQ ID NO: 135





FYVASVKGRFTISRDNAKKSVYLQMNSLRAEDTAVYYC






N0219H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 157
SEQ ID NO: 135





FYVASVKGRFTISRDNAKNSVYVQMNSLRAEDTAVYYC






N0220H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 158
SEQ ID NO: 135





FYVASVKGRFTISRDNAKKSVYVQMNSLRAEDTAVYYC






N0221H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 159
SEQ ID NO: 135





FYVASVKGRFTMSRDNAKNSVYVQMNSLRAEDTAVYYC






N0222H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 160
SEQ ID NO: 135





FYVASVKGRFTMSRDNAKKSVYLQMNSLRAEDTAVYYC






N0223H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N0224H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 155
SEQ ID NO: 135





N0225H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 156
SEQ ID NO: 135





N0226H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 157
SEQ ID NO: 135





N0227H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 160
SEQ ID NO: 135





N0228H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 159
SEQ ID NO: 135





N0229H
SEQ ID NO: 151
SEQ ID NO: 133
SEQ ID NO: 158
SEQ ID NO: 135





N0511H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1091H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1172H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1280H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1314H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1327H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1333H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 134
SEQ ID NO: 135





N1441H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 459
SEQ ID NO: 135





FYVASVKGRFTMSRDNADKSVYVQMNSLRAEDTAVYYC






N1442H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 460
SEQ ID NO: 135





FYVASVKGRFTMSRDNAEKSVYVQMNSLRAEDTAVYYC






N1454H
SEQ ID NO: 132
SEQ ID NO: 133
SEQ ID NO: 461
SEQ ID NO: 136





FYVASVKGRFTMSRDNAKKEVYVQMNSLRAEDTAVYYC









FX Binding Arm VH Domain Polypeptide Sequences








TABLE S-10A







Anti-FX VH domain sequences and CDRs

















VH amino


Ab VH
HCDR1
HCDR2
HCDR3
VH nucleotide sequence
acid sequence





T02
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 60
SEQ ID NO: 61



NO: 57
NO: 58
NO: 59
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAGGCCTGGGGC
QVQLVQSGAEVKRPGASV



GYTFTNY
INAGNGF
ARDWAAA
CTCAGTGAAGGTTTCCTGCAAGGCTTCTGGATACACCTTCACTAACT
KVSCKASGYTFTNYAIHW



A
T
ISYYGMD
ATGCTATACATTGGGTGCGCCAGGCCCCCGGACAGAGGCTTGAGTGG
VRQAPGQRLEWMGWINAG





V
ATGGGATGGATCAACGCTGGCAATGGTTTCACAAAATCTTCACAGAA
NGFTKSSQKFRGRVTITR






GTTCCGGGGCAGAGTCACCATTACCAGGGACACATCCGCGAACACAG
DTSANTAYMELSSLRSED






CCTACATGGAACTGAGCAGCCTCAGATCTGAAGACACGGCTATTTAT
TAIYYCARDWAAAISYYG






TACTGTGCGAGAGATTGGGCTGCTGCTATCTCTTACTACGGTATGGA
MDVWGQGTTVTVSS






CGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG






T05
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 70
SEQ ID NO: 71



NO: 67
NO: 68
NO: 69
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG
QVQLVESGGGVVQPGRSL



GFTFSSY
IWYDGTN
ARSGYSS
GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCT
RLSCAASGFTFSSYGMHW



G
K
SWYGAMD
ATGGCATGCACTGGGTCCGCCAGGCTCCAGGCGAGGGGCTGGAGTGG
VRQAPGEGLEWVAVIWYD





V
GTGGCAGTTATATGGTATGATGGAACTAATAAATACTATGCAGACTC
GTNKYYADSLKGRFTISR






CTTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGC
DNSKNTLYLQMNRLRAED






TCTATCTGCAAATGAACAGGCTGAGAGCCGAGGACACGGCTGTGTAT
TAVYYCARSGYSSSWYGA






TACTGTGCGAGGTCCGGGTATAGCAGCAGCTGGTACGGCGCTATGGA
MDVWGQGTTVTVSS






CGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG






T06
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 80
SEQ ID NO: 81



NO: 77
NO: 78
NO: 79
CAGGTCCAGCTTGTGCAGTCTGGGGCTGAGGTGAAGAGGCCTGGGGC
QVQLVQSGAEVKRPGASV



GYTFTSY
INAGNGI
ARDWAAA
CTCAGTGAAGGTTTCCTGCAAGGCTTCTGGATACACCTTCACAAGCT
KVSCKASGYTFTSYAIHW



A
T
ITYYGMD
ACGCCATACATTGGGTGCGCCAGGCCCCCGGACAGAGGCTTGAGTGG
VRQAPGQRLEWMGWINAG





V
ATGGGATGGATCAACGCTGGCAATGGTATCACAAAATCTTCACAGAA
NGITKSSQKFQGRVTITR






GTTCCAGGGCAGAGTCACCATTACCAGGGACACATCCGCGAACACAG
DTSANTVYLELSSLRSED






TTTACCTGGAACTGAGCAGCCTCAGATCTGAAGACACGGCTGTTTAT
TAVYYCARDWAAAITYYG






TATTGTGCGAGAGATTGGGCTGCTGCTATCACCTACTACGGTATGGA
MDVWGQGTTVTVSS






CGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG






T12
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 89
SEQ ID NO: 90



NO: 86
NO: 87
NO: 88
CAGGTGCAGCTGGTGGAGTCTGGGGGGGGCGTACTCCAGCCTGGGAA
QVQLVESGGGVLQPGKSL



EFTFSTA
ISYDGSN
AKDFTMV
GTCCCTGAGACTCTCCTGTGCAGCCTCTGAATTCACCTTCAGTACCG
RLSCAASEFTFSTAGMHW



G
K
RGVIIMD
CTGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG
VRQAPGKGLEWVTFISYD





V
GTGACTTTTATATCATATGATGGAAGTAATAAATACTATGCAGACTC
GSNKYYADSVKGRFTISR






CGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGGTGTATC
DNSKVYLQMNSLRTEDTA






TGCAAATGAACAGCCTGAGAACTGAGGACACGGCTGTGTATTACTGT
VYYCAKDFTMVRGVIIMD






GCGAAAGATTTCACTATGGTTCGGGGAGTTATTATAATGGACGTCTG
VWGQGTTVTVSS






GGGCCAAGGGACCACGGTCACCGTCTCCTCAG






T14
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 99
SEQ ID NO: 100



NO: 96
NO: 97
NO: 98
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA
QVQLQESGPGLVKPSETL



GGSISSY
IYYSGST
AKGAAGD
GACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTT
SLTCTVSGGSISSYYWSW



Y

Y
ATTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGG
IRQPPGKGLEWIGYIYYS






ATTGGGTATATCTATTACAGTGGGAGCACCAACTATAACCCCTCCCT
GSTNYNPSLKSRVNISVD






CAAGAGTCGAGTCAACATATCAGTAGACACGTCCAAGAACCAGTTCT
TSKNQFSLRLSSVTAADT






CCCTGAGGCTGAGTTCTGTGACCGCTGCGGACACGGCCGTGTATTAT
AVYYCAKGAAGDYWGQGT






TGTGCGAAAGGGGCAGCTGGGGACTACTGGGGCCAGGGAACCCTGGT
LVTVSS






CACCGTCTCCTCAG






T15
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 108
SEQ ID NO: 109



NO: 105
NO: 106
NO: 107
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA
QVQLQESGPGLVKPSETL



GGSISKY
IYYSGNT
ARGLGDY
GACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTAAAT
SLTCTVSGGSISKYYWSW



Y


ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGG
IRQPPGKGLEWIGYIYYS






ATTGGATATATCTATTACAGTGGGAACACCTACCAGAATCCCTCCCT
GNTYQNPSLKSRVTISID 






CAAGAGTCGAGTCACCATATCAATAGACACGTCCAAGAACCAGATCT
TSKNQISLKVSSVTAADT






CCCTGAAGGTGAGCTCTGTGACCGCTGCGGACACGGCCGTCTATTAC
AVYYCARGLGDYWGQGTL






TGTGCGAGAGGGCTGGGGGACTACTGGGGCCAGGGAACCCTGGTCAC
VTVSS






CGTCTCCTCAG






T23
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 117
SEQ ID NO: 118



NO: 114
NO: 115
NO: 116
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGA
QVQLQESGPGLVKPSETL



GGSISRY
IYYSGTT
ARGLGDF
GACCCTGTCCCTCACCTGCAGTGTCTCTGGTGGCTCCATTAGTAGAT
SLTCSVSGGSISRYYWSW



Y


ATTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGG
IRQPPGKGLEWIGYIYYS






ATTGGATATATCTATTACAGTGGGACCACCTACTATAACCCCTCCCT
GTTYYNPSLKSRVTFSVD






CAAGAGTCGAGTCACCTTTTCAGTAGACACGTCCAAGACCCAGTTCT
TSKTQFSLKLNSVTAADT






CCCTGAAACTTAACTCTGTGACCGCTGCGGACACGGCCGTATATTAC
AVYYCARGLGDFWGRGTL






TGTGCGAGAGGACTGGGGGACTTCTGGGGCCGGGGAACCCTGGTCAC
VTVSS






CGTCTCCTCAG






T25
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 125
SEQ ID NO: 126



NO: 122
NO: 123
NO: 124
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCAGA
QVQLQESGPGLVKPSETL



GGSISSG
INNSGNT
ARGGSGD
GACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTG
SLTCTVSGGSISSGIYYW



IYY

Y
GTATATACTACTGGAGTTGGATCCGCCAGCACCCAGGGAAGGGCCTG
SWIRQHPGKGLEWIGYIN






GAGTGGATTGGATACATCAATAACAGTGGGAACACCTACTACAACCC
NSGNTYYNPSLKGRVNIS






GTCCCTCAAGGGTCGAGTTAACATATCAGTAGACACGTCTAAGAAAC
VDTSKKQFSLKLSSVTDA






AGTTCTCCCTGAAGCTGAGCTCTGTGACTGACGCGGACACGGCCGTC
DTAVYYCARGGSGDYWGQ






TATTACTGTGCGAGGGGGGGATCGGGCGACTACTGGGGCCAGGGAAC
GTLVTVSS






CCTGGTCACCGTCTCCTCAG
















TABLE S-10B







Anti-FX VL domain sequences and CDRs

















VL amino


Ab VL
LCDR1
LCDR2
LCDR3
VL nucleotide sequence
acid sequence





T02
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 65
SEQ ID NO: 66



NO: 62
NO: 63
NO: 64
CAGTCTGTCCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGC
QSVLTQPPSASGTPGQRVT



SSNIGSN
RNT
ATWDDSL
AGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG
ISCSGSSSNIGSNYVYWYQ



Y

SAYV
TAATTATGTATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAA
QLPGTAPKLLIYRNTQRPS






CTCCTCATCTATAGGAATACTCAGCGGCCCTCAGAGGTCCCTGACC
EVPDRFSGSKSGASASLAI






GATTCTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGCCATCAG
SGLRSEDETDYYCATWDDS






TGGGCTCCGGTCCGAGGATGAGACTGATTATTACTGTGCAACATGG
LSAYVFGTGTKVTVL






GATGACAGCCTGAGTGCTTATGTCTTCGGAACTGGGACCAAAGTCA







CCGTCCTAG






T05
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 75
SEQ ID NO: 76



NO: 72
NO: 73
NO: 74
CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGAC
QSALTQPPSASGSPGQSVT



SSDVGGY
EVN
SSYAGSN
AGTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGG
ISCTGTSSDVGGYYYVSWY



YY

TWV
TTATTACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCC
QQHPGKAPKLMIYEVNKRP






AAACTCATGATTTATGAGGTCAATAAGCGGCCCTCAGGGGTCCCTG
SGVPDRFSGSKSGITASLT






ATCGCTTCTCTGGCTCCAAGTCTGGCATCACGGCCTCCCTGACCGT
VSGLQSEDEADYYCSSYAG






CTCTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGCAGCTCA
SNTWVFGGGTKLTVL






TATGCAGGCAGCAACACTTGGGTGTTCGGCGGAGGGACCAAGCTGA







CCGTCCTAG






T06
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 84
SEQ ID NO: 85



NO: 62
NO: 82
NO: 83
CAGTCTGTGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGGC
QSVLTQPPSVSGTPGQRVT



SSNIGSN
RNN
FGAGTKV
AGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG
ISCSGSSSNIGSNYVYWYQ



Y

TVL
TAATTATGTATACTGGTACCAGCAGTTCCCAGGAACGGCCCCCAAA
QFPGTAPKLLIYRNNQRPS






CTCCTCATCTATAGGAATAATCAGCGGCCCTCAGAGGTCCCTGACC
EVPDRFSGSKSGASASLAI






GATTCTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGCCATCAG
SGLRSEDETDYYCATWDDS






TGGGCTCCGGTCCGAGGATGAGACTGATTATTACTGTGCAACATGG
LSAYVFGAGTKVTVL






GATGACAGCCTGAGTGCTTATGTCTTCGGAGCTGGGACCAAAGTCA







CCGTCCTAG






T12
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 94
SEQ ID NO: 95



NO: 91
NO: 92
NO: 93
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGTATCTGTAG
DIQMTQSPSSLSVSVGDRV



QDISNY
DAS
QQYDNLP
GAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAA
TITCQASQDISNYLNWYQQ





IT
CTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTC
KPGKAPKLLIYDASNLETG






CTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGT
VPSRFSGSGSGTDFTFIIS






TCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCATCATCAGCAG
SLQPEDIATYYCQQYDNLP






CCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGAT
ITFGQGTRLEIK






AATCTCCCGATCACCTTCGGCCAAGGGACACGACTGGAGATCAAAC






T14
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 103
SEQ ID NO: 104



NO: 101
NO: 92
NO: 102
GAAATTGTGTTGGCACAGTCTCCAGCCACCCTGTCTTTGTCTCCAG
EIVLAQSPATLSLSPGERA



QSVNSY
DAS
QQRNNWP
GGGAAAGAGCCACGTTCTCCTGCAGGGCCAGTCAGAGTGTTAACAG
TFSCRASQSVNSYLAWHQQ





IT
CTACTTAGCCTGGCACCAACAGAAACCTGGCCAGGCTCCCAGGCTC
KPGQAPRLLIYDASNRATG






CTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGT
IPARFSGSGSGTDFTLTIS






TCAGTGGCAGTGGGTCCGGGACAGACTTCACTCTCACCATCAGCAG
SLEPEDFAVYYCQQRNNWP






CCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAAC
ITFGQGTRLEIK






AACTGGCCTATCACCTTCGGCCAAGGGACACGACTGGAGATCAAAC






T15
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 112
SEQ ID NO: 113



NO: 110
NO: 92
NO: 111
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAG
EIVLTQSPATLSLSPGERA



QSVSSY
DAS
QQRSNWP
GGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAG
TLSCRASQSVSSYLAWHQQ





LT
CTACTTAGCCTGGCACCAACAGAAACCTGGCCAGGCTCCCAGGCTC
KPGQAPRLLIYDASNRATG






CTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGT
IPARFSGSGSGTDFTLTIS






TCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAG
SLEPEDFAVYYCQQRSNWP






CCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAACGTAGC
LTFGGGTKVEIK






AACTGGCCTCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAAC






T23
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 120
SEQ ID NO: 121



NO: 119
NO: 92
NO: 111
GAAATTGTGTTGACTCAGTCTCCAGCCACCCTGTCATTGTCTCCAG
EIVLTQSPATLSLSPGERA



QSVSGY
DAS
QQRSNWP
GGGAAAGGGCCACCCTCTCCTGCCGGGCCAGTCAGAGTGTTAGCGG
TLSCRASQSVSGYLAWHQQ





LT
CTACTTAGCCTGGCACCAACAGAAACCTGGCCAGGCTCCCAGGCTC
KPGQAPRLLIYDASNRATG






CTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGAT
IPARFSGSGSGTDFTLTIS






TCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAG
SLEPEDFAVYYCQQRSNWP






CCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAACGTAGC
LTFGGGTKVEIK






AACTGGCCTCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAAC






T25
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 130
SEQ ID NO: 131



NO: 128
NO: 92
NO: 129
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAG
EIVLTQSPATLSLSPGERA



QSINNY
DAS
QQRNNWP
GGGAAAGAGCCACCCTCTCCTGCAGGACCAGTCAGAGTATTAACAA
TLSCRTSQSINNYLAWFQQ





PT
CTACTTAGCCTGGTTCCAACAGAAACCTGGCCAGGCTCCCAGGCTC
KPGQAPRLLIYDASNRAPG






CTCATCTATGATGCATCCAACAGGGCCCCTGGCATCCCAGCCAGGT
IPARFSGSGSGTDFTLTIS






TCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAG
SLEPEDFVVYFCQQRNNWP






CCTGGAGCCTGAAGATTTTGTAGTTTATTTCTGTCAGCAGCGTAAC
PTFGQGTKVEIK






AACTGGCCTCCGACATTCGGCCAAGGGACCAAGGTGGAAATCAAAC
















TABLE S-10C







Anti-FX VH domain sequences and CDRs


The following TxxxxH VH domains are suitable for pairing with a common


light chain VL such as VL domain 0128L or 0325L.

















VH amino


Ab VH
HCDR1
HCDR2
HCDR3
VH nucleotide sequence
acid sequence





T0200H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 465
SEQ ID NO: 466



NO: 462
NO: 463
NO: 464
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAAAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG



RYSFTSY
INPKTGD
ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATCTGCATT
ASVKVSCKASRYSFT



Y
T
SARCLQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYLHWVRQAPGQGL






AAAACTGGTGACACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKTGDTSY






CAGGGACACGTCCACGACCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGGCCCGG
TTTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSA







RCLQLWGQGTLVTVS







S





T0201H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 469
SEQ ID NO: 470



NO: 462
NO: 467
NO: 468
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKPG




INPKSGS
ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT




T
SSRCLQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0202H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 471
SEQ ID NO: 472



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGATACAGTCTGGGGCTGAGGTGCAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVQKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0203H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 473
SEQ ID NO: 474



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGATCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELISLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0204H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 475
SEQ ID NO: 476



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGCAGAAGACTGGGGCCTCAGT
QVQLVQSGAEVQKTG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0205H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 478
SEQ ID NO: 479



NO: 462
NO: 477
NO: 464
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG




INPKSGD

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTGACACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGDTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAACAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGGCCCGG
TSTVYMELNSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCGCCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSA







RCLQLWGQGTLVTVS







S





T0206H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 480
SEQ ID NO: 481



NO: 462
NO: 477
NO: 464
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTGACACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGDTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGACCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGGCCCGG
TSTVYMDLSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSA







RCLQLWGQGTLVTVS







S





T0207H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 482
SEQ ID NO: 483



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGACTGGGGCCTCAGT
QVQLVQSGAEVKKTG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0208H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 484
SEQ ID NO: 485



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGAACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
EQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0209H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 486
SEQ ID NO: 487



NO: 462
NO: 463
NO: 464
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGCAAAAGCCTGGGGCCTCAGT
QVQLVQSGAEVQKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATCTGCATT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYLHWVRQAPGQGL






AAAACTGGTGACACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKTGDTSY






CAGGGACACGTCCACGACCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGGCCCGG
TTTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSA







RCLQLWGQGTLVTVS







S





T0210H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 488
SEQ ID NO: 499



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAACAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELNSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0211H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 500
SEQ ID NO: 501



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGSTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGACCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMDLSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0212H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 505
SEQ ID NO: 506



NO: 502
NO: 503
NO: 504
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKPG



GFSFTSY
INPRSGS
ARDGYGS
GAAGGTTTCCTGCAAGGCATCTGGATTCTCCTTCACCAGCTACTATATACACT
ASVKVSCKASGFSFT



Y
T
SSRCFQY
GGGTGCGCCAGGCCCCTGGACAAGGACTTGAGTGGATGGGAATAATCAACCCT
SYYIHWVRQAPGQGL






AGAAGTGGTAGCACAAGCTACGCTCAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPRSGSTSY






CAGGGACACGTCCACGAACACAGTCTACATGGACCTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTATATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGA
TNTVYMDLSSLRSED






TGCTTCCAGTACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCFQYWGQGTLVTVS







S





T0213H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 508
SEQ ID NO: 509



NO: 462
NO: 507
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGACTGGGGCCTCAGT
QVQLVQSGAEVKKTG




INPKSGT

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
ASVKVSCKASRYSFT




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
SYYMHWVRQAPGQGL






AAAAGTGGTACTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
EWMGIINPKSGTTSY






CAGGGACACGTCCACGAGCACAGTCTACATGGAACTGAGCAGCCTGAGATCTG
AQKFQGRVTMTRDTS






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TSTVYMELSSLRSED






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
TAVYYCARDGYGSSS







RCLQLWGQGTLVTVS







S





T0214H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 510
SEQ ID NO: 511



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGACTGGGGCCTCAGT
QVQLVQSGAEVKKT






GAAGGTTTCCTGCCAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCQASRYS






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRCLQLWG







QGTLVTVSS





T0215H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 512
SEQ ID NO: 513



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKP






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS






GGGTGCGACAGGCCCCGGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRCLQLWG







QGTLVTVSS





T0216H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 514
SEQ ID NO: 515



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVKKT






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATTTGCACT
GASVKVSCQASRYS






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRCLQLWG







QGTLVTVSS





T0217H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 516
SEQ ID NO: 517



NO: 462
NO: 467
NO: 468
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGACGAAGCCTGGGGCCTCAGT
QVQLVQSGAEVTKP






GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS






GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






TGCCTCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRCLQLWG







QGTLVTVSS





T0666H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 521
SEQ ID NO: 522



NO: 462
NO: 467
NO: 520
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRIIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






ATCATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRIIQLWG







QGTLVTVSS





T0667H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 524
SEQ ID NO: 525



NO: 462
NO: 467
NO: 523
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRLIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRLIQLWG







QGTLVTVSS





T0668H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 527
SEQ ID NO: 528



NO: 462
NO: 467
NO: 526
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRQIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CAGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRQIQLWG







QGTLVTVSS





T0669H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 530
SEQ ID NO: 531



NO: 462
NO: 467
NO: 529
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRILML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






ATCCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRILMLWG







QGTLVTVSS





T0670H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 533
SEQ ID NO: 534



NO: 462
NO: 467
NO: 532
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRLLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CTGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRLLMLWG







QGTLVTVSS





T0671H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 536
SEQ ID NO: 537



NO: 462
NO: 467
NO: 535
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRQLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CAGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRQLMLWG







QGTLVTVSS





T0672H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 539
SEQ ID NO: 540



NO: 462
NO: 467
NO: 538
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRIIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






ATCATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRIIMLWG







QGTLVTVSS





T0673H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 542
SEQ ID NO: 543



NO: 462
NO: 467
NO: 541
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRLIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CTGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRLIMLWG







QGTLVTVSS





T0674H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 545
SEQ ID NO: 546



NO: 462
NO: 467
NO: 544
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRQIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






CAGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRQIMLWG







QGTLVTVSS





T0675H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 548
SEQ ID NO: 549



NO: 462
NO: 467
NO: 547
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRVIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






GTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRVIQLWG







QGTLVTVSS





T0676H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 551
SEQ ID NO: 552



NO: 462
NO: 467
NO: 550
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRVLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






GTGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRVLMLWG







QGTLVTVSS





T0677H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 554
SEQ ID NO: 555



NO: 462
NO: 467
NO: 553
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





SSRVIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTCGTCCCGG
TRDTSTSTVYMELS






GTGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSSSRVIMLWG







QGTLVTVSS





T0678H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 557
SEQ ID NO: 558



NO: 462
NO: 467
NO: 556
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRIIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






ATCATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRIIQLWG







QGTLVTVSS





T0679H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 560
SEQ ID NO: 561



NO: 462
NO: 467
NO: 559
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRILML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






ATCCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRILMLWG







QGTLVTVSS





T0680H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 563
SEQ ID NO: 564



NO: 462
NO: 467
NO: 562
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRIIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






ATCATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRIIMLWG







QGTLVTVSS





T0681H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 566
SEQ ID NO: 567



NO: 462
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRLIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0682H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 569
SEQ ID NO: 570



NO: 462
NO: 467
NO: 568
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRLLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLLMLWG







QGTLVTVSS





T0683H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 572
SEQ ID NO: 573



NO: 462
NO: 467
NO: 571
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRLIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIMLWG







QGTLVTVSS





T0684H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 575
SEQ ID NO: 576



NO: 462
NO: 467
NO: 574
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRQIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CAGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRQIQLWG







QGTLVTVSS





T0685H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 578
SEQ ID NO: 579



NO: 462
NO: 467
NO: 577
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRQLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CAGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRQLMLWG







QGTLVTVSS





T0686H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 581
SEQ ID NO: 582



NO: 462
NO: 467
NO: 580
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRQIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CAGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRQIMLWG







QGTLVTVSS





T0687H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 584
SEQ ID NO: 585



NO: 462
NO: 467
NO: 583
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRVIQL
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






GTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRVIQLWG







QGTLVTVSS





T0688H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 587
SEQ ID NO: 588



NO: 462
NO: 467
NO: 586
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRVLML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






GTGCTCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRVLMLWG







QGTLVTVSS





T0689H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 590
SEQ ID NO: 591



NO: 462
NO: 467
NO: 589
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP





ARDGYGS
GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS





FSRVIML
GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






GTGATCATGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRVIMLWG







QGTLVTVSS





T0713H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 593
SEQ ID NO: 594



NO: 592
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RFSFTSY


GAAGGTTTCCTGCAAGGCATCTAGATTCAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRFS



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0734H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 596
SEQ ID NO: 597



NO: 595
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RYHFTSY


GAAGGTTTCCTGCAAGGCATCTAGATACCACTTCACCAGCTACTATATGCACT
GASVKVSCKASRYH



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0736H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 599
SEQ ID NO: 600



NO: 598
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RYKFTSY


GAAGGTTTCCTGCAAGGCATCTAGATACAAGTTCACCAGCTACTATATGCACT
GASVKVSCKASRYK



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0742H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 602
SEQ ID NO: 603



NO: 601
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RYRFTSY


GAAGGTTTCCTGCAAGGCATCTAGATACAGATTCACCAGCTACTATATGCACT
GASVKVSCKASRYR



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0774H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 605
SEQ ID NO: 606



NO: 604
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RYSFKSY


GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCAAGAGCTACTATATGCACT
GASVKVSCKASRYS



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FKSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0785H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 608
SEQ ID NO: 609



NO: 607
NO: 467
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP



RYSFTAY


GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCGCCTACTATATGCACT
GASVKVSCKASRYS



Y


GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTAYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0850H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 611
SEQ ID NO: 612



NO: 462
NO: 610
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




LNPKSGS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATACTGAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGILNPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0925H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 614
SEQ ID NO: 615



NO: 462
NO: 613
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKIGS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAATCGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKIG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0926H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 617
SEQ ID NO: 618



NO: 462
NO: 616
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKKGS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAAGGGTAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKKG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0951H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 620
SEQ ID NO: 621



NO: 462
NO: 619
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKSSS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTAGCAGTACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSS






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
STSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0958H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 623
SEQ ID NO: 624



NO: 462
NO: 622
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKSGD

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




T

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTGACACAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
DTSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0989H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 626
SEQ ID NO: 627



NO: 462
NO: 625
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKSGS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




R

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTAGAAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
SRSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0990H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 629
SEQ ID NO: 630



NO: 462
NO: 628
NO: 565
CAGGTGCAGTTGATACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGT
QVQLIQSGAEVKKP




INPKSGS

GAAGGTTTCCTGCAAGGCATCTAGATACAGCTTCACCAGCTACTATATGCACT
GASVKVSCKASRYS




S

GGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCT
FTSYYMHWVRQAPG






AAAAGTGGTAGTAGCAGTTACGCACAGAAGTTCCAGGGCAGAGTCACCATGAC
QGLEWMGIINPKSG






CAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTG
SSSYAQKFQGRVTM






AGGACACGGCCGTGTATTACTGTGCGAGAGATGGGTATGGCAGCTTCTCCCGG
TRDTSTSTVYMELS






CTGATCCAGCTCTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS





T0999H
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 631
SEQ ID NO: 632



NO: 598
NO: 467
NO: 565
CAGGTTCAGCTGATTCAGTCCGGCGCCAAAGTGAAGAAACCTGGCGCCTCTGT
QVQLIQSGAKVKKP






GAAGGTGTCCTGCAAGGCCTCTCGGTACAAGTTCACCTCCTACTACATGCACT
GASVKVSCKASRYK






GGGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATCATCAACCCC
FTSYYMHWVRQAPG






AAGTCCGGCTCCACCTCTTACGCCCAGAAATTCCAGGGCAGAGTGACCATGAC
QGLEWMGIINPKSG






CAGAGACACCTCTACCTCCACCGTGTACATGGAACTGTCCAGCCTGAGATCCG
STSYAQKFQGRVTM






AGGACACCGCCGTGTACTACTGTGCCAGAGATGGCTACGGCAGCTTCTCCAGA
TRDTSTSTVYMELS






CTGATCCAGTTGTGGGGCCAGGGCACACTGGTCACAGTGTCCTCT
SLRSEDTAVYYCAR







DGYGSFSRLIQLWG







QGTLVTVSS












SEQ ID NO: 636. Consensus HCDR1.



RYXFTSYY



X is K or S



Representing the T0201H VH CDR1 RYSFTSYY (SEQ ID NO: 462) in which the Ser at IMGT



position 29 is retained or replaced by Lys.
















SEQ ID NO: 637. Consensus HCDR3.





ARDGYGSX1SRX2X3QL





X1 is F or S. X2 is any amino acid. X3 is I or L.





Representing the T0201H CDR3 ARDGYGSSSRCLQL (SEQ ID NO: 468) in which the





Ser at IMGT position 111A is retained or replaced by Phe, the Cys at IMGT





position 114 is retained or replaced by another amino acid residue, and the





Leu at IMGT position 115 is retained or replaced by Ile.








SEQ ID NO: 638. Consensus HCDR3.





ARDGYGSX1SRX2X3QL





X1 is F or S. X2 is Leu or Val. X3 is I or L.





Representing the T0201H CDR3 ARDGYGSSSRCLQL (SEQ ID NO: 468) in which the





Ser at IMGT position 111A is retained or replaced by Phe, the Cys at IMGT





position 114 is replaced by Leu or Val, and the Leu at IMGT position 115 is





retained or replaced by Ile.








SEQ ID NO: 639. Consensus HCDR3.





ARDGYGSFSRXIQL





X is Leu or Val.





Representing the T0201H CDR3 ARDGYGSSSRCLQL (SEQ ID NO: 468) in which the





Ser at IMGT position 111A is replaced by Phe, the Cys at IMGT position 114





is replaced by Leu or Val, and the Leu at IMGT position is replaced by Ile.
















TABLE S-11





Heavy chain sequences

















SEQ ID
Nucleic acid

GAAGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCTGAGACTGTCCTGTGCTGTGTCC



NO: 418
encoding

GGCTTCCGGTTCAACTCCTACTGGATGTCCTGGGTCCGACAGGCTCCTGGCAAAGGACTGGAATGGGTCGCCAAC




N1280H-IgG4-

ATCAACCAGGACGGCTCCCGGAAGTTCTACGTGGCCTCTGTGAAGGGCAGATTCACCATGTCTCGGGACAACGCC




P K439E;

AAGAAATCCGTGTACGTGCAGATGAACTCCCTGAGAGCCGAGGACACCGCCGTGTACTACTGTGCTAGAGAGGGC




N1280 coding

TACTCCTCCATCAAGTACTACGGCATGGACGTGTGGGGCCAGGGCACAACCGTGACAGTCTCTTCCGCTTCCACC




sequence
AAGGGACCCAGCGTTTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTG



underlined.
GTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTT




CCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACC




CAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGC




CCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAG




GACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTG




CAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAATGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTG




TCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTT




TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCTAC




CCCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCAGTGCTG




GACTCCGACGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTC




TCCTGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAAGAGTCCCTGTCTCTGTCCCCT





SEQ ID
N1280H-IgG4-
EVQLVESGGGFVQPGGSLRLSCAVSGFRFNSYWMSWVRQAPGKGLEWVANINQDGSRKFYVASVKGRFTMSRDNA


NO: 419
P K439E
KKSVYVQMNSLRAEDTAVYYCAREGYSSIKYYGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCL



amino acid
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYG



sequence
PPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQESLSLSP





SEQ ID
Nucleic acid

CAGGTTCAGCTGATTCAGTCCGGCGCCAAAGTGAAGAAACCTGGCGCCTCTGTGAAGGTGTCCTGCAAGGCCTCT



NO: 420
encoding

CGGTACAAGTTCACCTCCTACTACATGCACTGGGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATC




T0999H-IgG4-

ATCAACCCCAAGTCCGGCTCCACCTCTTACGCCCAGAAATTCCAGGGCAGAGTGACCATGACCAGAGACACCTCT




P E356K;

ACCTCCACCGTGTACATGGAACTGTCCAGCCTGAGATCCGAGGACACCGCCGTGTACTACTGTGCCAGAGATGGC




T0999H coding

TACGGCAGCTTCTCCAGACTGATCCAGTTGTGGGGCCAGGGCACACTGGTCACAGTGTCCTCTGCTTCCACCAAG




sequence
GGACCCAGCGTGTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTGGTC



underlined
AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTTCCA




GCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACCCAG




ACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGCCCT




CCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC




ACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAG




TTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACC




TACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCC




AACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTTTAC




ACCCTGCCTCCAAGCCAGAAAGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTCGTGAAGGGCTTCTACCCT




TCCGATATCGCCGTGGAATGGGAGAGCAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCTGTGCTGGAC




TCCGATGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTCTCC




TGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCTCTGTCCCCT





SEQ ID
T0999H-IgG4-
QVQLIQSGAKVKKPGASVKVSCKASRYKFTSYYMHWVRQAPGQGLEWMGIINPKSGSTSYAQKFQGRVTMTRDTS


NO: 421
P E356K
TSTVYMELSSLRSEDTAVYYCARDGYGSFSRLIQLWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV



amino acid
KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYGP



sequence
PCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQKEMTKNQVSLTCLVKGFYP




SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSP





SEQ ID
Nucleic acid
GAAGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCTGAGACTGTCCTGTGCTGTGTCC


NO: 423
encoding
GGCTTCCGGTTCAACTCCTACTGGATGTCCTGGGTCCGACAGGCTCCTGGCAAAGGACTGGAATGGGTCGCCAAC



N1454H-IgG4-
ATCAACCAGGACGGCTCCCGGAAGTTCTACGTGGCCTCTGTGAAGGGCAGATTCACCATGTCTCGGGACAACGCC



P K439E
AAGAAAGAGGTGTACGTGCAGATGAACTCCCTGAGAGCCGAGGACACCGCCGTGTACTACTGTGCTAGAGAGGGC




TACTCCTCCATCAAGTACTACGGCATGGACGTGTGGGGCCAGGGCACAACCGTGACAGTCTCTTCCGCTTCCACC




AAGGGACCCAGCGTTTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTG




GTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTT




CCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACC




CAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGC




CCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAG




GACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTG




CAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAATGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTG




TCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTT




TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCTAC




CCCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCAGTGCTG




GACTCCGACGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTC




TCCTGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAAGAGTCCCTGTCTCTGTCCCCT





SEQ ID
N1454H-IgG4-
EVQLVESGGGFVQPGGSLRLSCAVSGFRFNSYWMSWVRQAPGKGLEWVANINQDGSRKFYVASVKGRFTMSRDNA


NO: 424
P K439E
KKEVYVQMNSLRAEDTAVYYCAREGYSSIKYYGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCL



amino acid
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYG



sequence
PPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQESLSLSP





SEQ ID
Nucleic acid
GAAGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCTGAGACTGTCCTGTGCTGTGTCC


NO: 425
encoding
GGCTTCCGGTTCAACTCCTACTGGATGTCCTGGGTCCGACAGGCTCCTGGCAAAGGACTGGAATGGGTCGCCAAC



N1441H-IgG4-
ATCAACCAGGACGGCTCCCGGAAGTTCTACGTGGCCTCTGTGAAGGGCAGATTCACCATGTCTCGGGACAACGCC



P K439E
GACAAGTCCGTGTACGTGCAGATGAACTCCCTGAGAGCCGAGGACACCGCCGTGTACTACTGTGCTAGAGAGGGC




TACTCCTCCATCAAGTACTACGGCATGGACGTGTGGGGCCAGGGCACAACCGTGACAGTCTCTTCCGCTTCCACC




AAGGGACCCAGCGTTTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTG




GTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTT




CCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACC




CAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGC




CCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAG




GACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTG




CAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTG




TCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTT




TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCTAC




CCCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCAGTGCTG




GACTCCGACGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTC




TCCTGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAAGAGTCCCTGTCTCTGTCCCCT





SEQ ID
N1441H-IgG4-
EVQLVESGGGFVQPGGSLRLSCAVSGFRFNSYWMSWVRQAPGKGLEWVANINQDGSRKFYVASVKGRFTMSRDNA


NO: 426
P K439E
DKSVYVQMNSLRAEDTAVYYCAREGYSSIKYYGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCL



amino acid
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYG



sequence
PPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQESLSLSP





SEQ ID
Nucleic acid
GAAGTGCAGCTGGTTGAATCTGGCGGCGGATTTGTTCAGCCTGGCGGCTCTCTGAGACTGTCCTGTGCTGTGTCC


NO: 427
encoding
GGCTTCCGGTTCAACTCCTACTGGATGTCCTGGGTCCGACAGGCTCCTGGCAAAGGACTGGAATGGGTCGCCAAC



N1442H-IgG4-
ATCAACCAGGACGGCTCCCGGAAGTTCTACGTGGCCTCTGTGAAGGGCAGATTCACCATGTCTCGGGACAACGCC



P K439E
GAGAAGTCCGTGTACGTGCAGATGAACTCCCTGAGAGCCGAGGACACCGCCGTGTACTACTGTGCTAGAGAGGGC




TACTCCTCCATCAAGTACTACGGCATGGACGTGTGGGGCCAGGGCACAACCGTGACAGTCTCTTCCGCTTCCACC




AAGGGACCCAGCGTTTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTG




GTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTT




CCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACC




CAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGC




CCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAG




GACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTG




CAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTG




TCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTT




TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCTAC




CCCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCAGTGCTG




GACTCCGACGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTC




TCCTGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAAGAGTCCCTGTCTCTGTCCCCT





SEQ ID
N1442H-IgG4-
EVQLVESGGGFVQPGGSLRLSCAVSGFRFNSYWMSWVRQAPGKGLEWVANINQDGSRKFYVASVKGRFTMSRDNA


NO: 428
P K439E
EKSVYVQMNSLRAEDTAVYYCAREGYSSIKYYGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCL



amino acid
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYG



sequence
PPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQESLSLSP





SEQ ID
Nucleic acid
CAGGTTCAGCTGATTCAGTCTGGCGCCGAAGTGAAGAAACCTGGCGCCTCTGTGAAGGTGTCCTGCAAGGCCTCT


NO: 429
encoding
CGGTACAAGTTCACCTCCTACTACATGCACTGGGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATC



T0736H-IgG4-
ATCAACCCCAAGTCCGGCTCCACCTCTTACGCCCAGAAATTCCAGGGCAGAGTGACCATGACCAGAGACACCTCT



P E356K
ACCTCCACCGTGTACATGGAACTGTCCAGCCTGAGATCCGAGGACACCGCCGTGTACTACTGTGCCAGAGATGGC




TACGGCAGCTTCTCCAGGCTGATCCAGTTGTGGGGACAGGGCACACTGGTCACCGTGTCCTCTGCTTCTACCAAG




GGACCCAGCGTGTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTTCCA




GCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACCCAG




ACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGCCCT




CCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC




ACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAG




TTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACC




TACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCC




AACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTTTAC




ACCCTGCCTCCAAGCCAGAAAGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTCGTGAAGGGCTTCTACCCT




TCCGATATCGCCGTGGAATGGGAGAGCAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCTGTGCTGGAC




TCCGATGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTCTCC




TGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCTCTGTCCCCT





SEQ ID
T0736H-IgG4-
QVQLIQSGAEVKKPGASVKVSCKASRYKFTSYYMHWVRQAPGQGLEWMGIINPKSGSTSYAQKFQGRVTMTRDTS


NO: 430
P E356K
TSTVYMELSSLRSEDTAVYYCARDGYGSFSRLIQLWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV



amino acid
KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYGP



sequence
PCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQKEMTKNQVSLTCLVKGFYP




SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSP





SEQ ID
Nucleic acid
CAGGTTCAGCTGATTCAGTCTGGCGCCGAAGTGAAGAAACCTGGCGCCTCTGTGAAGGTGTCCTGCAAGGCCTCC


NO: 431
encoding
AGATACTCCTTCACCTCCTACTACATGCACTGGGTCCGACAGGCCCCTGGACAAGGATTGGAGTGGATGGGCATC



T0687H-IgG4-
ATCAACCCCAAGTCCGGCTCCACCTCTTACGCCCAGAAATTCCAGGGCAGAGTGACCATGACCAGAGACACCTCT



P E356K
ACCTCCACCGTGTACATGGAACTGTCCAGCCTGAGATCCGAGGACACCGCCGTGTACTACTGTGCCAGAGATGGC




TACGGCTCCTTCAGCAGAGTGATCCAGTTGTGGGGCCAGGGCACACTGGTCACAGTGTCCTCTGCTTCCACCAAG




GGACCCAGCGTGTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGACATCTGGCGTGCACACCTTTCCA




GCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAACCCAG




ACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAATCTAAGTACGGCCCT




CCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC




ACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAG




TTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACC




TACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCC




AACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTTTAC




ACCCTGCCTCCAAGCCAGAAAGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTCGTGAAGGGCTTCTACCCT




TCCGATATCGCCGTGGAATGGGAGAGCAATGGCCAGCCAGAGAACAACTACAAGACCACACCTCCTGTGCTGGAC




TCCGATGGCTCATTCTTTCTGTACTCCAAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTCTCC




TGCTCTGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCTCTGTCCCCT





SEQ ID
T0687H-IgG4-
QVQLIQSGAEVKKPGASVKVSCKASRYSFTSYYMHWVRQAPGQGLEWMGIINPKSGSTSYAQKFQGRVTMTRDTS


NO: 432
P E356K
TSTVYMELSSLRSEDTAVYYCARDGYGSFSRVIQLWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV



amino acid
KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVDHKPSNTKVDKRVESKYGP



sequence
PCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQKEMTKNQVSLTCLVKGFYP




SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSP









Human Germline Gene Segments








TABLE S-12







Corresponding qermline v and j gene segments


for antibody VH and VL domains









V -- J














Anti-FIX heavy chain




N128
IGHV3-7*01--IGHJ6*02



N183
IGHV3-48*02--IGHJ6*02



Anti FX heavy chain



T0200
IGHV1-46*03--IGHJ1*01



Common light chain



N0128L
IGLV3-21*d01--IGOLJ2*01










Common Light Chain Sequences








TABLE S-50A







N0128 and N0325 VL domain sequences and CDRs

















VL amino acid


Ab VL
LCDR1
LCDR2
LCDR3
VL nucleotide sequence
sequence





N128L
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 9
SEQ ID NO: 10



NO: 6
NO: 7
NO: 8
TCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAGA
SYVLTQPPSVSVAPGETA



NIGRKS
YDS
QVWDGS
GACGGCCAGGATTACCTGTGGGGGAGACAACATTGGAAGGAAAAGTG
RITCGGDNIGRKSVYWYQ





SDHWV
TGTACTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATC
QKSGQAPVLVIYYDSDRP






TATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG
SGIPERFSGSNSGNTATL






GTCCAACTCTGGGAACACGGCGACCCTGACCATCAGCAGGGTCGAAG
TISRVEAGDEADYYCQVW






CCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATGGAAGTAGT
DGSSDHWVFGGGTKLTVL






GATCATTGGGTGTTCGGCGGAGGGACCAAGTTGACCGTCCTAG






N325L
SEQ ID
SEQ ID
SEQ ID
SEQ ID NO: 415
SEQ ID NO: 416



NO: 6
NO: 7
NO: 8
TACGTGCTGACCCAGCCTCCTTCCGTGTCTGTTGCTCCTGGCGAGAC
YVLTQPPSVSVAPGETAR






AGCCAGAATCACCTGTGGCGGCGATAACATCGGCCGGAAGTCCGTGT
ITCGGDNIGRKSVYWYQQ






ACTGGTATCAGCAGAAGTCCGGCCAGGCTCCTGTGCTGGTCATCTAC
KSGQAPVLVIYYDSDRPS






TACGACTCCGACCGGCCTTCTGGCATCCCTGAGAGATTCTCCGGCTC
GIPERFSGSNSGNTATLT






CAACTCCGGCAATACCGCCACACTGACCATCTCCAGAGTGGAAGCTG
ISRVEAGDEADYYCQVWD






GCGACGAGGCCGACTACTACTGCCAAGTGTGGGACGGCTCCTCTGAC
GSSDHWVFGGGTKLTVL






CACTGGGTTTTCGGCGGAGGCACCAAGCTGACAGTGCTG
















TABLE S-50B







N0128 and N0325 VL domain framework sequences











Ab VL
FR1
FR2
FR3
FR4





N128L
SEQ ID NO: 136
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 139



SYVLTQPPSVSVAP
VYWYQQKSGQAPVL
DRPSGIPERFSGSN
FGGGTKLTVL



GETARITCGGD
VIY
SGNTATLTISRVEA






GDEADYYC






N325L
SEQ ID NO: 417
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 139



YVLTQPPSVSVAPG






ETARITCGGD
















TABLE S-50C





N0128 and N0325 light chain sequences

















SEQ ID
N0128L-IgL Coding
TCCTATGTGC TGACTCAGCC ACCCTCAGTG TCAGTGGCCC CAGGAGAGAC GGCCAGGATT


NO: 404
nucleic acid
ACCTGTGGGG GAGACAACAT TGGAAGGAAA AGTGTGTACT GGTACCAGCA GAAGTCAGGC




CAGGCCCCTG TGCTGGTCAT CTATTATGAT AGCGACCGGC CCTCAGGGAT CCCTGAGCGA




TTCTCTGGGT CCAACTCTGG GAACACGGCG ACCCTGACCA TCAGCAGGGT CGAAGCCGGG




GATGAGGCCG ACTATTACTG TCAGGTGTGG GATGGAAGTA GTGATCATTG GGTGTTCGGC




GGAGGGACCA AGTTGACCGT CCTAGGTCAG CCCAAGGCTG CCCCCTCGGT CACTCTGTTC




CCACCCTCCT CTGAGGAGCT TCAAGCCAAC AAGGCCACAC TGGTGTGTCT CATAAGTGAC




TTCTACCCGG GAGCCGTGAC AGTGGCCTGG AAGGCAGATA GCAGCCCCGT CAAGGCGGGA




GTGGAGACCA CCACACCCTC CAAACAAAGC AACAACAAGT ACGCGGCCAG CAGCTACCTG




AGCCTGACGC CTGAGCAGTG GAAGTCCCAC AAAAGCTACA GCTGCCAGGT CACGCATGAA




GGGAGCACCG TGGAGAAGAC AGTGGCCCCT ACAGAATGTT CA





SEQ ID
N0128L light chain
SYVLTQPPSVSVAPGETARITCGGDNIGRKSVYWYQQKSGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATL


NO: 405
amino acid sequence
TISRVEAGDEADYYCQVWDGSSDHWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG



(mature)
AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTVAPTECS





SEQ ID
N0325L-IgL coding

TACGTGCTGACCCAGCCTCCTTCCGTGTCTGTTGCTCCTGGCGAGACAGCCAGAATCACCTGTGGCGGCGAT



NO: 413
nucleic acid; N0325L

AACATCGGCCGGAAGTCCGTGTACTGGTATCAGCAGAAGTCCGGCCAGGCTCCTGTGCTGGTCATCTACTAC




coding sequence

GACTCCGACCGGCCTTCTGGCATCCCTGAGAGATTCTCCGGCTCCAACTCCGGCAATACCGCCACACTGACC




underlined

ATCTCCAGAGTGGAAGCTGGCGACGAGGCCGACTACTACTGCCAAGTGTGGGACGGCTCCTCTGACCACTGG






GTTTTCGGCGGAGGCACCAAGCTGACAGTGCTGGGACAACCTAAGGCCGCTCCTTCTGTGACCCTGTTTCCT





CCATCCTCCGAGGAACTGCAGGCCAACAAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCT




GTGACCGTGGCCTGGAAGGCTGATAGTTCTCCTGTGAAGGCCGGCGTGGAAACCACCACACCTTCCAAGCAG




TCCAACAACAAATACGCCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACAAGTCCTAC




TCTTGCCAAGTGACCCACGAGGGCTCCACCGTGGAAAAGACAGTGGCTCCTACCGAGTGCTCC





SEQ ID
N0325L light chain
YVLTQPPSVSVAPGETARITCGGDNIGRKSVYWYQQKSGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLT


NO: 414
amino acid sequence
ISRVEAGDEADYYCQVWDGSSDHWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA



(mature)
VTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTVAPTECS









Recombinant expression of bispecific antibody using common light chain N0128L with its native human Igλ leader sequence (v3-21 leader peptide MAWTALLLGLLSHCTGSVT SEQ ID NO: 519) resulted in clipping of the N terminal Ser to produce antibody in which the VL domain was identical to the sequence shown herein for N0325 VL domain. For use with alternative leader sequences in which the mature light chain polypeptide is produced by cleavage after the Ser, the light chain 0325 was generated in order to achieve the same mature product. 0325 omits the N terminal Ser residue of 0128L.


Constant Regions








TABLE S-100





Antibody constant region sequences
















IgG4 PE human
SEQ ID NO: 143


heavy chain
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


constant region
SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVV



DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI



SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS



RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK





IgG4 human heavy
SEQ ID NO: 144


chain constant
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


region with
SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVV


knobs-into-holes
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI


mutations and
SKAKGQPREPQVCTLPPSQEEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


hinge mutation.
RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK


Type a (IgG4ra)






IgG4 human heavy
SEQ ID NO: 145


chain constant
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


region with
SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVV


knobs-into-holes
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI


mutations and
SKAKGQPREPQVYTLPPSQCEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVS


hinge mutation.
RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK


Type b (IgG4yb)






IgG4 human heavy
SEQ ID NO: 409


chain constant
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


region with
SSSLGTQTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVV


P (hinge) mutation
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI


and K439E
SKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS



KLTVDKSRWQEGNVFSCSVMHEALHNHYTQESLSLSP





IgG4 human heavy
SEQ ID NO: 410


chain constant
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP


region with
SSSLGTQTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVV


P (hinge) mutation
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTI


and E356K
SKAKGQPREPQVYTLPPSQKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS



KLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSP





IgG4-P K439E
SEQ ID NO: 411


encoding nucleic
GCTTCCACCAAGGGACCCAGCGTTTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCT


acid
CTGGGCTGCCTGGTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACATCT



GGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCT



TCCAGCTCTCTGGGAACCCAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAG



CGCGTGGAATCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTG



TTTCTGTTCCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTG



GATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAATGCCAAG



ACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGAT



TGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATC



TCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAG



AACCAGGTGTCCCTGACCTGTCTCGTGAAGGGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAAT



GGCCAGCCAGAGAACAACTACAAGACCACACCTCCAGTGCTGGACTCCGACGGCTCATTCTTTCTGTACTCC



AAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCTGTGATGCACGAGGCCCTG



CACAACCACTACACCCAAGAGTCCCTGTCTCTGTCCCCT





IgG4-P E356K
SEQ ID NO: 412


encoding nucleic
GCTTCCACCAAGGGACCCAGCGTGTTCCCTCTGGCTCCTTGCTCCAGATCCACCTCCGAGTCTACAGCTGCT


acid
CTGGGCTGCCTGGTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGACATCT



GGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCT



TCCAGCTCTCTGGGAACCCAGACCTACACCTGTAATGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAG



CGCGTGGAATCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCTCCAGAGTTTCTCGGCGGACCCTCCGTG



TTTCTGTTCCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTG



GATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAG



ACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGAT



TGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTAGCTCCATCGAAAAGACCATC



TCCAAGGCCAAGGGCCAGCCTCGAGAACCCCAGGTTTACACCCTGCCTCCAAGCCAGAAAGAGATGACCAAG



AACCAGGTGTCCCTGACCTGCCTCGTGAAGGGCTTCTACCCTTCCGATATCGCCGTGGAATGGGAGAGCAAT



GGCCAGCCAGAGAACAACTACAAGACCACACCTCCTGTGCTGGACTCCGATGGCTCATTCTTTCTGTACTCC



AAGCTGACAGTGGACAAGTCCCGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCTGTGATGCACGAGGCCCTG



CACAACCACTACACCCAGAAGTCCCTGTCTCTGTCCCCT





Nucleic acid
SEQ ID NO: 633


encoding IgL
GGACAACCTAAGGCCGCTCCTTCTGTGACCCTGTTTCCTCCATCCTCCGAGGAACTGCAGGCCAACAAGGCT


human lambda
ACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCTGTGACCGTGGCCTGGAAGGCTGATAGTTCTCCT


light chain
GTGAAGGCCGGCGTGGAAACCACCACACCTTCCAAGCAGTCCAACAACAAATACGCCGCCTCCTCCTACCTG


constant region
TCTCTGACCCCTGAACAGTGGAAGTCCCACAAGTCCTACTCTTGCCAAGTGACCCACGAGGGCTCCACCGTG



GAAAAGACAGTGGCTCCTACCGAGTGCTCC





Human lambda
SEQ ID NO: 146


light chain
GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYL


constant region
SLTPEQWKSHKSYSCQVTHEGSTVEKTVAPTECS





Human kappa
SEQ ID NO: 147


light chain
KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST


constant region
LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
















TABLE N







N128H Alanine Scanning Mutants






























CDR1 (GFTFNSW)
G
F
T
F
N
S
Y
W














(SEQ ID NO: 1)
N400H
N401H
N402H
N403H
N404H
N405H
N406H
N407H

















CDR2 (INQDGSEK)
I
N
Q
D
G
S
E
K














(SEQ ID NO: 2)
N408H
N409H
N410H
N411H
N412H
N413H
N414H
N415H

















CDR3 (ARE
A
R
E
G
Y
S
S
S
S
Y
Y
G
M
D
V







GYSSSSYYGMDV)

N416H
N417H
N418H
N419H
N420H
N421H
N422H
N423H
N424H
N425H
N426H
N427H
N428H
N429H







(SEQ ID NO: 3)










N128H CDR3 Mutants



























CDR3
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y





AREGYSSSSYYGMDV
N420H
N467H
N468H
N469H
N470H
N471H
N472H
N473H
N474H
N475H
N476H
N477H
N478H
N479H
N480H
N128H
N481H
N482H
N483H
N484H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N421H
N485H
N486H
N487H
N488H
N489H
N490H
N491H
N492H
N493H
N494H
N495H
N496H
N497H
N498H
N128H
N499H
N500H
N501H
N502H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N422H
N430H
N431H
N432H
N433H
N434H
N435H
N436H
N437H
N438H
N439H
N440H
N441H
N442H
N443H
N128H
N444H
N445H
N446H
N447H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N423H
N448H
N449H
N450H
N451H
N452H
N453H
N454H
N455H
N456H
N457H
N458H
N459H
N460H
N461H
N128H
N462H
N463H
N464H
N465H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N424H
N542H
N543H
N544H
N545H
N546H
N547H
N548H
N549H
N550H
N551H
N552H
N553H
N554H
N555H
N559H
N556H
N557H
N558H
N128H


(SEQ ID NO: 3)

























AREGYSSSSYYGDV
N425H
N561H
N562H
N563H
N564H
N565H
N566H
N567H
N568H
N569H
N570H
N571H
N572H
N573H
N574H
N578H
N575H
N576H
N577H
N128H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N426H
N579H
N580H
N581H
N582H
N128H
N583H
N584H
N585H
N586H
N587H
N588H
N589H
N590H
N591H
N592H
N593H
N594H
N595H
N596H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N427H
N597H
N598H
N599H
N600H
N601H
N602H
N603H
N604H
N605H
N128H
N606H
N607H
N608H
N609H
N610H
N611H
N612H
N613H
N614H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N428H
N615H
N128H
N616H
N617H
N618H
N619H
N620H
N621H
N622H
N623H
N624H
N625H
N626H
N627H
N628H
N629H
N630H
N631H
N632H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N429H
N633H
N634H
N635H
N636H
N637H
N638H
N639H
N640H
N641H
N642H
N643H
N644H
N645H
N646H
N647H
N648H
N128H
N649H
N650H


(SEQ ID NO: 3)


























AREGYSSSSYYGMDV

N128H
N651H
N652H
N653H
N654H
N655H
N656H
N657H
N658H
N659H
N660H
N661H
N662H
N663H
N664H
N665H
N666H
N667H
N668H
N669H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N416H
N670H
N671H
N672H
N673H
N674H
N675H
N676H
N677H
N678H
N679H
N680H
N681H
N682H
N128H
N683H
N684H
N685H
N686H
N687H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N417H
N689H
N690H
N128H
N691H
N692H
N693H
N694H
N695H
N696H
N697H
N698H
N699H
N700H
N701H
N702H
N703H
N704H
N705H
N706H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N418H
N707H
N708H
N709H
N710H
N128H
N711H
N712H
N713H
N714H
N715H
N716H
N717H
N718H
N719H
N720H
N721H
N722H
N723H
N724H


(SEQ ID NO: 3)

























AREGYSSSSYYGMDV
N419H
N725H
N726H
N727H
N728H
N729H
N730H
N731H
N732H
N733H
N734H
N735H
N736H
N737H
N738H
N739H
N740H
N741H
N742H
N128H


(SEQ ID NO: 3)










N436H CDR3 Mutants



























CDR3
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y





AREGYSSISYYGMDV
N503H
N504H
N505H
N506H
N507H
N508H
N509H
N510H
N511H
N512H
N513H
N514H
N515H
N516H
N517H
N436H
N518H
N519H
N520H
N521H


(SEQ ID NO: 171)

























AREGYSSISYYGMDV
N522H
N523H
N524H
N525H
N526H
N527H
N528H
N529H
N530H
N531H
N532H
N533H
N534H
N535H
N536H
N436H
N537H
N538H
N539H
N540H


(SEQ ID NO: 171)










N436H CDR1 Mutants



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW


N819H
N820H
N821H
N822H
N436H
N823H
N824H
N825H
N826H
N827H
N828H
N829H
N830H
N831H
N832H
N833H
N834H
N835H
N836H


(SEQ ID NO: 1)

























GFTFNSYW

N837H
N838H
N839H
N436H
N840H
N841H
N842H
N843H
N844H
N845H
N846H
N847H
N848H
N849H
N850H
N851H
N852H
N853H
N854H


(SEQ ID NO: 1)

























GFTFNSYW

N856H
N857H
N858H
N859H
N860H
N861H
N862H
N863H
N864H
N865H
N866H
N867H
N868H
N869H
N870H
N436H
N871H
N872H
N873H


(SEQ ID NO: 1)

























GFTFNSYW

N874H
N875H
N876H
N436H
N877H
N878H
N879H
N880H
N881H
N882H
N883H
N884H
N885H
N886H
N887H
N888H
N889H
N890H
N891H


(SEQ ID NO: 1)

























GFTFNSYW

N892H
N893H
N894H
N895H
N896H
N897H
N898H
N899H
N900H
N901H
N436H
N902H
N903H
N904H
N905H
N906H
N907H
N908H
N909H


(SEQ ID NO: 1)

























GFTFNSYW

N910H
N911H
N912H
N913H
N914H
N915H
N916H
N917H
N918H
N919H
N920H
N921H
N922H
N923H
N436H
N924H
N925H
N926H
N927H


(SEQ ID NO: 1)

























GFTFNSYW

N928H
N929H
N930H
N931H
N932H
N933H
N934H
N935H
N936H
N937H
N938H
N939H
N940H
N941H
N942H
N943H
N944H
N945H
N436H


(SEQ ID NO: 1)

























GFTFNSYW

N946H
N947H
N948H
N949H
N950H
N951H
N952H
N953H
N954H
N955H
N956H
N957H
N958H
N959H
N960H
N961H
N962H
N436H
N963H


(SEQ ID NO: 1)










N436H CDR2 Mutants



























CDR2
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






INQDGSEK

N964H
N965H
N966H
N967H
N968H
N969H
N970H
N436H
N971H
N972H
N973H
N974H
N975H
N976H
N977H
N978H
N979H
N980H
N981H
N982H


(SEQ ID NO: 2)

























INQDGSEK
N983H
N984H
N985H
N986H
N987H
N988H
N989H
N990H
N991H
N992H
N993H
N436H
N994H
N995H
N996H
N997H
N998H
N999H
N1000H
N1001H


(SEQ ID NO: 2)

























INQDGSEK
N1002H
N1003H
N1004H
N1005H
N1006H
N1007H
N1008H
N1009H
N1010H
N1011H
N1012H
N1013H
N1014H
N436H
N1015H
N1016H
N1017H
N1018H
N1019H
N1020H


(SEQ ID NO: 2)

























INQDGSEK
N1021H
N1022H
N436H
N1023H
N1024H
N1025H
N1026H
N1027H
N1028H
N1029H
N1030H
N1031H
N1032H
N1033H
N1034H
N1035H
N1036H
N1037H
N1038H
N1039H


(SEQ ID NO: 2)

























INQDGSEK
N1040H
N1041H
N1042H
N1043H
N1044H
N436H
N1045H
N1046H
N1047H
N1048H
N1049H
N1050H
N1051H
N1052H
N1053H
N1054H
N1055H
N1056H
N1057H
N1058H


(SEQ ID NO: 2)

























INQDGSEK
N1059H
N1060H
N1061H
N1062H
N1063H
N1064H
N1065H
N1066H
N1067H
N1068H
N1069H
N1070H
N1071H
N1072H
N1073H
N436H
N1074H
N1075H
N1076H
N1077H


(SEQ ID NO: 2)

























INQDGSEK
N1078H
N1079H
N1080H
N436H
N1081H
N1082H
N1083H
N1084H
N1085H
N1086H
N1087H
N1088H
N1089H
N1090H
N1091H
N1092H
N1093H
N1094H
N1095H
N1096H


(SEQ ID NO: 2)

























INQDGSEK
N1097H
N1098H
N1099H
N1100H
N1101H
N1102H
N1103H
N1104H
N436H
N1105H
N1106H
N1107H
N1108H
N1109H
N1110H
N1111H
N1112H
N1113H
N1114H
N1115H


(SEQ ID NO: 2)










N511H CDR2 Mutants



























CDR2
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






INQDGSEK


N1116H














N1117H
N1118H




(SEQ ID NO: 2)

























INQDGSEK






















(SEQ ID NO: 2)

























INQDGSEK








N1119H













(SEQ ID NO: 2)

























INQDGSEK
N1120H
N1121H
N511H
N1122H
N1123H
N1124H
N1125H
N1126H
N1127H
N1128H
N1129H
N1130H
N1131H
N1132H
N1133H
N1134H
N1135H
N1136H
N1137H
N1138H


(SEQ ID NO: 2)

























INQDGSEK
N1139H





















(SEQ ID NO: 2)

























INQDGSEK
N1140H
N1141H
N1142H
N1143H
N1144H
N1145H
N1146H
N1147H
N1148H
N1149H
N1150H
N1151H
N1152H
N1153H
N1154H
N511H
N1155H
N1156H
N1157H
N1158H


(SEQ ID NO: 2)

























INQDGSEK
N1159H
N1160H
N1161H
N511H
N1162H
N1163H
N1164H
N1165H
N1166H
N1167H
N1168H
N1169H
N1170H
N1171H
N1172H
N1173H
N1174H
N1175H
N1176H
N1177H


(SEQ ID NO: 2)

























INQDGSEK






















(SEQ ID NO: 2)










Selected N436H CDR1 Mutants (batch 1)



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW









N825H






N832H
N833H





(SEQ ID NO: 1)

























GFTFNSYW














N849H







(SEQ ID NO: 1)

























GFTFNSYW








N863H


N866H










(SEQ ID NO: 1)

























GFTFNSYW


N875H



N878H










N889H




(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW








N917H


N920H
N921H




N925H




(SEQ ID NO: 1)

























GFTFNSYW







N934H

N936H
N937H

N939H
N940H
N941H
N942H
N943H
N944H
N945H



(SEQ ID NO: 1)

























GFTFNSYW

N946H
N947H
N948H
N949H
N950H
N951H
N952H
N953H
N954H
N955H
N956H
N957H






N963H


(SEQ ID NO: 1)










N511H CDR1 Mutants



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW









N1178H






N1179H
N1180H





(SEQ ID NO: 1)

























GFTFNSYW














N1181H







(SEQ ID NO: 1)

























GFTFNSYW








N1182H


N1183H










(SEQ ID NO: 1)

























GFTFNSYW


N1211H



N1212H










N1213H




(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW








N1184H


N1185H
N1186H




N1187H




(SEQ ID NO: 1)

























GFTFNSYW







N1188H

N1189H
N1190H

N1191H
N1192H
N1193H
N1194H
N1195H
N1196H
N1197H



(SEQ ID NO: 1)

























GFTFNSYW

N1198H
N1199H
N1200H
N1201H
N1202H
N1203H
N1204H
N1205H
N1206H
N1207H
N1208H
N1209H






N1210H


(SEQ ID NO: 1)










N1172H CDR1 Mutants



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW









N1214H






N1215H
N1216H





(SEQ ID NO: 1)

























GFTFNSYW














N1217H







(SEQ ID NO: 1)

























GFTFNSYW








N1218H


N1219H










(SEQ ID NO: 1)

























GFTFNSYW


N1247H



N1248H










N1249H




(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW








N1220H


N1221H
N1222H




N1223H




(SEQ ID NO: 1)

























GFTFNSYW







N1224H

N1225H
N1226H

N1227H
N1228H
N1229H
N1230H
N1231H
N1232H
N1233H



(SEQ ID NO: 1)

























GFTFNSYW

N1234H
N1235H
N1236H
N1237H
N1238H
N1239H
N1240H
N1241H
N1242H
N1243H
N1244H
N1245H






N1246H


(SEQ ID NO: 1)










Selected N436H CDR1 Mutants (batch 2)



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW























(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW














N869H



N872H
N873H


(SEQ ID NO: 1)

























GFTFNSYW





N877H








N886H

N888H
N889H

N891H


(SEQ ID NO: 1)

























GFTFNSYW

N892H
N893H
N894H
N895H
N896H
N897H
N898H
N899H
N900H
N901H

N902H
N903H
N904H
N905H
N906H
N907H
N908H
N909H


(SEQ ID NO: 1)

























GFTFNSYW






N915H







N923H



N926H



(SEQ ID NO: 1)

























GFTFNSYW










N937H











(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)










N511H CDR1 Mutants




























A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW























(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW














N1250H



N1251H
N1252H


(SEQ ID NO: 1)

























GFTFNSYW





N1253H








N1254H

N1255H
N1256H

N1257H


(SEQ ID NO: 1)

























GFTFNSYW

N1258H
N1259H
N1260H
N1261H
N1262H
N1263H
N1264H
N1265H
N1266H
N1267H

N1268H
N1269H
N1270H
N1271H
N1272H
N1273H
N1274H
N1275H


(SEQ ID NO: 1)

























GFTFNSYW






N1276H







N1277H



N1278H



(SEQ ID NO: 1)

























GFTFNSYW










N1279H











(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)










N1172H CDR1 Mutants




























A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






GFTFNSYW























(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)

























GFTFNSYW















N1280H




N1281H
N1282H


(SEQ ID NO: 1)

























GFTFNSYW





N1283H








N1284H

N1285H
N1286H

N1287H


(SEQ ID NO: 1)

























GFTFNSYW

N1288H
N1289H
N1290H
N1291H
N1292H
N1293H
N1294H
N1295H
N1296H
N1297H

N1298H
N1299H
N1300H
N1301H
N1302H
N1303H
N1304H
N1305H


(SEQ ID NO: 1)

























GFTFNSYW






N1306H







N1307H



N1308H



(SEQ ID NO: 1)

























GFTFNSYW










N1309H











(SEQ ID NO: 1)

























GFTFNSYW






















(SEQ ID NO: 1)










N1280H CDR2 Mutants



























CDR2
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y





INQDGSRK
N1310H
N1311H
N1280H
N1312H
N1313H
N1314H
N1315H
N1316H
N1317H
N1318H
N1319H
N1320H
N1321H
N1322H
N1323H
N1324H
N1325H
N1326H
N1327H
N1328H


(SEQ ID NO: 436)

























INQDGSRK
N1329H
N1330H
N1331H
N1332H
N1333H
N1334H
N1335H
N1336H
N1337H
N1338H
N1339H
N1340H
N1341H
N1342H
N1343H
N1280H
N1344H
N1345H
N1346H
N1347H


(SEQ ID NO: 436)










N1280H CDR1 Mutants



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y





GFRFNSYW
N1367H
N1368H
N1369H
N1370H
N1371H
N1372H
N1373H
N1374H
N1375H
N1376H
N1377H
N1378H
N1379H
N1380H
N1381H
N1382H
N1383H
N1384H
N1385H
N1280H


(SEQ ID NO: 441)










N1280H CDR1 Double Mutants (all including Arg29Lys, with Tyr37 mutated as shown)



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y





GFKFNSYW
N1348H
N1349H
N1360H
N1351H
N1352H
N1353H
N1354H
N1355H
N1356H
N1357H
N1358H
N1359H
N1360H
N1361H
N1362H
N1363H
N1364H
N1365H
N1366H



(SEQ ID NO: 647)
















TABLE T







T0201H CDR3 Mutants



























CDR3
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






ARDGYGSSSRCLQL


T400H
T401H
T402H
T403H
T404H
T405H
T406H
T407H
T408H
T409H
T410H
T411H
T412H
T413H
T414H
T415H
T416H
T417H
T418H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T419H
T420H
T421H
T422H
T423H
T424H
T425H
T426H
T427H
T428H
T429H
T430H
T431H
T432H

T433H
T434H
T435H
T436H
T437H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T438H
T439H

T440H
T441H
T442H
T443H
T444H
T445H
T446H
T447H
T448H
T449H
T450H
T451H
T452H
T453H
T454H
T455H
T456H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T457H
T458H
T459H
T460H
T461H

T462H
T463H
T464H
T465H
T466H
T467H
T468H
T469H
T470H
T471H
T472H
T473H
T474H
T475H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T476H
T477H
T478H
T479H
T480H
T481H
T482H
T483H
T484H
T485H
T486H
T487H
T488H
T489H
T490H
T491H
T492H
T493H
T494H



(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T495H
T496H
T497H
T498H
T499H

T500H
TSOIH
T502H
T503H
T504H
T505H
T506H
T507H
T508H
T509H
T510H
T511H
T512H
T513H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T514H
TS15H
T516H
T517H
T518H
T519H
TS20H
T521H
T522H
T523H
TS24H
T525H
T526H
T527H
T528H

T529H
T530H
T531H
T532H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T533H
T534H
T535H
T536H
T537H
T538H
T539H
T540H
T541H
T542H
T543H
T544H
T545H
T546H
T547H

T548H
T549H
T550H
T551H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T552H
T553H
T554H
T555H
T556H
T557H
T558H
T559H
T560H
T561H
T562H
T563H
T564H
T565H
T566H

T567H
T568H
T569H
T570H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T571H
T572H
T573H
T574H
T575H
T576H
T577H
T578H
T579H
T580H
T581H
T582H
T583H
T584H

T585H
T586H
T587H
T588H
T589H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T590H

T591H
T592H
T593H
T594H
T595H
T596H
T597H
T598H
T599H
T600H
T601H
T602H
T603H
T604H
T605H
T606H
T607H
T608H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T609H
T610H
T611H
T612H
T613H
T614H
T61SH
T616H
T617H

T618H
T619H
T620H
T621H
T622H
T623H
T624H
T625H
T626H
T627H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T628H
T629H
T630H
T631H
T632H
T633H
T634H
T635H
T636H
T637H
T638H
T639H
T640H

T641H
T642H
T643H
T644H
T645H
T646H


(SEQ ID NO: 468)

























ARDGYGSSSRCLQL
T647H
T648H
T649H
T650H
T651H
T652H
T653H
T654H
T655H

T656H
T657H
T658H
T659H
T660H
T661H
T662H
T663H
T664H
T665H


(SEQ ID NO: 468)










T0681H CDR1 Mutants



























CDR1
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






RYSFTSYY

T690H
T691H
T692H
T693H
T694H
T695H
T696H
T697H
T698H
T699H
T700H
T701H
T702H
T703H
T704H
T705H
T706H
T707H
T708H



(SEQ ID NO: 462)

























RYSFTSYY
T709H
T710H
T711H
T712H
T713H
T714H
T715H
T716H
T717H
T718H
T719H
T720H
T721H
T722H
T723H
T724H
T725H
T726H
T727H



(SEQ ID NO: 462)

























RYSFTSYY
T728H
T729H
T730H
T731H
T732H
T733H
T734H
T735H
T736H
T737H
T738H
T739H
T740H
T741H
T742H
T743H
T744H
T745H
T746H



(SEQ ID NO: 462)

























RYSFTSYY
T747H
T748H
T749H
T750H
T751H
T752H
T753H
T754H
T755H
T756H
T757H
T758H
T759H
T760H
T761H
T762H
T763H
T764H
T765H



(SEQ ID NO: 462)

























RYSFTSYY
T766H
T767H
T768H
T769H
T770H
T771H
T772H
T773H
T774H
T775H
T776H
T777H
T778H
T779H
T780H
T781H
T782H
T783H
T784H



(SEQ ID NO: 462)

























RYSFTSYY
T785H
T786H
T787H
T788H
T789H
T790H
T791H
T792H
T793H
T794H
T795H
T796H
T797H
T798H
T799H
T800H
T801H
T802H
T803H



(SEQ ID NO: 462)

























RYSFTSYY
T804H
T805H
T806H
T807H
T808H
T809H
T810H
T811H
T812H
T813H
T814H
T815H
T816H
T817H
T818H
T819H
T820H
T821H
T822H



(SEQ ID NO: 462)

























RYSFTSYY
T823H
T824H
T825H
T826H
T827H
T828H
T829H
T830H
T831H
T832H
T833H
T834H
T835H
T836H
T837H
T838H
T839H
T840H
T841H



(SEQ ID NO: 462)










T0681H CDR2 Mutants



























CDR2
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y






INPKSGST

T842H
T843H
T844H
T845H
T846H
T847H
T848H
T849H
T850H
T851H
T852H
T853H
T854H
T855H
T856H
T857H
T858H
T859H
T860H



(SEQ ID NO: 467)

























INPKSGST
T861H
T862H
T863H
T864H
T865H
T866H
T867H
T868H
T869H
T870H
T871H
T872H
T873H
T874H
T875H
T876H
T877H
T878H
T879H



(SEQ ID NO: 467)

























INPKSGST
T880H
T881H
T882H
T883H
T884H
T885H
T886H
T887H
T888H
T889H
T890H
T891H
T892H
T893H
T894H
T895H
T896H
T897H
T898H



(SEQ ID NO: 467)

























INPKSGST
T899H
T900H
T901H
T902H
T903H
T904H
T905H
T906H
T907H
T908H
T909H
T910H
T911H
T912H
T913H
T914H
T915H
T916H
T917H



(SEQ ID NO: 467)

























INPKSGST
T918H
T919H
T920H
T921H
T922H
T923H
T924H
T925H
T926H
T927H
T928H
T929H
T930H
T931H
T932H
T933H
T934H
T935H
T936H



(SEQ ID NO: 467)

























INPKSGST
T937H
T938H
T939H
T940H
T941H
T942H
T943H
T944H
T945H
T946H
T947H
T948H
T949H
T950H
T951H
T952H
T953H
T954H
T955H



(SEQ ID NO: 467)

























INPKSGST
T956H
T957H
T958H
T959H
T960H
T961H
T962H
T963H
T964H
T965H
T966H
T967H
T968H
T969H
T970H
T971H
T972H
T973H
T974H



(SEQ ID NO: 467)

























INPKSGST
T975H
T976H
T977H
T978H
T979H
T980H
T981H
T982H
T983H
T984H
T985H
T986H
T987H
T988H
T989H
T990H
T991H
T992H
T993H



(SEQ ID NO: 467)










T678H









CDR2 Mutations
















T678H
T850H
T925H
T926H
T951H
T958H
T989H
T990H



INPKSGST

LNPKSGST

INPKIGST
INPKKGST
INPKSSST
INPKSGDT
INPKSGSR
INPKSGSS



(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID


CDR1 Mutations
NO: 467)
NO: 610)
NO: 613)
NO: 616)
NO: 619)
NO: 477)
NO: 625)
NO: 628)



















T678H
RYSFTSYY (SEQ ID NO: 462)
T678H
T1015H
T1022H
T1029H
T1036H
T1043H
T1050H
T1057H





T713H
RFSFTSYY (SEQ ID NO: 592)
T1009H
T1016H
T1023H
T1030H
T1037H
T1044H
T1051H
T1058H





T734H
RYHFTSYY (SEQ ID NO: 595)
T1010H
T1017H
T1024H
T1031H
T1038H
T1045H
T1052H
T1059H





T736H
RYKFTSYY (SEQ ID NO: 598)
T1011H
T1018H
T1025H
T1032H
T1039H
T1046H
T1053H
T1060H





T742H
RYRFTSYY (SEQ ID NO: 601)
T1012H
T1019H
T1026H
T1033H
T1040H
T1047H
T1054H
T1061H





T774H
RYSFKSYY (SEQ ID NO: 604)
T1013H
T1020H
T1027H
T1034H
T1041H
T1048H
T1055H
T1062H





T785H
RYSFTAYY (SEQ ID NO: 607)
T1014H
T1021H
T1028H
T1035H
T1042H
T1049H
T1056H
T1063H










T681H









CDR2 Mutations
















T678H
T850H
T925H
T926H
T951H
T958H
T989H
T990H



INPKSGST

LNPKSGST

INPKIGST
INPKKGST
INPKSSST
INPKSGDT
INPKSGSR
INPKSGSS



(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID


CDR1 Mutations
NO: 467)
NO: 610)
NO: 613)
NO: 616)
NO: 619)
NO: 477)
NO: 625)
NO: 628)



















T681H
RYSFTSYY (SEQ ID NO: 462)
T681H
T850H
T925H
T926H
T951H
T958H
T989H
T990H





T713H
RFSFTSYY (SEQ ID NO: 592)
T713H
T1064H
T1070H
T1076H
T1082H
T1088H
T1094H
T1100H





T734H
RYHFTSYY (SEQ ID NO: 595)
T734H
T1065H
T1071H
T1077H
T1083H
T1089H
T1095H
T1101H





T736H
RYKFTSYY (SEQ ID NO: 598)
T736H
T1066H
T1072H
T1078H
T1084H
T1090H
T1096H
T1102H





T742H
RYRFTSYY (SEQ ID NO: 601)
T742H
T1067H
T1073H
T1079H
T1085H
T1091H
T1097H
T1103H





T774H
RYSFKSYY (SEQ ID NO: 604)
T774H
T1068H
T1074H
T1080H
T1086H
T1092H
T1098H
T1104H





T785H
RYSFTAYY (SEQ ID NO: 607)
T785H
T1069H
T1075H
T1081H
T1087H
T1093H
T1099H
T1105H










T687H









CDR2 Mutations
















T678H
T850H
T925H
T926H
T951H
T958H
T989H
T990H



INPKSGST

LNPKSGST

INPKIGST
INPKKGST
INPKSSST
INPKSGDT
INPKSGSR
INPKSGSS



(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID


CDR1 Mutations
NO: 467)
NO: 610)
NO: 613)
NO: 616)
NO: 619)
NO: 477)
NO: 625)
NO: 628)



















T687H
RYSFTSYY (SEQ ID NO: 462)
T687H
T1113H
T1120H
T1127H
T1134H
T1141H
T1148H
T1155H





T713H
RFSFTSYY (SEQ ID NO: 592)
T1107H
T1114H
T1121H
T1128H
T1135H
T1142H
T1149H
T1156H





T734H
RYHFTSYY (SEQ ID NO: 595)
T1108H
T1115H
T1122H
T1129H
T1136H
T1143H
T1150H
T1157H





T736H
RYKFTSYY (SEQ ID NO: 598)
T1109H
T1116H
T1123H
T1130H
T1137H
T1144H
T1151H
T1158H





T742H
RYRFTSYY (SEQ ID NO: 601)
T1110H
T1117H
T1124H
T1131H
T1138H
T1145H
T1152H
T1159H





T774H
RYSFKSYY (SEQ ID NO: 604)
T1111H
T1118H
T1125H
T1132H
T1139H
T1146H
T1153H
T1160H





T785H
RYSFTAYY (SEQ ID NO: 607)
T1112H
T1119H
T1126H
T1133H
T1140H
T1147H
T1154H
T1161H 








Claims
  • 1. A bispecific antibody that binds FIXa and FX and catalyses FIXa-mediated activation of FX, wherein the antibody comprises two immunoglobulin heavy-light chain pairs, wherein a first heavy-light chain pair comprises a FIXa binding Fv region comprising a first VH domain paired with a first VL domain, anda second heavy-light chain pair comprises a FX binding Fv region comprising a second VH domain paired with a second VL domain, whereinthe first VH domain comprises a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 441; HCDR2 is SEQ ID NO: 436; and HCDR3 is SEQ ID NO: 433, and wherein the first VH domain is at least 95% identical to the N1280H VH domain SEQ ID NO: 443 at the amino acid sequence level;the second VH domain comprises a set of HCDRs comprising HCDR1, HCDR2 and HCDR3 with amino acid sequences defined wherein HCDR1 is SEQ ID NO: 598, SEQ ID NO: 2 is SEQ ID NO: 467 and HCDR3 is SEQ ID NO: 565, and wherein the second VH domain is at least 95% identical to the T0999H VH domain SEQ ID NO: 632 at the amino acid sequence level, andthe first VL domain and the second VL domain each comprise a set of LCDRs comprising LCDR1, LCDR2 and LCDR3 with amino acid sequences defined wherein LCDR1 is SEQ ID NO: 6, LCDR2 is SEQ ID NO: 7 and LCDR3 is SEQ ID NO: 8, and wherein the first VL domain and the second VL domain are at least 95% identical to the 0128L VL domain SEQ ID NO: 10 at the amino acid sequence level.
  • 2. The bispecific antibody according to claim 1, wherein the first VII domain is the N1280H VH domain SEQ. ID NO: 443.
  • 3. The bispecific antibody according to claim 1, wherein the first domain is the N441H VII domain SEQ ID NO: 456.
  • 4. The bispecific antibody according to claim 1, wherein the second VH domain comprises SEQ ID NO: 632.
  • 5. The bispecific antibody according to claim 1, wherein the first VL domain and the second VL domain are identical in amino acid sequence.
  • 6. The bispecific antibody according to claim 5, wherein the first VL domain and the second VL domain comprise the 0325L amino acid sequence SEQ ID NO: 416.
  • 7. The bispecific antibody according to claim 1, wherein each heavy-light chain pair further comprises a CL constant domain paired with a CH1 domain.
  • 8. The bispecific antibody according to claim 1, wherein the heavy-light chain pairs comprise a common light chain.
  • 9. The bispecific antibody according to claim 8, wherein the common light chain comprises the CL amino acid sequence SEQ ID NO: 146 of the 0128L light chain.
  • 10. The bispecific antibody according to claim 9, wherein the common light chain is the 0325L light chain SEQ ID NO: 414.
  • 11. The bispecific antibody according to claim 1, wherein the heavy chain of each heavy-light chain comprises a heavy chain constant region and wherein the first and second heavy-light chain pairs associate to form tetrameric immunoglobulin through dimerisation of the heavy chain constant regions.
  • 12. The bispecific antibody according to claim 11, wherein the heavy chain constant region of the first heavy-light chain pair comprises a different amino acid sequence from the heavy chain constant region of the second heavy-light chain pair, wherein the different amino acid sequences are engineered to promote heterodimerisation of the heavy chain constant regions.
  • 13. The bispecific antibody according to claim 11, wherein the heavy chain constant region of one or both heavy-light chain pairs is a human IgG4 constant region comprising substitution S228P, wherein constant region numbering is according to the EU numbering system.
  • 14. The bispecific antibody according to claim 11, wherein the heavy chain constant region of one (e.g., the first) heavy-light chain pair comprises SEQ ID NO: 409 and the heavy chain constant region of the other (e.g., the second) heavy-light chain pair comprises SEQ ID NO: 410.
  • 15. The bispecific antibody according to claim 11, comprising a first heavy chain comprising a first VH domain amino acid sequence SEQ ID NO: 443 or SEQ ID NO: 456,a second heavy chain comprising a second VH domain amino acid sequence SEQ ID NO: 632, anda common light chain comprising a VL domain amino acid sequence SEQ ID NO: 416.
  • 16. The bispecific antibody according to claim 11, comprising a first heavy chain comprising amino acid sequence SEQ ID NO: 419,a second heavy chain comprising amino acid sequence SEQ ID NO: 421, anda common light chain comprising amino acid sequence SEQ ID NO: 414.
  • 17. The bispecific antibody according to claim 11, comprising a first heavy chain comprising amino acid sequence SEQ ID NO: 426a second heavy chain comprising amino acid sequence SEQ ID NO: 421, anda common light chain comprising amino acid sequence SEQ ID NO: 414.
Priority Claims (3)
Number Date Country Kind
1820977.5 Dec 2018 GB national
1906816.2 May 2019 GB national
1908190.0 Jun 2019 GB national
US Referenced Citations (5)
Number Name Date Kind
8062635 Hattori Nov 2011 B2
9334331 Igawa May 2016 B2
20030219441 Thorpe Nov 2003 A1
20050058640 Kerschbaumer Mar 2005 A1
20160222129 Igawa Aug 2016 A1
Foreign Referenced Citations (23)
Number Date Country
3027018 Feb 2018 CA
0119992 Mar 2001 WO
2005025615 Mar 2005 WO
2005035753 Apr 2005 WO
2005035754 Apr 2005 WO
2005035756 Apr 2005 WO
2006109592 Oct 2006 WO
2012067176 May 2012 WO
2015194233 Dec 2015 WO
2016047656 Mar 2016 WO
2016166014 Oct 2016 WO
2016171202 Oct 2016 WO
2017110980 Jun 2017 WO
2017136820 Aug 2017 WO
2017200981 Nov 2017 WO
2018021450 Feb 2018 WO
2018047813 Mar 2018 WO
2018098363 May 2018 WO
2018141863 Aug 2018 WO
2018145125 Aug 2018 WO
2018234575 Dec 2018 WO
2019065795 Apr 2019 WO
2019096874 May 2019 WO
Non-Patent Literature Citations (26)
Entry
Janeway et al., Immunobiology, 3rd edition, Garland Publishing Inc., 1997, pp. 3:1-3:21.
Rudikoff et al., Proc Natl Acad Sci USA. Mar. 1982;79(6):1979-83.
Edwards et al.,J Mol Biol. Nov. 14, 2003;334(1): 103-18.
Llyod et al., Protein Eng Des Sel. Mar. 2009;22(3):159-68. doi: 10.1093/protein/gzn058. Epub Oct. 29, 2008.
Goel et al., J Immunol. Dec. 15, 2004; 173(12):7358-67.
Kanyavuz et al., Nat Rev Immunol. Jun. 2019;19(6):355-368. doi: 10.1038/S41577-019-0126-7.
Aleman, Maria M., et al. “Phospholipid-Independent Activity of Fviiia Mimetic Bispecific Antibodies in Plasma.” Blood 132.Supplement 1 (2018): 2461-2461.
Brandstetter, Hans, et al. “X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B.” Proceedings of the National Academy of Sciences 92.21 (1995): 9796-9800.
Haemophilia (2014), 20(suppl. 3), 1-186.
Kitazawa, Takehisa, et al. “A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model.” Nature medicine 18.10 (2012): 1570-1574.
Knappe, Sabrine et al. “Biospecific antibodies with light chain specificity for factor IXa and X improve thrombingeneration in hemophilia a plasma.” 27th congress of the international society of thrombosis and homeostasis, Jul. 6-10, 2019, Melbourne, Australia, 1 pg.
Knobe, Karin, and Erik Berntorp. “New treatments in hemophilia: insights for the clinician.” Therapeutic advances in hematology 3.3 (2012): 165-175.
Leksa, Nina C., et al. “Intrinsic differences between FVIII a mimetic bispecific antibodies and FVIII prevent assignment of FVIII□equivalence.” Journal of Thrombosis and Haemostasis 17.7 (2019): 1044-1052 Supplementary Material.
Leksa, Nina C., et al. “Intrinsic differences between FVIII a mimetic bispecific antibodies and FVIII prevent assignment of FVIII□equivalence.” Journal of Thrombosis and Haemostasis 17.7 (2019): 1044-1052.
Muto, Atsushi, et al. “Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a longterm primate model of acquired hemophilia A.” Blood, The Journal of the American Society of Hematology 124.20 (2014): 3165-3171.
Oldenburg J, Mahlangu JN, Kim B, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. DOI: 10.1056/NEJMoa1703068, 29 pages.
Oldenburg, Johannes, et al. “Emicizumab prophylaxis in hemophilia A with inhibitors.” New England Journal of Medicine 377.9 (2017): 809-818.
Sampei, Zenjiro, et al. “Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity.” PloS one 8.2 (2013), 13 pages.
Shima, Midori, et al. “Factor VIII—mimetic function of humanized bispecific antibody in hemophilia A.” New England Journal of Medicine 374.21 (2016): 2044-2053.
Smith, Eric J., et al. “A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys.” Scientific reports 5 (2015): 17943.
Tripodi, Armando. “Thrombin generation assay and its application in the clinical laboratory.” Clinical chemistry 62.5 (2016): 699-707.
Uchida, Naoki, et al. “A first-in-human phase 1 study of ACE910, a novel factor VIII—mimetic bispecific antibody, in healthy subjects.” Blood, The Journal of the American Society of Hematology 127.13 (2016): 1633-1641.
Young, Guy, et al. “Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: current state of art and future perspectives.” Blood, The Journal of the American Society of Hematology 121.11 (2013): 1944-1950.
International Search Report and Written Opinion for App No. PCT/EP2019/086808, dated Apr. 17, 2020, 20 pages.
Ido Paz-Priel et al.: “Immunogenicity of Emicizumab in People with Hemophilia A (PwHA): Results from the HAVEN 1-4 Studies”, Blood, vol. 132, Nov. 29, 2018, p. 633, XP055683059.
Hoad R. B. et al.: “Characterisation of monoclonal antibodies to human factor X/Xa initial observations with a quantitative ELISA procedure”, Journal of Immunological Methods, Elsevier Science Publishers B.V., Amsterdam, NL, vol. 136, No. 2, Feb. 15, 1991, pp. 269-278, XP023974087, ISSN: 0022-1759, DOI: 10.1016/0022-1759(91)90013-6 [retrieved on Feb. 15, 1991].
Related Publications (1)
Number Date Country
20200199250 A1 Jun 2020 US