Fixed Barrel Firearm Configuration For Reducing Recoil

Information

  • Patent Application
  • 20180266780
  • Publication Number
    20180266780
  • Date Filed
    May 24, 2018
    6 years ago
  • Date Published
    September 20, 2018
    6 years ago
Abstract
Disclosed is a firearm configuration for a handgun. The firearm configuration is designed to reduce the recoil forces encountered by a user upon firing the weapon. It further includes a recoil plate that absorbs forces generated by the slide during firing. Recoil forces are reduced by lowering the firearm's center of mass and by aligning a recoiling mass with the user's arm and trigger finger. The firearm configuration further includes a locking block which prevents rotational and lateral movement of the barrel upon firing.
Description
TECHNICAL FIELD

This disclosure relates to a firearm configuration. More specifically, the present invention relates to a firing mechanism that reduces recoil, both perceived and actual.


BACKGROUND OF THE INVENTION

Handguns have grown increasingly more powerful over the years. As caliber size increases, so does the recoil of the firearm. Recoil is the rearward momentum generated by a firearm upon firing. Large caliber firearms generally create a substantial recoil impulse upon firing, which may cause the weapon to be forced upward due to an imbalance of forces. Unless properly adjusted for by the user, the recoil of a firearm may cause the user to fire inaccurately and miss the intended target. This is especially the case when firing in a fully automatic mode, as in a machine pistol.


This problem is a result of physics. The mass and velocity of a projectile must exert an equal and opposite reaction in the system behind it. This relationship is defined as “free recoil” in the firearm industry. Free recoil, in turn, results in muzzle rise. Muzzle rise is defined as the immediate, post-fire angular velocity of the firearm about its center of force. The center of force is determined by both the user's hand pressure across the grip and the handgun's own center of mass.


For the foregoing reasons, efforts have been made over the years to reduce the amount of recoil generated by a firearm. For instance, U.S. Pat. No. 6,742,297 to Lakatos discloses a firearm recoil reduction method. The method employs a spring, a trigger housing and a barrel. Additionally, U.S. Pat. No. 4,388,855 to Sokolovsky discloses a firearm pneumatic slide decelerator assembly. The assembly includes a recoil spring in proximity to a trigger housing. U.S. Pat. No. 5,069,110 to Menck discloses an impact buffering recoil mechanism. The mechanism includes a recoil spring in proximity to a trigger housing.


Although each of these inventions achieves its own individual objective, none of the background art relates to a mechanism for lessening recoil by lowering a firearm's center of mass. The firearm configuration described herein is aimed at overcoming these and other shortcomings noted in the background art.


SUMMARY OF THE INVENTION

The disclosed system has several important advantages. For example, the disclosed firearm configuration reduces the recoil encountered by the user.


A further possible advantage is that recoil forces are reduced by lowering the firearm's center of reciprocating mass. A manufacturer may further reduce recoil by overweighting the reciprocating mass in line with the hand past what is necessary for basic structural integrity.


Still yet another possible advantage of the present system is to lower the axis along which recoil forces are generated to thereby lessen the associated torque.


Another advantage of the present system is to improve the user's capacity for accuracy by reducing recoil. Higher recoil forces disrupt most firearm users' concentration and inflame something akin to the “fight or flight” instinct, so less recoil equals less psychological disruption, which in turn promotes the users' capacity for accurate fire. This increase in accuracy via reduced recoil is most pronounced in the application of this system to a machine pistol format, as such weapons are generally less controllable due to their light weight, comparatively meager grip surface area, and high rate of fire in full automatic mode.


Another advantage is realized by utilizing a firearm configuration that allows the manufacturer to integrate the recoil spring guide rod with the frame, resulting in fewer parts and lowering manufacturing costs. This also has the beneficial result of simplified disassembly procedures for the end user and increased reliability of the weapon.


A further advantage is that the firearm configuration of the present disclosure decreases overall weapon height with no appreciable reduction in magazine capacity as compared to known designs. Alternatively, the present configuration can result in a weapon of equal height to known designs, but with an increased magazine capacity.


A further advantage of the present system is that it allows a user to execute quicker follow-up shots, as the recoil forces impeding faster shots will be reduced.


The firearm configuration of the present disclosure also reduces the recoil of a given cartridge, which allows more powerful ammunition to be utilized with approximately the same recoil as a conventional configuration. The use of more powerful ammunition, in turn, allows for a flatter bullet trajectory and thus increased effective range of a handgun. Also, the ability to use more powerful ammunition with the same recoil allows for the use of larger-caliber armor-penetrating bullets, resulting in increased lethality and effectiveness on the battlefield.


Another advantage is that the system provides for a lower barrel axis when combined with a rotating barrel locking mechanism, further reducing recoil.


The advantages of the present system may be further maximized by using any or all of the following additional design elements: use of a sliding trigger assembly, use of a striker firing mechanism, or use of external or “slide in frame” guide rails.


A further advantage of the present system is that it may be configured to eliminate the snag or catch point located at the front corner of the trigger guard, thereby making the action of holstering or unholstering the weapon easier.


Various embodiments of the invention may have none, some, or all of these advantages. Other technical advantages of the present invention will be readily apparent to one skilled in the art.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its advantages, reference is now made to the following descriptions, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a cross sectional view of the firearm configuration prior to firing.



FIG. 2 is a cross sectional view of the firearm configuration after firing.



FIG. 3 is a cross sectional view of an alternative embodiment of the firearm configuration prior to firing.



FIG. 4 is a cross sectional view of an alternative embodiment of the firearm configuration after firing.



FIG. 5 is a cross sectional view of an alternative embodiment of the firearm configuration prior to firing with the recoil plate.



FIG. 6 is a detailed view of the recoil plate of the present disclosure.



FIG. 7 is a perspective view of the recoil plate of the present disclosure.



FIG. 8 is a view of the recoil plate in place within the firearm.



FIG. 9 is an alternative view of the recoil plate.



FIG. 10 is a cross sectional view of an alternative embodiment of the firearm configuration prior to firing.



FIG. 11 is a cross sectional view of an alternative embodiment of the firearm configuration after firing.



FIG. 12 is a perspective view of an alternative embodiment employing multiple guide rods.



FIG. 13 is a plan view of the multiple guide rods that can be used in the firearm.



FIG. 14 is a plan view of the multiple guide rods that can be used with the firearm.





Similar reference numerals refer to similar parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE DRAWINGS

The present disclosure relates to a firearm configuration for a handgun. The firearm configuration is designed to reduce the recoil forces encountered by a user upon firing the weapon. Recoil forces are reduced by lowering the firearm's center of mass and by aligning a recoil plate that absorbs forces generated by the slide during firing and recoil mass which aligns with the user's arm and trigger finger. The various details of the present disclosure, and the manner in which they interrelate, will be described in greater detail hereinafter.


With reference now to FIGS. 1 and 2, the firearm configuration (10) of the present disclosure is disclosed. As noted, configuration (10) assists in reducing recoil forces encountered by the user of an associated firearm (12). The configuration (10) includes an upper housing (14). Upper housing (14) is alternatively referenced as a “slide,” to describe its movement relative to lower housing (26). Upper housing (14) houses a barrel (16) and a firing assembly (18). The barrel (16) and firing assembly (18) are of a conventional construction. The specific trigger (28) and trigger assembly (32) depicted are of the type found in the Glock® series of handguns. Upper housing (14) further includes a recoil mass (22) with an opening. In one possible embodiment, recoil mass (22) is tapered along its upper edge, with a thicker forward end and a narrowed rearward end. The recoil mass (22), however, need not be tapered. As noted in the figures, barrel (16) and firing assembly (18) are positioned in axial alignment with one another and are positioned along a first axis (24). First axis (24) is defined prior to the weapon being fired. The firing assembly (18) can take the form of a conventional striker firing assembly or a conventional hammer firing assembly. The use of other conventional firing assemblies is also within the scope of the present disclosure. One suitable firing assembly is disclosed in U.S. Pat. No. 8,156,677 entitled “Assemblies and Firearms Incorporating such Assemblies,” which issued to Gaston Glock on Apr. 17, 2012. The contents of this issued patent are fully incorporated herein for all purposes.


Configuration (10) further includes a lower housing (26) that is slidably interconnected to the upper housing (14). A trigger (28) and trigger assembly (32) are positioned within the lower housing (26). The disclosed trigger (28) is a pivoting trigger, but sliding triggers can also be used in connection with the present invention. The depicted trigger (28) and trigger assembly (32) are of the type found in the Glock® series of handguns, as well as U.S. Pat. No. 8,156,677, and are of a standard and well known construction. In accordance with the invention, trigger (28) pivots about a second axis (34). Second axis (34) is positioned below, and is perpendicular to, the first axis (24). The trigger assembly (32) is interconnected to the striker assembly (18). As is known in the art, ammunition (38) is delivered upwardly from the magazine (36) under a spring force into the upper housing (14). Individual cartridges to be fired are delivered between the barrel (16) and the firing assembly (18). Trigger assembly (32) is used to selectively actuate the striker assembly (18) and fire the firearm (12). The relationship between trigger assembly (32) and striker assembly (18) will be appreciated to those of ordinary skill in the art. The exact mechanism employed does not form part of the present invention and can be similar to that utilized by the type found in the Glock® series of handguns.


Lower housing (26) further includes a guide rod (42) and recoil spring (44) that extend through the opening in the recoil mass (22). Recoil spring (44) has an end seated within recoil mass (22). Guide rod (42) is positioned along a third axis (46). The third axis (46) is positioned below the second axis (34). Guide rod (42) is integral with the lower housing (26).


In accordance with the present disclosure, when a user fires firearm (12), the upper housing (14) slides back with respect to the lower housing (26). This action, in turn, causes the recoil mass (22) to slide along the guide rod (42) to compress the recoil spring (44). The recoil generated by firearm (12) is greatly reduced by the position and movement of the recoil mass (22). More specifically, the axis of the recoil spring (44)—i.e. the third axis (46)—is parallel to and below the first axis (24), which is an axis drawn down the centerline of the barrel (16) prior to the firing of the weapon, and upon which the bullet exits the barrel. In this regard, the first and third axes (24) and (46) remain parallel to each other at all times during firing. As a result, the linear momentum generated by ammunition (38) leaving barrel (16) is completely countered by the linear momentum of the recoil mass (22) moving towards trigger (28). In other words, ammunition (38) leaving barrel (16) travels on a vector that is 180 degrees from the vector of the recoil mass (22). The positioning of recoil mass (22) below barrel (16) and striker assembly (18) also effectively lowers the center of mass of the overall firearm (12). In the preferred embodiment, the center of mass is in alignment with the recoil spring (44) (see FIG. 1). It should be noted that the exact center of mass may change as ammunition (38) is depleted. Nonetheless, it is preferred to keep the center of mass as closely aligned with recoil spring (44) as possible. By lowering the center of mass, there is no lever arm created between the trigger finger or arm and the center of mass. Such a lever arm would multiply any recoil forces and produce unwanted torque.


Recoil is further reduced by positioning the axis of trigger (28)—i.e. the second axis (34)—in close proximity (i.e. approximately 1 inch or less) to the first axis (24). This ensures that the recoil mass (22) is in alignment with the user's trigger finger and/or arm upon firing. Computer modeling of the claimed invention demonstrates that a recoil mass of approximately 0.38 lbs., located approximately 3.1 inches forward of, and approximately 0.5 inches beneath, the center of force greatly reduced the associated muzzle rise. Specifically, the modeling showed that about 22% more free recoil was absorbed as compared to a conventional firearm. Likewise, muzzle rise was reduced by approximately 59%.


A second embodiment of the firearm (12) is illustrated in FIGS. 3 and 4. This embodiment is the same in most respects as the firearm (12) depicted in FIGS. 1 and 2. However, in the second embodiment, the guide rod (42) does not extend through the recoil mass (22). Instead, the guide rod (42) is replaced by a first guide rod portion (42a) that extends from within the recoil mass (22). Additionally, a second guide rod portion (42b) extends from the area in front of the trigger. Guide rods portions (42a and 42b) are preferably in alignment. Recoil mass (22) is adapted for linear movement within second housing (26) and in alignment with trigger (28). Thus, in the second embodiment, the guide rod (42) does not fully extend within recoil spring (44). Instead, first guide rod portion (42a) extends a short distance within the first end of spring (44) and the second guide rod portion (42b) extends a short distance within the second end of spring (44). This embodiment is possible because it has been discovered that spring (44) does not need to be supported along its entire length to be effective. This reduces the overall weight of firearm (12) without any reduction in the effectiveness of the recoil mass (22). It should be noted that second guide rod portion (42b) merely fixes the position of the recoil spring adjacent trigger. Accordingly, other configurations, such as an appropriately sized cavity can be used to fix the position of spring (44). Still yet other retaining mechanisms, in lieu of guide rod portions (42a and 42b) can be used. It is also possible to eliminate the use of any retaining mechanisms.


At its most basic, this reconfiguration takes the guide rod (42) from being a passive part in the recoil cycle to an active part of the recoil cycle, making the resultant weapon more efficient with regard to the use of existing weight.


The reconfigured guide rod (42a and 42b) also increases the mass of the recoil mass (22), which can be relocated lower in front of the trigger. This allows for a greater reduction in recoil and/or muzzle rise. The weapon has further reduced recoil over our previous work, and further lowers the firearm's center of reciprocating mass. As such, it is an example of overweighting the reciprocating mass in line with the hand past what is necessary for basic structural integrity. Also, though the axis on which the spring is guided is not further lowered, the overall axis along which recoil forces are transmitted to the user is further lowered with this addition.


The use of the reconfigured rod (42a and 42b) also reduces the total part count by integrating the guide rod with the slide (as opposed to the frame), thus allowing for decreased production cost and increased reliability. The reconfigured guide rod (42a and 42b) still allows for similar disassembly in comparison with current designs, and thus does not require additional training. The reconfigured guide rod (42a and 42b) further reduces recoil, which allows for more rapid follow-up shots and for the use of more powerful ammunition.


Increasing the mass present in the slide internally allows for a weapon with the same exterior slide dimensions to fire more powerful ammunition; alternatively, it allows for a reduction in the exterior slide dimensions of the weapon while still allowing for an identical level of ammunition power.


In the case of an existing pistol using a steel guide rod, this relocation would shift a portion of the total weapon weight from the frame assembly to the slide, essentially allowing for a pistol of equal weight to fire more powerful ammunition in comparison to said existing pistol. This comparison is between a modified and an unmodified pistol both using a half-length guide rod—as such, you could take a pistol with an existing full-length guide rod and modify it by relocating the guide rod (substituting a half-length one) to the slide, thereby creating a pistol both lighter than the unmodified version and yet still able to use more powerful ammunition. Such a substitution is once again assuming all guide rods in both pistols are composed of steel.


The embodiments presented herein may also be improved by overweighting a lower section (48) of the recoil mass (22) or reducing the weight of the upper housing (14). Preferably, the lower section of the recoil mass (22) is the lower half of the recoil mass (22) but may be any amount of the recoil mass (22) that will allow for the center of mass to drop an appreciable amount. Similarly, a reduced weight portion of the upper housing (14) would comprise part of the upper half of same upper housing (14), but may be any amount of the upper housing (14) that will allow for the center of mass to drop an appreciable amount. The upper housing (14), or a portion of such, may be made of a lighter material such as aluminum, titanium, carbon fiber composite, or a similarly durable polymer, whereas the lower section (48) may be made of a heavier material such as tungsten, bismuth, or depleted uranium to further lower the center of mass. The lower section (48) and upper section (50) of the recoil mass (22) may be connected by friction fitting, threads, pinning, dovetailing, adhesive, or any other method for attachment whether known or yet to be discovered. The same methods of attachment apply to the joining of any reduced weight portion of the upper housing (14) with the remainder of the same upper housing (14). Alternatively, the lower section (48) of the recoil mass (22) may be overweighted using the same material as the upper section (50) while remaining the same material as the upper section (50). The result of these modifications is a reduction in the amount of muzzle rise and associated recoil.


The embodiment of FIG. 5 further includes a recoil plate (52). Recoil plate (52) is positioned in the area immediately forward of the trigger housing. Recoil plate (52) is preferably constructed from a high strength material, such as steel or titanium, or equivalent alloys or composite materials. This allows recoil plate (52) to absorb impact forces generated by recoil mass (22) during firing. Specifically, during firing, recoil mass (22) travels rearwardly to impact recoil plate (52). Recoil plate (52) function as a reinforcement means to absorb recoil forces and prevent damage to weaker components of the firearm (10). Recoil pate (52) can be formed integrally with the remainder of the firearm (10) or can be attached via suitable fasteners, such as rivets, welds, pins, or other fasteners. Recoil plate (52) can be integrally formed as part of guide rod (42). The end of recoil spring (44) preferably abuts the face of recoil pate (52). As more fully described hereinafter, alternative embodiments of recoil plate (52) may include an angled component (54) that extends over the top of the trigger housing (FIG. 2). Recoil plate (52) may also include upper rails (56) upon which the upper slide (14) travels (FIG. 5).


Recoil plate (52) is preferably composed of high-strength material and is inserted into the comparatively lower-strength frame in the area under impact from the slide during recoil. The recoil plate (52) increases the durability of the frame not only through its advantage in material composition but also by further increasing the surface area available to the frame for transmitting the force imparted by the slide (14). This increase in surface area may include the normally wasted space directly behind the guide rod (42), but also by extending the sides and/or top and/or bottom of the recoil plate further into the frame. This may be assisted by an angled component (54) The latter not only helps to seat the recoil plate in the frame but also gives the frame additional surface area to absorb the slide impact beyond merely the surface area of the rear of the slide.


As noted, recoil plate (52) optionally includes an integrated guide rod (42). Integration of the guide rod (42) with the recoil plate (52) (which itself may be permanently attached to the rest of the frame) results in a decreased parts count, lower manufacturing costs, simplified disassembly procedure, and increased weapon reliability.



FIGS. 6 and 7 also show a refined recoil plate (52) with an angled component (54) that extends back over the trigger guard area in the frame. This allows the cam to interact with the track on a rotating barrel or other mechanism that similarly facilitates barrel locking and unlocking. This would also reduce parts count and manufacturing cost while increasing weapon reliability, as the cam must be made from high-strength material to interact with the steel (or other high strength material) barrel.


It is also possible to include an accommodation to reinforce the area of the frame housing a barrel retention device upon the upper surface of angled component (54). Barrel retention devices interact with the bottom of the barrel when the slide and barrel are fully forward under spring pressure to retain both parts on the frame. The area of the frame around and interacting with the barrel retention device is a very high-stress area also, prone to cracking and other wear. By fortifying this area with high-strength material, frame wear is reduced and weapon reliability increased without increasing weapon parts count.



FIGS. 8 and 9 illustrates yet another embodiment. In this embodiment, the recoil plate (52) is fitted with a pair of upper rails (56). These rails (56) integrate onto the recoil plate the frame rails which mate with the rails on the slide (14), upon which the slide reciprocates during the recoil stroke. Such an integration would lead to lower manufacturing costs due to a lower number of parts being manufactured for insertion into the frame. It also enhances the modularity of the design, as a removable insert of this type would allow for frame rail replacement without having to replace the entirety of the frame.


A third embodiment of the firearm (12) is illustrated in FIGS. 10 and 11. This embodiment is the same in most respects as the firearm (12) depicted in FIGS. 1 and 2. However, in the third embodiment, a locking assembly (58) comprising a locking block (60) and locking lug (62) are present so as to prevent any rotational or lateral movement of the barrel (on any axis). The locking lug (62) is preferably a pin but may be any mechanical or other way now known or otherwise to be discovered for preventing movement of the barrel, for instance chemical bonding, adhesives, welding, or the like. Likewise, the firearm (12) could have a large frame projection that the barrel (16) is press-fit or threaded into, or the barrel (16) can be fixed through the use of a rotating lever or spring-loaded sliding catch. Otherwise, the third embodiment is the same in most respects as the firearm (12) depicted in FIGS. 1 and 2.


A further embodiment of the present invention is disclosed in FIG. 12. This embodiment is the same is all respects as the embodiments described above; however, instead of a single guide rod (42), a series of three guide rods (42) are utilized. In the depicted embodiment, three guide rods (42) are oriented to be parallel to one another and each is fitted with a recoil spring (44). This embodiment is disclosed in conjunction with a recoil plate (52). Nonetheless, the use of such a recoil plate (52) is optional. In the absence of a recoil plate (52), guide rods (42) would extend from the trigger guard of the lower housing (26). This embodiment would operate in a fashion similar to the primary embodiment, namely the recoil mass (22) (FIG. 13) would include a series of three apertures to accept the three guide rods (42) and associated recoil springs (44). Individual recoil springs (44) are positioned over each of the guide rods (42) and extend between an aperture in the recoil mass (22) and the backing plate (52) or trigger guard. Upon firing, the recoil mass (22) would slide along the three guide rods (42) and against the force of the associated springs (44). This would have the effect of counterbalancing any recoil forces in the firearm.



FIG. 13 is a top plan view of the three guide rods (42) and their associated recoil springs (44). This view shows the recoil mass (22) into which the guide rods (42) and springs (44) are inserted. Although the alternate embodiment has been depicted as three guide rods, other numbers of guide rods can also be used. For instance as illustrated in FIG. 14, two guide rods with associated recoil springs (44) could be used in lieu of three guide rods.


Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure.

Claims
  • 1. A firearm configuration (10) for reducing recoil forces encountered by the user of a firearm (12), the firearm configuration (10) being triggered by the user's trigger finger, the firearm configuration comprising: an upper housing (14), the upper housing including a barrel (16) and a firing assembly (18), the upper housing (14) having a recoil mass (22) with an opening;a lower housing (26) slidably interconnected to the upper housing (14), a trigger (28) and trigger assembly (32) positioned within the lower housing (26), the trigger assembly (32) being interconnected to the firing assembly (18), the trigger assembly (32) being used to selectively actuate the firing assembly (18) and fire the firearm (12), the lower housing (26) further including a guide rod (42) and recoil spring (44) extending through the opening in the recoil mass (22), the recoil mass (22) adapted for linear movement along the recoil rod (42) and in alignment with the trigger (28); and wherein after firing the firearm (12), the upper housing (14) slides back with respect to the lower housing (26) and the recoil mass (22) slides along the guide rod (42) to thereby compressing the recoil spring (44).
  • 2. The firearm configuration (10) as described in claim 1 further comprising a magazine (36) with ammunition (38), the ammunition (38) being delivered upwardly into the upper housing (14) between the barrel (16) and the firing assembly (18).
  • 3. The firearm configuration (10) as described in claim 1 wherein the upper housing (14) or substantial portion thereof is made of a light weight material comprising aluminum, titanium, carbon fiber composite or a similarly durable polymer.
  • 4. The firearm configuration (10) as described in claim 1 wherein the lower section (46) of recoil mass (22) is made of tungsten.
  • 5. The firearm configuration (10) as described in claim 1 wherein the lower section (46) of recoil mass (22) is made of bismuth.
  • 6. The firearm configuration (10) as described in claim 1 wherein the lower section (46) of recoil mass (22) is made of depleted uranium.
  • 7. A firearm configuration for reducing recoil forces encountered by the user of a firearm, the firearm configuration comprising: an upper housing including a barrel and a recoil mass;a lower housing slidably interconnected to the upper housing, a trigger and trigger assembly positioned within the lower housing, the trigger assembly being used to fire the firearm, the lower housing further including a guide rod and recoil spring interconnected to the recoil mass; andwherein the recoil mass is used to reduce recoil forces upon firing.
  • 8. The firearm configuration as described in claim 7 wherein the recoil mass is adapted for linear movement along the guide rod.
  • 9. The firearm configuration as described in claim 7 wherein the firearm has a center of mass and wherein the recoil mass moves along an axis that passes through the center of mass.
  • 10. The firearm configuration as described in claim 7 further comprising a firing assembly arranged along a first axis, the trigger assembly being interconnected to the firing assembly and being used to selectively actuate the firing assembly.
  • 11. The firearm configuration as described in claim 7 wherein the recoil mass includes an opening and wherein the guide rod extends fully through the opening in the recoil mass.
  • 12. The firearm configuration as described in claim 11 wherein there is a step formed within the opening of the recoil mass and wherein the recoil spring is positioned upon the step.
  • 13. The firearm configuration as described in claim 7 wherein one of the surfaces of the recoil mass is sloped.
  • 14. The firearm configuration (10) as described in claim 7 wherein the upper housing (14) or a substantial portion thereof is made of a light weight material comprising aluminum, titanium, carbon fiber composite or a similarly durable polymer.
  • 15. The firearm configuration (10) as described in claim 7 wherein the lower section (46) of recoil mass (22) is made of tungsten.
  • 16. The firearm configuration (10) as described in claim 7 wherein the lower section (46) of recoil mass (22) is made of bismuth.
  • 17. The firearm configuration (10) as described in claim 7 wherein the lower section (46) of recoil mass (22) is made of depleted uranium.
  • 18. The firearm configuration as described in claim 7 wherein multiple guide rods are included and wherein a recoil spring is positioned on each of the guide rods, wherein the guide rods and recoil springs are connected to the recoil mass.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to and is a continuation-in-part of application Ser. No.15/485,626 filed on Apr. 12, 2017 and entitled “Fixed Barrel Firearm Configuration for Reducing Recoil”, which itself is a continuation-in-part of application Ser. No. 15/095,415 filed Apr. 11, 2016, entitled “Firearm Configuration for Reducing Recoil”, now U.S. Pat. No. 9,644,909, which itself is a continuation-in-part of application Ser. No. 14/997,060 filed Jan. 15, 2016, entitled “Firearm Configuration for Reducing Frame Battering,” now U.S. Pat. No. 9,546,832, which itself is a continuation-in-part of application Ser. No. 14/948,716 filed Nov. 23, 2015, entitled “Firearm Configuration for Reducing Recoil,” now U.S. Pat. No. 9,551,542, which itself is a continuation of application Ser. No. 14/313,495 filed Jun. 24, 2014, entitled “Firearm Configuration For Reducing Recoil,” now Pat. No. 9,194,650, issued Nov. 24, 2015, which itself is a continuation-in-part of application Ser. No. 13/617,953 filed Sep. 14, 2012, entitled “Firearm Configuration for Reducing Recoil,” now abandoned. The contents of these applications are fully incorporated herein for all purposes.

Continuations (1)
Number Date Country
Parent 14313495 Jun 2014 US
Child 14948716 US
Continuation in Parts (5)
Number Date Country
Parent 15485626 Apr 2017 US
Child 15988165 US
Parent 15095415 Apr 2016 US
Child 15485626 US
Parent 14997060 Jan 2016 US
Child 15095415 US
Parent 14948716 Nov 2015 US
Child 14997060 US
Parent 13617953 Sep 2012 US
Child 14313495 US