1. Field of the Invention
The invention relates generally to fixed-head drill bits, and in particular to fixed-head drill bits having stabilizing features for, inter alia, improving stability while drilling.
2. Background Art
Polycrystalline diamond cutting elements are frequently used on fixed-head drill bits. One embodiment of polycrystalline diamond includes polycrystalline diamond compact (“PDC”), which comprises man-made diamonds aggregated into relatively large, inter-grown masses of randomly oriented crystals. Polycrystalline diamond is highly desirable, in part due to its relatively high degrees of hardness and wear resistance. Despite these properties, however, polycrystalline diamond will eventually wear down or otherwise fail after continued exposure to the stresses of drilling. Undesirable bit performance such as vibration and whirling while drilling exacerbates wear and tear on the cutting elements.
Many approaches have been devised to improve drill bit dynamic characteristics to reduce the detrimental effects to the drill bit. In particular, stabilizing features known as “wear knuckles”, sometimes interchangeably referred to as “contact pads” or “wear knots”, are used to stabilize the drill bit by controlling lateral movement of the bit, lateral vibration, and depth of cut. These stabilizing features project from the bit face, either trailing or leading a corresponding cutting element with respect to a rotational direction about a bit axis.
U.S. Pat. No. 6,568,492 discloses an example of a combination mill/drill bit employing stabilizing features referred to as “secondary ridge structures.” The bit has primary cutting elements and secondary structures intended to enable continuous substantially smooth milling of down hole casing and subsequent drilling of an earth formation. The primary cutting elements are inserts made of polycrystalline diamond or other hard material. Secondary ridge structures having relatively blunt protrusions are intended to protect the primary cutting elements by absorbing impacts, limiting the primary cutting element engagement, controlling torque, and providing stability.
U.S. Pat. No. 6,659,199 discloses a rotary bit design including stabilizing features referred to as “elongated bearings.” The elongated bearings are designed to travel within a tubular clearance volume defined by the path of a respective cutting element drilling through the formation. This placement of the bearing requires anticipating the helical path cut by the cutting element, which is a function of parameters such as: rates of penetration and rotational speeds. This placement is intended to minimize contact between the elongated bearing and the uncut rock adjacent the helical path cut by the cutting element.
One characteristic of fixed-head bits having conventional stabilizing features is that the cutting elements extend outwardly of the stabilizing features, to contact the formation in advance of the stabilizing features. The stabilizing features are designed not to contact the formation until the bit advances at a selected minimum rate or depth of cut (“DOC”). In many cases, stabilizing features therefore do not sufficiently support the fragile cutting surface. In other cases, the cutting elements may penetrate further into the formation than predicted by the stabilizing features, so that the cutting tips become overloaded despite the presence of the stabilizing features. Furthermore, the manufacturing process used to create these bits may not allow the accuracy required to consistently reproduce a desired minimum DOC. One or more stabilizing features may contact the formation while others have clearance. This imbalance can introduce additional instability. Therefore, an improved apparatus and method for stabilizing a drill bit are desirable.
According to one aspect of the invention, a fixed-head drill bit includes a bit body and a plurality of cutting elements disposed on the bit body. Each cutting element includes a cutting surface defining a swept cutting profile when the bit is rotated about an axis. At least one wear knuckle is disposed on the bit body, positioned at least partially within and extending at least partially outside a selected one or more of the swept cutting profiles, such that the at least one wear knuckle is configured to wear during engagement with a formation to appreciably conform to the shape of the one or more swept cutting profiles.
Other aspects of the invention relate to a method of manufacturing a fixed-head drill bit and a method of drilling with a fixed-head drill bit. Further aspects and advantages of the invention will be apparent from the following description and the appended claims.
One aspect of this invention provides for more accurate control of the depth of cut of a drill bit by providing a geometry that will wear into an optimum shape for the desired depth of cut. By forming a wear knuckle to initially protrude into helical swept cutting profiles of cutting elements at selected locations and within a range of preselected interference volumes, the resulting bit can be made to wear into a more stable configuration. The interference between a wear knuckle and the swept cutting profiles of one or more cutting elements may be selected to limit depth of cut in an axial direction, a lateral direction, or both. According to some embodiments, wear knuckles on a blade are configured to interfere with helical cut paths cut by cutting elements proximately located on the same blade, and in other embodiments wear knuckles are configured to interfere with a combination of cut paths cut by cutting elements located on the same blade and/or on one or more other blades. Geometry and material blends of the wear knuckles can be manipulated to match the wear characteristics of the formations. According to some embodiments, this is done by matching the level of initial interference with the rock properties for a specific application.
Still referring to
Referring still to
The resulting cut path cut in the formation will, in principle, include the union of cutting profiles 46 and 48, and may possibly include the union of additional cutting profiles from cutting elements located elsewhere on the bit body 40. The wear knuckle 45 may therefore be positioned partly within and extend partly outside either or both of cutting profiles 46 and 48, and may be positioned partly within and extend partly outside the union of two or more cutting profiles. In other words, according to some embodiments, the planned level of interference between wear knuckles and cut paths may take into account not only the nearest cutting element on the same blade (such as the interference between knuckle 45 and profile 48), but also other cutting elements located on other blades (such as the interference between knuckle 45 and profile 46). The portion of the wear knuckle extending outside the cutting profiles is intended to contact and wear against the formation interior to the cut path, thereby taking on a shape approximating at least a portion of those cutting profiles. If the wear knuckle contacts multiple cut paths, the contacting portion will tend to take on a shape approximating the union of those multiple cut paths.
Referring to
Alternatively, referring to the embodiment of
To match the wear characteristics of formations, wear knuckle geometry and material blends can be manipulated. According to an aspect of some embodiments, the amount by which a wear knuckle extends outside one or more cutting profiles may be quantified volumetrically. For example, referring back to
According to another aspect of some embodiments, the amount by which a wear knuckle protrudes through one or more cutting profiles may alternatively be quantified by a linear distance. In some embodiments, for example, the wear knuckles are preferably configured to extend outside the selected one or more swept cutting profiles by a selected distance, e.g. at least 0.020 inch, to provide sufficient interference for allowing the wear knuckles to break-in. In other embodiments, the wear knuckles are preferably configured to extend outside the selected one or more swept cutting profiles by a selected upper limit, e.g. no more than 0.060 inch, to limit the break-in period, and to prevent excessive initial interference that could lead to erratic bit behavior prior to break-in. After proper break in, the protruding portion of the wear knuckle is intended to wear off so that the wear knuckle will not protrude outside of the desired cut path, or at least may not protrude as far outside the cut path.
For some embodiments of the invention, material selection is another variable to be considered. For example, because the wear knuckles are intended to break in to their optimal shape, the wear knuckles preferably have a wear resistance less than a wear resistance of the cutting elements, so that they wear faster and break in to their optimum shape while the cutting elements still have plenty of useful life remaining. However, the wear knuckles preferably have a hardness and wear resistance greater than those of the bit body. Harder, less abrasive formations may require softer wear knuckles.
Alternatively, the wear resistance of the wear knuckles may be altered using any method known in the art. For example, particularly on steel bodied bits, portions of the wear knuckles that are to be worn away during break in may comprise a less wear resistant material deposited on the remaining portions of the wear knuckles by physical vapor deposition, plasma arc, laser cladding, or any other suitable method. The hardness of matrix body bits may be altered by manipulating the carbide powder used to make the body and wear knuckles, or a different material (such as diamond or carbide bricks) can be added to the knuckle part of the bit.
In accordance with some embodiments of the invention, the shape and width of the wear knuckles may be pre-optimized for a given application. Pre-optimization or pre-configuration may be based on simulation or other information.
Another aspect of the invention involves breaking in and subsequently drilling with a bit configured as described. A “new” bit needs to be broken in to give the wear knuckles their optimal shape for drilling. According to some embodiments, however, the process of breaking in the bit is simply to drill into an earthen formation. Prior to full break in, the bit will perform differently, because initially the wear knuckles do not travel fully within the cut path, and they contact the formation by design. Thus, the bit operating parameters discussed above, such as rotation rate, ROP, and axial engagement force, may be different during break in than during subsequent drilling. For example, in some embodiments, a higher WOB may be recommended during break in to accelerate wear of the wear knuckles. In fact, a higher WOB may be required during break in to match the helical cutting profile that has been factored into the bit design. After break in, the method may further include adjusting one or more of the operating parameters. For example, the WOB may be reduced.
Despite initial interference of the wear knuckles, drilling of a borehole will typically progress during break in. This may be true in part due to abrasion of the formation by the wear knuckles and also because at least some portion of the cutting surfaces may engage the formation, despite the interference of the wear knuckles. Especially on softer formations, the wear knuckles may dig into the formation due to downforce on the bit, providing at least some DOC at the cutting elements along at least a portion of the cutting surfaces. Thus, the interfering wear knuckles according to some embodiments of the invention may merely serve to reduce—not eliminate—the initial DOC.
One aspect of the bit discussed above involves configuring the wear knuckles and corresponding cutting elements based on a predicted, typically helical cutting path of the cutting elements during break in and/or drilling. A related aspect of the bit's method of use according to one embodiment is to control the operating parameters to achieve substantially the same helical path during subsequent drilling, so that the wear knuckles continue to lend optimal stabilization to the bit during use. In other words, if the wear knuckles are broken in to accommodate a specified helical path, it is useful to continue operating the bit during its service life under conditions that would closely replicate that helical path.
Because precisely achieving a specified helical path may be impractical while drilling, it may be recommended in some embodiments to operate the drill bit within a predetermined range of parameters that would at least approximate the predicted path. Accordingly, it is useful to configure the wear knuckles and cutting elements during manufacture of the bit to account for this anticipated variation in the helical path. The wear knuckles may be configured to extend outside the respective swept cutting profiles over a range of helical paths corresponding to a range of operating parameters at which the bit is likely to be operated. In practice, the average helical pitch may vary between 0.001″ for very hard formations and 0.500″ for soft formations. Thus, in some embodiments the bit may be configured such that at least some of the wear knuckles are positioned within and extend outside corresponding swept cutting profiles having a broad helical pitch range of between 0.001″ and 0.500.″ In other embodiments, such as where a bit is configured for use with a particular type of formation, a considerably narrower range of helical pitch may be selected.
One parameter affecting the swept cutting profiles that can be expected to vary is rate of penetration. In practice, instantaneous variations of up to 50% or more are not unusual. However, an average ROP can realistically be maintained within 15% of a selected value. Likewise, in some embodiments, the wear knuckles may be configured to be positioned within and extend outside corresponding cutting profiles at a selected average ROP, or within a selected range of up to 15% or more of the selected average ROP. For example, if the target ROP is 100 ft/hr, it may be possible to average between 85 and 115 ft/hr over the course of an hour.
The wear knuckles may be configured to radially and/or axially extend outward of the corresponding cutting elements by a selected distance at a selected ROP, such as by at least 0.020 inch, or within a selected range of distances, such as by between 0.020 and 0.060 inch. The ROP in a hard formation is commonly on the order of about 100 ft/hr and 80-120 RPMs. The ROP in a soft formation is commonly on the order of about 200-300 ft/hr and 120-250 RPMs. A bit for a hard formation may therefore be designed to have an interference of at least 0.020″ at an ROP of 100 ft/hr. Likewise, a bit for a soft formation may be designed to have an interference of at least 0.020″ at 300 ft/hr.
Increasing the ROP will increase the amount of interference between a wear knuckle and the swept cutting profile, due to the steeper angle of the helical path. However, by way of example, it has been determined that for a wear knuckle circumferentially trailing a corresponding cutting element by 1″, increasing ROP from 100 to 300 ft/hr may only increase this interference by about 0.010″. This rule of thumb may be taken into account in the design of a particular bit. For example, matrix bits typically have larger tolerances than steel body bits due to the less predictable nature of casting. The tolerance for manufacturing a particular bit may therefore be adjusted so that the minimum interference is likely to be at least 0.020″. Interference greater than a specified minimum may be acceptable or even desirable, in contrast to prior art bits that intended to avoid interference.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
4942933 | Barr et al. | Jul 1990 | A |
4991670 | Fuller et al. | Feb 1991 | A |
5007493 | Coolidge et al. | Apr 1991 | A |
5090492 | Keith | Feb 1992 | A |
5431239 | Tibbitts et al. | Jul 1995 | A |
5607024 | Keith et al. | Mar 1997 | A |
6568492 | Thigpen | May 2003 | B2 |
6659199 | Swadi | Dec 2003 | B2 |
6779613 | Dykstra et al. | Aug 2004 | B2 |
6883623 | McCormick et al. | Apr 2005 | B2 |
6935441 | Dykstra et al. | Aug 2005 | B2 |
20040140132 | Middlemiss | Jul 2004 | A1 |
20050269139 | Shen et al. | Dec 2005 | A1 |
20060124358 | Mensa-Wilmot | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
2 369 140 | May 2002 | GB |
2 378 718 | Feb 2003 | GB |
2 393 982 | Apr 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20060157279 A1 | Jul 2006 | US |