The technical field generally relates to door handle systems for controlling a vehicle, and more particularly relates to fixed door handle systems for controlling a vehicle with protected pressure switches.
An automotive closure, such as a door for an automobile passenger compartment, is hinged to swing between open and closed positions and conventionally includes a door latch that is housed between inner and outer panels of the door. The door latch functions in a known manner to latch the door when it is closed and to lock the door in the closed position or to unlock and unlatch the door so that the door can be opened manually.
Power latch systems include a power system for electrically unlatching and electrically or mechanically latching a door. Such power latch systems are typically controlled by a mechanical switch translating or rotating a conventional door handle from a first position to a second position. The mechanical switch typically adds to the size and weight of the door handle. Additionally, the mechanical switch may be at least partially located outside of an outer door panel of the door. Location outside of the outer door panel exposes the mechanical switch to environmental conditions that may cause wear on the mechanical switch. While these systems are suitable for their intended purpose, the desire for improved systems is essentially constant.
Accordingly, it is desirable to provide systems and vehicles for operating a power door latch. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
A vehicle is provided. In one embodiment, the vehicle includes a vehicle door, a fixed door handle, and at least one pressure switch. The vehicle door has an outer door panel with an outer side facing an outside of the vehicle door and an interior side facing an interior of the vehicle door. The fixed door handle is at least partially disposed to the outside of the vehicle door. The pressure switch is disposed in the interior of the vehicle door and is coupled with the fixed door handle such that an actuation force on the fixed door handle results in an actuation pressure on the pressure switch. The pressure switch indicates the actuation pressure for generating a vehicle command.
A vehicle controller of a vehicle having a door handle system is provided. In one embodiment, the vehicle controller is configured for receiving signals generated by at least one pressure switch that is coupled with a fixed handle of the door handle system, determining whether the pressure switches indicate a change in pressure on a handle of the door handle system, comparing the change in pressure with a stored pressure change associated with a vehicle command, and generating the vehicle command in response to matching the change in pressure with the stored pressure change.
A door handle system is provided. In one embodiment, the fixed door handle system includes a vehicle door, a fixed door handle, at least one pressure switch, and a controller. The vehicle door has an outer door panel with an outer side facing an outside of the vehicle door and an interior side facing an interior of the vehicle door. The fixed door handle is at least partially disposed to the outside of the vehicle door. The pressure switch is disposed in the interior of the vehicle door and is coupled with the fixed door handle such that an actuation force on the fixed door handle results in an actuation pressure on the pressure switch. The controller is in electronic communication with the pressure switch and generates a vehicle command based on the actuation pressure.
The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. As used herein, the term controller refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
Referring now to
The vehicle 100 includes a vehicle body 110, a vehicle door 112, and a controller 113. The example vehicle body 110 shown is a passenger vehicle type. It should be appreciated that the vehicle may be of another vehicle type, such as a truck, an aircraft, or a watercraft without departing from the scope of the present disclosure.
The vehicle door 112 includes a door latch system 114, an outer door panel 116, and a handle assembly 118. The vehicle door 112 is illustrated as a rear side door coupled to the vehicle body 110. It should be appreciated that the present disclosure is not limited to side doors. For example, the vehicle door 112 may be a rear hatch, trunk lid, or other closeable access portion of the vehicle 100.
In various embodiments, the door latch system 114 generally includes a fork bolt (not shown), a detent lever (not shown), and an actuator 122. A striker 121 may be fixedly attached to the vehicle door 112 or the vehicle body 110 depending on the implementation of the door latch system 114. The fork bolt moves between an unlatched position and a latched position to realeasably capture the striker 121. The detent lever moves between a latched position and a released position to cause the fork bolt to move between the latched position and the unlatched position. When the detent lever is in the latched position, the fork bolt is in the latched position where the striker is captured by the fork bolt. When the striker is captured by the fork bolt, the vehicle door 110 is held closed.
When the detent lever is in the released position, the fork bolt is in the unlatched position where the fork bolt and striker 121 are released from engagement with each other. The door may be opened when the fork bolt is not engaged with the striker 121. The actuator 122 receives commands from the controller 113 to selectively position the detent lever to cause the fork bolt to latch onto and unlatch from the striker.
The outer door panel 116 has an outer side 124 facing an outside of the vehicle door 112 and an interior side 126 facing an interior of the vehicle door 112, as is best seen in
The outer door panel 116 further defines a finger pocket 125. The finger pocket 125 is a depression in the outer door panel 116 that accommodates fingers of a user when the user grasps the handle of the handle assembly 118. The finger pocket 125 may have any size or shape to conform with the styling and design of the vehicle 100. In some embodiments, the finger pocket 125 is a component that is separate from the outer door panel 116.
Referring now to
The handle 130 is a fixed closed end handle with opposite ends that secure to the outer door panel 116 at a first location 138 and a second location 139. As used herein, a “fixed” handle means that the handle 130 does not pivot or otherwise move between various positions other than movement due to flexing or deformation of the materials. In the example provided, the first location 138 and the second location 139 are apertures defined by the outer door panel 116. A first threaded stud 140 extends through the aperture at the first location 138 and a second threaded stud 142 extends through the aperture at the second location 139. The handle 130 is secured to the vehicle door 112 at the first location 138 with a first nut 144 that threads onto the first threaded stud 140 to clamp the outer door panel 116 and the stabilizer block 132 between the handle 130 and the first nut 144. The handle 130 is secured to the vehicle door 112 at the second location 139 with a second nut 146 that threads onto the second threaded stud 142 to clamp the outer door panel 116 between the handle 130 and the second nut 146. In some alternative embodiments, a nut is disposed in the handle 130 and a bolt extends through the outer door panel 116 to thread into the nut.
The handle 130 arches away from the outer side 124 of the outer door panel 116 in an upward direction in
The stabilizer block 132 is located in the interior of the vehicle door 112 at the first location 138. The stabilizer block 132 is clamped between the first nut 144 and the inner side 126 of the outer door panel 116 to spread actuation forces applied to the handle 130 across a larger area of the inner side 126 of the outer door panel 116. The stabilizer block 132 additionally provides a convenient mounting option for the first and second pressure switches 134 and 136.
The first pressure switch 134 and the second pressure switch 136 are clamped between the stabilizer block 132 and the inner side 126 of the outer door panel 116. The first nut 144 threads on the first threaded stud 140 to provide a preloading pressure on the pressure switches 134 and 136. In some alternative embodiments, no preloading pressure is provided. The first pressure switch 134 and the second pressure switch are separated along an axis 152. The axis 152 is perpendicular to an axis that is parallel to the longitudinal direction 150 of the handle 130. The pressure switches 134 and 136 are spaced substantially equidistantly to each side of the axis that is parallel with the longitudinal direction 150. The substantially equidistant separation may be any suitable distance, or may be spaced at different distances from the axis without departing from the scope of the present disclosure. As will be appreciated by those having skill in the art, applying an actuation force to the handle 130 parallel with the axis 152 results in a pressure difference between the first pressure switch 134 and the second pressure switch 136. The difference in pressure may be used by the controller 113 to generate vehicle commands, as will be described below.
In the example provided, the pressure switches 134 and 136 are mounted on the stabilizer block 132 for simple assembly of the handle assembly 118. In some embodiments, the pressure switches 134 and 136 may be mounted on the inner side 126 or may simply be held in place by the preloading pressure of the first nut 144 rather than mounting.
The first pressure switch 134 and the second pressure switch 136 electronically indicate the clamping or actuation pressure between the stabilizer block 132 and the outer door panel 116. The indication may be a variable resistance, an actively generated signal, or any other suitable electronic indication of the actuation pressure. In the example provided, the first pressure switch 134 and the second pressure switch 136 are thin film transducer pressure sensors. The resistance change in the thin film transducer may be measured by the controller 113 or by a dedicated circuit integrated into the pressure switches.
Referring now to
Referring again to
An actuation force applied to the handle 130 towards the bottom of the vehicle door 112 (e.g., towards the bottom of
An actuation force applied to the handle 130 towards the top of the vehicle door 112 (e.g., towards the top of
In some embodiments, an inward actuation force directed towards the interior of the vehicle (e.g., downward in
Referring now to
In operation 212, the controller 113 evaluates the received signals to determine whether the pressure switches indicate a change in pressure on the handle 130. In the example provided, the controller 113 determines whether there are rapid changes in pressure on the handle 130 over a predetermined short period of time. A short period of time, as used herein, refers to a time period that is less than approximately two seconds. A rapid pressure change as used herein refers to a pressure change over the short period of time. By evaluating rapid pressure changes over a short period of time, the effects of long term pressure decrease due to material creep may be taken into consideration. In alternative embodiments, the controller 113 may look for a change in pressure over a longer period of time. For example, the controller 113 may compare a current pressure indicated by the pressure switches with a stored pressure that indicated the pressure on the pressure switches shortly after manufacture of the vehicle or at vehicle start up.
In operation 214, the controller 113 compares the pressure changes with stored pressure changes associated with stored vehicle commands. The controller 113 determines whether the generated signal matches a vehicle command in operation 216. As described above, the vehicle commands associated with any particular user interaction with the handle 130 may include any suitable vehicle function, such as single door power unlatching, all door or single door locking, arming an alarm, all door or single door unlocking, windows and sunroof open or close, turn on or off exterior or interior lights, sound horn if the vehicle is locked and no authorized key fob is present, or any combination thereof
For example, when a user applies an outward actuation force directed away from the vehicle door 112 (e.g., upward in
In operation 218, the controller 113 evaluates general requirements for generating the vehicle command. In the example provided, the general requirements are associated with security considerations. For example, the general requirements may include presence of an authorized key fob when the doors are locked. The general requirements may also be satisfied when the vehicle doors are unlocked, indicating that the vehicle 100 is not in a secure state.
In operation 220, the controller 113 evaluates command specific requirements for generating the vehicle command. For example, some vehicle commands may require presence of an authorized key fob regardless of the lock state of the vehicle 100.
In operation 222, the controller 113 determines whether to generate the vehicle command based on the general and specific requirements. When the requirements are not satisfied, the method 200 returns to operation 210 to receive further generated signals. When the requirements are satisfied, the method 200 proceeds to operation 224. In operation 224, the controller generates the vehicle command.
The embodiments described herein include several beneficial attributes. By simply pulling a fixed handle, pressure on the pressure switches may trigger unlatching a door latch. The fixed handle may further be applied to any closure with power unlatching while permitting wide flexibility in handle styling and design. Such flexibility in styling and design may permit weight savings and potentially reduce the cost of the handle assembly. Furthermore, the pressure switches may be shielded from environmental conditions that often cause reduced lifespan of such pressure switches. Moreover, the embodiments of the handle assembly described herein do not require moving parts that may be a source of failure of the handle assembly.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the disclosure as set forth in the appended claims and the legal equivalents thereof