1. Technical Field
The present invention pertains to pertains to magnetic recording, and particularly to apparatus and method for recording stripes of information on a tape medium.
2. Related Art and Other Considerations
In helical tape drives, there are two basic types of drum constructions: (1) a first type with a central shaft that rotates with a portion of the drum where the heads are mounted (also known as a Rotating-Shaft type drum); and (2) a second type with a central shaft rigidly mounted to a stationary lower drum around which the drum portion where the heads are mounted rotates (a.k.a. Fixed-Shaft type). Additionally, within the Fixed-Shaft type drum family, there are both two piece designs and three piece designs. In the two piece designs, a lower drum is stationary and the heads are mounted to a rotating upper drum. The Exabyte VXA-2 tape drive is an example of a two piece Fixed-Shaft drum design, illustrated in
In both of these existing, prior-art 2-piece and 3-piece fixed-shaft drum designs, the free-end of the shaft (i.e., the end of the shaft furthest away from the lower drum) has no direct physical connection, or support, to the lower drum. Consequently, when the drive is subjected to external vibration or shock conditions, the free-end of the shaft can be displaced easily relative to the lower drum due to the inertial loads placed on the shaft and the resulting flexing of the lower drum itself. This displacement of the free-end of the shaft causes the circular path followed by the heads to have a non-constant relationship to the lower drum, and consequently, causes the written track pattern on the tape to be non-uniform.
What is needed, therefore, and an object of the present invention, are techniques, apparatus, and method for overcoming undesirable effects in a recorded track pattern when a tape drive is subjected to external vibration and/or shock conditions.
A new physical structure is provided for either two piece or three piece fixed-shaft helical drums to minimize the effect that external vibration or shock conditions have on the recorded track pattern. A second physical support, which can take various forms, is added to act directly (or indirectly or quasi-directly) between the lower drum and the end of the shaft farthest away from lower drum.
In one of its aspects, the technology concerns a drum assembly for a helical scan recorder which comprises a stationary first drum and a shaft having a shaft first end centrally mounted to the first drum and a shaft second end. The shaft has a shaft axis which is co-axial with an axis of the first drum. The drum assembly further comprises a rotatable second drum which has at least one transducing element mounted thereon. The shaft extends axially through the second drum and the shaft second end protrudes axially above the second drum. The drum assembly also comprises a physical support member connected to the first drum. The physical support member is connected to the first drum and also connected to stabilize the shaft second end while allowing rotation of the second drum. The physical support member is connected to the shaft second end to reduce deflection of the shaft second end when the drum assembly is exposed to external vibration or shock.
In one example embodiment, the second drum is an uppermost drum of a two drum assembly. The shaft second end protrudes above the second drum and is engaged by the physical support member. In one example implementation, the physical support member has an aperture for engaging the shaft second end. The physical support member can be mechanically or adhesively attached to the first drum and to the shaft second end.
In another example embodiment the drum assembly comprises a stationary third drum positioned axially above the second drum. The third drum is rigidly mounted to the shaft second end. The physical support member is connected to the third drum, and is preferably connected to a peripheral surface of the first drum and to a peripheral surface of the third drum. The physical support member can be mechanically or adhesively attached to the third drum.
In a two piece drum design such as the first example embodiments, this new or secondary support (e.g., physical support member) can comprise a bridge, bracket, or brace which is connected both to the lower drum and to the end of the fixed shaft which protrudes above the upper drum. In a three piece design such as the second embodiment, this new or secondary support comprises a bridge, bracket, or brace which connects the (stationary) lower drum and the (stationary) upper drum, and thereby provides further vibration-dampening support for the end of the shaft already connected to the stationary upper drum.
Adding this additional support reduces the deflection of the end of the shaft farthest away from the lower drum when exposed to external vibration or shock conditions, and consequently, keeps the circular path followed by each head in a more consistent position relative to the lower drum, which, in turn, produces a more consistent track pattern on the tape.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In the following description, for purposes of explanation and non-limitation, specific details are set forth, such as particular nodes, functional entities, techniques, protocols, standards, etc. in order to provide an understanding of the described technology.
A new physical structure is provided for either two piece or three piece fixed-shaft helical drums to minimize the effect that external vibration or shock conditions have on the recorded track pattern. A second physical support (also known as a physical support member), which can take various forms, is added to act directly (or indirectly or quasi-directly) between the lower drum and the end of the shaft farthest away from lower drum.
The drum assembly 20 also comprises a physical support member 40 which is connected to stationary first drum 22 and also connected to stabilize shaft second end 28 while allowing rotation of rotatable second drum 32. The physical support member 40 is connected to shaft second end 28 in a manner and for the purpose of reducing deflection of shaft second end 28 when the drum assembly is exposed to external vibration or shock.
In the first example embodiment of
As shown in
In the
Thus,
In the three piece (e.g., three drum) design such as the second embodiment of
On the opposing side edges the physical support member 40 has removed portions or cutouts 60A and 60B which are configured with a cutout to permit access to a portion of the drum assembly. The cutout 60A ensures that a finger opening in the upper drum is not obscured; the cutout 60B provides a clearance around a rectangular opening in the upper drum for an unillustrated cleaning wheel. During final setting of the head heights, it is useful/necessary that a technician temporarily be able to prevent the rotating drum section from rotating. The width of the rotating middle drum section at its outermost diameter is very small, for which reason it best to not touch it at all so that it remains clean and undamaged. Consequently, two finger openings visible in
It will be appreciated that, in the example embodiments described herein, the drum assembly is mounted on a drive deck or the like in proper position along a tape path, e.g., between a tape supply reel and a tape takeup reel. The rotation of rotatable second drum 32 is imparted by drum motor assembly 38. The drum assembly further comprises electronics for supplying a recording signal to the transducing element(s) 34 on the rotatable second drum 32, as well as electronics for processing (e.g., reproducing) a signal read or acquired from the tape. These general features of a helical scan drive are understood from one or more of the following United States Patents, all of which are incorporated herein by reference in their entirety: U.S. Pat. No. 6,985,323; U.S. Pat. No. 6,809,897; U.S. Pat. No. 6,870,698; U.S. Pat. No. 6,778,361; U.S. Pat. No. 6,757,123; U.S. Pat. No. 6,697,209; U.S. Pat. No. 6,603,618; U.S. Pat. No. 6,459,540; U.S. Pat. No. 6,411,805; U.S. Pat. No. 6,189,824; U.S. Pat. No. 5,978,165; U.S. Pat. No. 5,731,921; U.S. Pat. No. 5,726,826; U.S. Pat. No. 5,065,261; U.S. Pat. No. 5,068,757; U.S. Pat. No. 5,141,412; U.S. Pat. No. 5,191,491; U.S. Pat. No. 5,535,068; U.S. Pat. No. 5,602,694; U.S. Pat. No. 5,680,269; U.S. Pat. No. 5,689,382; U.S. Pat. No. 5,734,518; U.S. Pat. No. 5,953,177; U.S. Pat. No. 5,973,875; U.S. Pat. No. 5,978,165; and U.S. Pat. No. 6,144,518.
The invention is not confined to the particular shaft support structures herein described, but encompasses other structures and/or mechanisms for providing vibration-dampening support or contact to a distal end of a drum shaft, e.g., an end of a drum shaft which conventionally is free or protrudes above an upper drum.
Although various embodiments have been shown and described in detail, the claims are not limited to any particular embodiment or example. None of the above description should be read as implying that any particular element, step, range, or function is essential such that it must be included in the claims scope. The scope of patented subject matter is defined only by the claims. The extent of legal protection is defined by the words recited in the allowed claims and their equivalents. It is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements.
This application claims the benefit and priority of U.S. Provisional Patent Application No. 60/697,366, filed Jul. 8, 2006, the entire contents of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60697366 | Jul 2005 | US |