1. Field of the Invention
The present invention relates to hydraulic valve systems used, for example, in off-road earth moving, construction, and forestry equipment, such as backhoes, log loaders, feller bunchers, wheel loaders, and the like. Hydraulic valve systems are utilized, for example, to cause pistons to move a boom or bucket loader in a backhoe. The present invention relates to an improved design for such hydraulic valve systems.
2. Brief Description of the Related Art
Prior art hydraulic valve systems include the open center hydraulic valve system 110 illustrated in
While variations in the basic design of such a prior art open center hydraulic valve system 110 exist, the fundamental components and operation of such a system are briefly described below.
The prior art open center hydraulic valve system 110 of
In order to illustrate the operation of a spool 118 to selectively interconnect hydraulic pathways within a valve, a simplified set of drawings illustrating how a spool 118 of a simple prior art constant flow open center (“CFO”) valve 136 is capable of redirecting the constant flow of hydraulic fluid is provided in
For example, in
In
Further, in
The operation of the spool 118 in the prior art open center hydraulic valve system 110 is similar to the operation of the spool 118 in the prior art simple CFO valve 136 described above; however, as illustrated and disclosed in the schematic diagram of
Referring once again to the prior art open center hydraulic valve system 110 illustrated in
Referring again to
The valves 114 include several hydraulic fluid pathways that may be selectively interconnected by activation of the spool 118, including an open center core 130, a power core 138, and a tank galley 132. The fixed displacement pump 116 pumps hydraulic fluid (at a constant flow rate for a given engine speed) from the hydraulic fluid tank 112 into the open center core 130. The tank galley 132 returns hydraulic fluid to the hydraulic fluid tank 112, where it is available to be re-pumped. The valves 114 also include a hydraulic connection between the open center core 130 and the power core 138, namely, an open center/power core passage 140. Typically, the valves 114 may also include smaller internal valves utilized to prevent, for example, overpressure or incorrect flow direction in the system, such as relief valves 142, or load drop check valves 144, which are not material to the explanation of the prior art or the invention.
The prior art open center hydraulic valve system 110 is typically housed in a standard manifold (not illustrated) attached to the equipment (e.g., construction, earth moving, or forestry equipment, such as a backhoe) in which the open center hydraulic valve system 110 is being used. The fixed displacement pump 116 is typically driven by a power take-off (not illustrated), which, in turn, is directly mounted to a transmission (not illustrated), which is connected to the prime mover of the equipment in which the prior art open center hydraulic valve system 110 is being used.
The operation of the spools 118 in each of the valves 114 to direct hydraulic fluid flow to and to permit fluid flow from associated hydraulic ports 122 and 124 to cause, for example, a piston to move within a cylinder and thereby cause movement of a functional aspect of the equipment on which the open center hydraulic valve 110 is mounted is well-known to skilled practitioners, and can be ascertained by skilled practitioners by reference solely to the schematic diagram found in
As can be seen in
If, as shown in
On the other hand, if, as shown in
Further details of the operation of the prior art open center hydraulic valve system 110 illustrated in
Because the pump for the prior art open center hydraulic system 110 is a fixed displacement pump 116, the flow of the hydraulic fluid supplied by the fixed displacement pump 116 is constant for a given engine speed for the equipment in which the prior art open center hydraulic system 110 is mounted.
When the spool actuators 120 in the valves 114 in the prior art open center hydraulic system 110 are in the neutral position, all of the associated spools 118 are likewise in the neutral position. As illustrated in
When one of the functions associated with the prior art open center hydraulic system 110 is desired to be activated, the spool actuator 120 associated with that function is activated by an equipment operator in order to move the associated spool 118 (left or right, as shown in the schematic in
If the chosen spool actuator 120 is activated with the intention of causing the piston 128 to move to a first non-neutral position as illustrated in
Conversely, if the chosen spool actuator 120 is activated with the intention of causing the piston to move to a second non-neutral position as illustrated in
Because the prior art open center hydraulic valve system 110 illustrated in
A number of factors have spurred equipment manufacturers and hydraulic systems designers to attempt to overcome the inefficiencies and shortcomings of the prior art prior art hydraulic valve systems, including open center hydraulic valve system 110. New emissions standards and a desire for fuel savings have caused designers and manufacturers to attempt to design equipment and hydraulic systems that are more fuel efficient, and more power efficient, by achieving greater horsepower management. Manufacturers and designers likewise desire to avoid significant increases in the size, weight, and expense of providing alternatives to the prior art systems, such as open center hydraulic valve systems 110.
For example, one potential alternative previously considered by designers and manufacturers was to replace the fixed displacement pump 116 of the open center hydraulic valve system 110 illustrated in
The present invention, known as a fixed/variable hybrid system, overcomes the problems associated with both the prior art open center hydraulic valve system 110 and the potential alternatives that have been considered and largely rejected (for example, replacement of the fixed displacement pump 116 with a variable displacement piston pump). The fixed/variable hybrid system of the present invention achieves reduced emissions, greater horsepower management, and greater fuel savings, without greatly increasing the cost, size, or weight of the hydraulic valve system.
In view of the foregoing, it is an object of the embodiments of the invention described herein to provide a hydraulic valve system, called a fixed/variable hybrid system, that overcomes the shortcomings of prior art open center hydraulic valve systems, while still achieving the functions and benefits of prior systems.
It is another object of the embodiments of the fixed/variable hybrid system invention described herein to provide a hydraulic valve system capable of hydraulically operating the functions of heavy off-road equipment, such as earth moving, construction, and forestry equipment, while simultaneously significantly reducing unused hydraulic flow, and thereby significantly reducing the inefficient use of power associated with such unused flow.
It is yet another object of the embodiments of the fixed/variable hybrid system invention described herein to achieve substantially decreased fuel emissions, and substantially increased fuel savings, by reducing inefficient equipment engine usage resulting from power consumption required to provide inefficient hydraulic fluid flow associated with prior art hydraulic systems, such as open center hydraulic valve systems.
Still another object of the embodiments of the fixed/variable hybrid system invention described herein is to achieve the above objects in a manner that is not cost prohibitive, but rather in a manner that is cost-efficient.
A further object of the embodiments of the invention described herein is to achieve the foregoing objects without greatly increasing the size or weight of the hydraulic valve system, as compared to prior art systems such as the open center hydraulic valve system previously discussed.
The disclosed embodiments of the present fixed/variable hybrid system invention achieve the aforementioned objects and others because they include features and combinations not found in prior art hydraulic valve systems, and, in particular, not found in prior art open center hydraulic valve systems.
In the described embodiments of the present invention, an improved hydraulic valve system, called a fixed/variable hybrid system, is provided, wherein the need for a relatively large and inefficient fixed displacement pump to hydraulically power such a system is eliminated. Instead, the fixed/variable hybrid system of the present invention uses modified constant flow open center valve banks (“fixed/variable valves”) in conjunction with a relatively small fixed displacement pump coupled with a variable displacement piston pump. The small fixed displacement pump provides hydraulic fluid to an open center core, and also via an open center/power core passage through a check valve to the fixed/variable valves' power cores. The small fixed displacement pump is also ported through a sense signal passage to the load sense signal port of the variable displacement pump. The variable displacement pump, in turn, provides hydraulic fluid flow to one or more fixed/variable valves directly through the fixed/variable valves' power core. Flow from the variable displacement pump to the open center core is blocked by the check valve in the open center/power core passage.
When a particular spool actuator is selected and activated, the selected spool moves to partially restrict or “pinch” the hydraulic fluid flow generated by the small fixed displacement pump through the open center core. The partial flow restriction caused by the spool in the open center core causes fluid pressure to rise in the hydraulic fluid flow provided by the small fixed displacement pump into the open center core. The rise in hydraulic fluid pressure in the open center core is communicated from the open center core through the sense signal passage to the load sense signal port of the variable displacement pump. Depending on the pressure of the hydraulic fluid pressure received through the load sense signal port (for example, depending on how many spools have been activated causing partial restrictions in the open center core, and thereby causing increases in fluid pressure to be transmitted from the open center core via the sense signal passage to the load sense signal port), the increased fluid pressure received in the load sense signal port of the variable displacement piston pump causes the variable displacement piston pump to variably increase its fluid flow to the fixed/variable valves' power cores.
Stated another way, the variable displacement piston pump is responsive to an increase or decrease in fluid pressure transmitted from the open center core through the sense signal passage to the load sense signal port associated with the variable displacement piston pump. The greater the fluid pressure received by the load sense signal port from the small fixed displacement pump through the open center core via the sense signal passage, the more that the variable displacement piston pump increases its flow and pressure to the power core, and vice-versa (within the limitations of the variable displacement piston pump). The small fixed displacement pump also may supply some pressurized hydraulic fluid to the power core through the open center/power core passage. The check valve in the open center/power core passage prevents reverse flow once the pressure in the power core exceeds the pressure in the open center core.
The spools in the fixed/variable valves of the fixed/variable hybrid system are the same as those used in the prior art open center hydraulic valve system, and thus, when activated, operate in the same manner to direct fluid flow from the power core (and to the tank galley) through the pair of hydraulic ports associated with a particular activated spool. As illustrated in schematic diagram in
By eliminating altogether the relatively large fixed displacement pump of the prior art system (which operated constantly and inefficiently at a full and fixed flow), and by substituting a relatively small fixed displacement pump, significant efficiencies are achieved by the fixed/variable hybrid system invention. The small fixed displacement pump is sufficient to provide an increase in hydraulic pressure to the load sense signal port of the variable displacement piston pump (but not necessarily to operate the hydraulic functions associated with the system). Operation of the hydraulic functions is mainly achieved by the variable displacement piston pump operating at higher flow and providing increased hydraulic pressure only when activated by the increase in hydraulic pressure received by the load sense signal port, as provided by the small fixed displacement pump. In other words, the variable displacement piston pump operates at a higher flow only as required, not constantly as in the case of the relatively large fixed displacement pump of the prior art, including the open center hydraulic valve system.
As a result, significant fuel savings and power efficiencies are achieved by the present invention. Simply put, the fixed/variable hybrid system invention described herein utilizes a considerably smaller fixed displacement pump than prior art systems, resulting in less power being wasted pumping hydraulic fluid that is not operating any of the hydraulic functions (e.g., the boom) of the equipment (e.g., a backhoe), such as when the spools of the fixed/variable valves associated with the hydraulic functions are in a neutral position. Instead, the fixed/variable hybrid system utilizes only a small constant flow provided by a small fixed displacement pump, which in turn provides a signal in the form of a pressurized hydraulic fluid through a sense signal passage to a load sense signal port of a variable displacement piston pump to increase fluid flow to power core of the system only as needed upon demand when spool actuators (and their associated spools) are activated to operate an equipment function. Thus, the vast majority of operational power for the fixed/variable hybrid system is utilized only as needed, achieving significant fuel, power, and emission efficiencies. Moreover, the invention's fixed/variable hybrid system does not require any major design overhaul for the fixed/variable valves, or increase in size and weight of the fixed/variable valves, or significant increase in cost of the fixed/variable valves, as would be required if a variable displacement piston pump were to be merely substituted for the fixed displacement pump of the prior art open center hydraulic valve system.
An embodiment of the fixed/variable hybrid system 210 of the present invention is illustrated schematically in
Referring to
The fixed/variable hybrid system 210 of the present invention may be housed in a standard manifold (not illustrated) attached to the equipment (e.g., off-road construction, earth moving, or forestry equipment—not illustrated) in which the fixed variable hybrid system 210 is being used. The small fixed displacement pump 216 and variable displacement piston pump 246 may be driven by a power take-off (not illustrated), which, in turn, is mounted to a transmission (not illustrated) connected to the prime mover of the equipment.
Each spool 218 of the fixed/variable hybrid system 210 in
Referring once again to
An open center core 230 flows through the spools 218 of the fixed/variable valves 214. The fixed/variable valves 214 also include a power core 238 for hydraulic communication of pressurized hydraulic fluid, and a tank galley 232 for return of hydraulic fluid to the hydraulic fluid tank 212 where it becomes available to be re-pumped. Importantly, the provision of hydraulic fluid to the power core 230 of the fixed/variable hybrid system 210 (see
The small fixed displacement pump 216 pumps hydraulic fluid (at a constant rate for a given engine speed) from the hydraulic fluid tank 212 to the open center core 230. As has been discussed, and will be further explained below, the small fixed displacement pump 216 in the fixed/variable hybrid system 210 of the invention is considerably smaller, less expensive, requires less fuel and energy consumption, and thus results in less fuel emissions for a given equivalent equipment application than the relatively larger fixed displacement pump 116 of the prior art open center hydraulic valve system 110.
A variable displacement piston pump 246 pumps hydraulic fluid (at a variable rate, as further explained herein) directly to the power core 238 of each of the fixed/variable valves 214. Associated with the variable displacement piston pump 246 is a load sense signal port 250. The load sense signal port 250 is hydraulically connected to a sense signal passage 252, which, in turn, is hydraulically connected to the open center core 230, preferably between the small fixed displacement pump 216 and the first spool 218 to which the small displacement pump 216 is hydraulically connected. The load sense signal port 250 regulates the hydraulic flow output of the variable displacement piston pump 246 such that as the hydraulic fluid pressure delivered by the sense signal passage 252 to the load sense signal port 250 from the open center core 230 increases, the output flow of hydraulic fluid from the variable displacement piston pump 246 to the power core 238 increases (within the output limits of the variable displacement piston pump 246). Conversely, as the hydraulic fluid pressure delivered by the sense signal passage 252 to the load sense signal port 250 from the open center core 230 decreases, the output flow of hydraulic fluid from the variable displacement piston pump 246 to the power core 238 decreases (within the output limits as well).
The fixed/variable valves 214 may also preferably include smaller internal valves, such as relief valves 242, or load drop check valves 244, in order to avoid overpressure or incorrect flow direction in the fixed/variable hybrid system 210 of the invention. The inclusion of those smaller valves are illustrated and are preferable, but the operation and function of those valves would be understood by a skilled practitioner, and an explanation of the smaller valves would not be material to an understanding of the invention.
The invention's fixed/variable hybrid system 210 illustrated in
When the spools 218 are all in the neutral position, the hydraulic fluid pressure communicated from the open center core 230 through the sense signal passage 252 to the load sense signal port 250 associated with the variable displacement piston pump 246 is at a minimum, and thus the hydraulic fluid flow provided by the variable displacement piston pump 246 is also at a minimum. In this condition, the check valve 248 in the open center/power core passage 240 may permit some fluid flow from the open center core 230 through the open center/power core passage 240 to the power core 238 until the hydraulic fluid pressure in the power core 238 exceeds the pressure in the open center core 230, closing check valve 248.
When an operator chooses to operate a hydraulic function of the equipment on which the fixed/variable hybrid system 210 is mounted, the operator directly or indirectly manipulates the spool actuator 220 associated with that function. The chosen spool actuator 220 operates a spool 218 associated with that spool actuator 220.
If the operator chooses to cause the spool 218 to move to a first non-neutral position, movement of the spool 218 causes several things to occur. Movement of the 218 spool causes a partial restriction of the open center core 230. Because hydraulic fluid is being provided to the open center core 230 at a constant fluid flow by the small fixed displacement pump 216, the hydraulic pressure in the open center core 230 increases upstream of the activated spool 218 (that is, between that activated spool 218 and the small fixed displacement pump 216) that has caused the partial restriction.
The increased hydraulic fluid pressure in the open center core 230 is hydraulically communicated via the sense signal passage 252 to the load sense signal port 250. The increase in hydraulic pressure at the load sense signal port 250 causes the variable displacement piston pump 246 to increase its hydraulic fluid output, thus increasing the hydraulic pressure and flow in the power core 238 to which it is directly connected. Once again, the open center/power core passage 240 and its associated check valve 248 may permit some hydraulic fluid to flow from the partially restricted open center core 230 to the power core 238 until such time as the pressure in the power core 238 exceeds the pressure in the now partially restricted (by the activated spool 218) open center core 230, closing check valve 248.
At the same time, when activated spool 218 is moved to the first non-neutral position, the spool 218 opens a hydraulic passage through the fixed/variable valve 214 between the power core 238 and the first hydraulic port 222 associated with the activated spool 218, causing hydraulic fluid under pressure (delivered mainly by the variable displacement piston pump 246 through the power core 238) to flow from the power core 238 to the associated first hydraulic port 222. In the first non-neutral position, the activated spool 218 continues to obstruct the passage through the fixed/variable valve 214 between the power core 238 and the second hydraulic port 224 associated with the activated spool 218. In that first position, however, the activated spool 218 opens a hydraulic passage through the fixed/variable valve 214 between the tank galley 232 and the second hydraulic port 224 associated with the activated spool 218, permitting hydraulic fluid to flow from the second hydraulic port 224 through the tank galley 232 to the hydraulic fluid tank 212. At the same time, activated spool 218 in the first position obstructs the hydraulic fluid pathway between the tank galley 232 and the first hydraulic port 222.
In an example where the first hydraulic port 222 associated with the activated spool 218 is hydraulically connected to a cylinder at a location below a piston, and the second associated hydraulic port 224 is hydraulically connected to a cylinder at a location above a piston, the hydraulic fluid under pressure flows into the cylinder through the first associated hydraulic port 222 below the piston, and hydraulic fluid flows out of the cylinder through the second associated hydraulic port 224 above the piston, causing the piston (and associated load) to rise. If, in this example, the operator has chosen the spool actuator 220 associated with the boom on a backhoe, the fixed/variable hybrid system 210 would cause the backhoe's boom to rise.
If, on the other hand, the operator chooses to use a spool actuator 220 to cause the spool 218 to move in a second non-neutral position (e.g., in a non-neutral position opposite from the first direction), movement of the activated spool 218 in the second non-neutral position once again causes several results. Movement of the activated spool 218 to a second non-neutral position would again cause a partial restriction of the open center core 230 of the fixed/variable valve 214. The constant fluid flow provided by the small fixed displacement pump 216 through the now-partially restricted open center core 230 causes the fluid pressure to increase in the open center core 230 between the activated spool 218 and the small fixed displacement pump 216.
The sense signal passage 252 hydraulically communicates the increase in hydraulic fluid pressure from the open center core 230 through the sense signal passage 252 to the load sense signal port 250 associated with the variable displacement piston pump 246. This causes the variable displacement piston pump 246 to increase the rate of hydraulic fluid output to the power core 238 to which it is directly connected, increasing the hydraulic pressure therein. Also, some hydraulic fluid may flow from open center core 230 through the open center/power core passage 240 and its associated check valve 248 to the power core 238 until the pressure in the power core 238 exceeds the pressure in the open center core 230, closing check valve 248.
When the operator causes spool 218 to move to the second non-neutral position, the activated spool 218 is moved so that, in addition to the partial restriction of the open center core 230 described above, the activated spool 218 moves to a position where a hydraulic passage through the fixed/variable valve 214 is opened between the power core 238 and the second hydraulic port 224 associated with the activated spool 218, causing the hydraulic fluid under pressure in the power core 238 (delivered mostly by the increased fluid flow from the variable displacement piston pump 216) to flow from the power core 238 to the associated second hydraulic port 224. The activated spool 218, in the second position, obstructs the hydraulic passage through the fixed/variable valve 214 between the power core 238 and the first hydraulic port 222 associated with the activated spool 218. The activated spool 218 also obstructs the hydraulic fluid pathway between the tank galley 232 and the second hydraulic port 224 associated with the activated spool 218. But in the second non-neutral position, the activated spool 218 opens a hydraulic passage through the fixed/variable valve between the tank galley 232 and the first hydraulic port 222 associated with the activated spool 218, allowing hydraulic fluid to flow from the first hydraulic port 222 associated with the activated spool 218 through the tank galley 232 to the hydraulic fluid tank 212.
If the hydraulic ports are hydraulically connected to a cylinder having a piston in the manner described in the previous example, that is, with the first hydraulic port 222 associated with the activated spool 218 being connected below the piston, and the second hydraulic port 224 associated with the activated spool 218 being connected above the piston, then hydraulic fluid under pressure will flow from the power core 238 through the second hydraulic port 224 associated with the activated spool 218 into the cylinder above the piston, and hydraulic fluid will flow out of the cylinder below the piston through the first hydraulic port 222 associated with the activated spool 218 via the tank galley 232 to the hydraulic fluid tank 212. The increase in hydraulic fluid in the cylinder above the piston and decrease in hydraulic fluid in the cylinder below the piston will cause the piston, and any associated load, to lower. If, as in the previous example, the operator chose to activate (via a spool actuator 220) the spool 218 associated with a boom, that boom, as powered by the fixed/variable hybrid system 210 of the invention, would lower.
While a single spool actuator 220 associated with a single spool 218 associated with a single function was provided as an example to illustrate the operation of the fixed/variable hybrid system 210, persons skilled in the art will recognize that different spools 218 associated with different functions may be activated in the same manner, and those will not be separately discussed.
In the event that more than one spool 218 is activated at the same time in the fixed/variable hybrid system of the present invention, further partial restriction of the open center core 230 would occur because of the multiple partial restrictions resulting from multiple activated spools 218. The further partial restrictions of the open center core 230 of the constant fluid flow (for a given engine speed) provided by the small fixed displacement pump 216 would cause the fluid pressure in the open center core 238 to further increase to a pressure greater than the pressure occurring when only one spool 218 was activated. Stated another way, more activated spools 218 cause greater partial restrictions in the open center core 238 resulting in greater fluid pressure within the open center core 238. This greater fluid pressure in the open center core 238 is communicated hydraulically via the sense signal passage 252 to the load sense signal port 250 of the variable displacement piston pump 246.
As discussed previously, greater fluid pressure received by the load sense signal port 250 causes the variable displacement piston pump 246 to increase its hydraulic fluid flow output to the power core 238, increasing the fluid flow and pressure in the power core 238. This increase in pressure in the power core 238 serves to hydraulically power the various functions of the multiple activated spools 218.
When multiple spools 218 are activated, once again, some fluid flow may occur from the open center core 230 through the open center/power core passage 240 and its associated check valve 248 to the power core 238 until the point that the pressure in the power core 238 exceeds the pressure in the open center core 230, closing check valve 248.
The advantages of the embodiments of the fixed/variable hybrid system 210 invention herein are significant. The inefficiencies of prior art hydraulic systems, such as the prior art open center hydraulic valve system 110, are largely overcome. Instead of a relatively large fixed displacement pump 116 operating constantly at a fixed rate, consuming power and fuel, and causing emissions, at the constant rate required by the relatively large fixed displacement pump 116, the fixed/variable hybrid system 210 utilizes a relatively small fixed displacement pump 216, consuming considerably less power and fuel, and therefore emitting considerably less fuel emissions.
The prior art fixed displacement pump 116 needed to generate sufficient hydraulic fluid flow (needed to be sufficiently large and powerful) to operate all equipment functions (multiple functions at one time) at rated load, and to satisfy line losses. That larger pump was required to run at full and constant flow at all times during operation. The small fixed displacement pump 216 of the present invention only needs to be sufficiently large to generate a hydraulic pressure increase (essentially, a hydraulic pressure signal) through the sense signal passage 252 to the load sense signal port 250 (and to satisfy line losses), therefore, only a small fixed displacement pump 216 is required to run constantly. Hydraulic fluid flow to power the functions of the equipment is supplied only on an “as needed” basis by the variable displacement piston pump 246, resulting in considerable savings in fuel, and considerable reduction in emissions (as a result of running the engine to power the respective pumps). This is especially important as the rated load capacities increase for the equipment in which the fixed/variable hybrid system 210 is used.
Moreover, unlike other potential alternatives that seek to overcome the shortcomings of the prior art, such as mere substitution of a variable displacement piston pump for a fixed displacement pump in an open center hydraulic valve system, the fixed/variable hybrid system 210 of the present invention does not require redesigning or other major overhauls of the design of the constant flow open center valve banks to greatly increase the size of the valves. This potential alternative has inherent significant problems due to the limited space available for hydraulic valve systems on the equipment on which it is typically mounted. Stated another way, bulky and heavy potential alternatives are not acceptable because they often will not fit on the equipment on which they are required. Furthermore, the considerable added expense of the required resized valves for such a system makes such a potential alternative highly undesirable.
In sum, the fixed/variable hybrid system 210 of the present invention is a significant improvement over the prior art, and is superior to other alternatives seeking to overcome the shortcomings of the prior art. The present invention provides significant benefits in fuel efficiency, horsepower management, decreased emissions, reduced cost of manufacture (compared to resized/redesigned valves), and reduced size/weight (compared to resized/redesigned valves).
While the above-described embodiments of the fixed/variable hybrid system 210 invention have been found and are believed to be useful and preferable, particularly in certain application using the invention in connection with off-road earth moving, construction, and forestry equipment, skilled practitioners will recognize that other combinations of elements, dimensions, or materials can be utilized, and other equipment applications can be realized, without departing from the invention claimed herein. Moreover, although certain embodiments of the invention have been described by way of example, it will be understood by skilled practitioners that modifications may be made to the disclosed embodiments without departing from the scope of the invention, which is defined by the claims.
Having thus described exemplary embodiments of the invention, that which is desired to be secured by Letters Patent is claimed below.
This application is a continuation for co-pending U.S. application Ser. No. 13/385,946, filed Mar. 15, 2013, which is a continuation of U.S. application Ser. No. 12/220,331, filed Jul. 23, 2008, which, in turn, claims the benefit of and priority from U.S. provisional application Ser. No. 60/951,560, filed Jul. 24, 2007, all of the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60951560 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13385946 | Mar 2012 | US |
Child | 13948494 | US | |
Parent | 12220331 | Jul 2008 | US |
Child | 13385946 | US |