1. Technical Field
The present disclosure relates to an apparatus for fixing an optical fiber hole insert, and a method for measuring the optical fiber hole insert.
2. Description of Related Art
Optical fiber connectors are widely used in optical fiber communications. Precision of the optical fiber connector, especially the optical fiber hole of the optical fiber connector is critical for reducing light loss of the optical fiber communication. The precision of the optical fiber hole is usually determined by an optical fiber hole insert of a mold, which is used to form the optical fiber hole, as such the insert needs to be carefully measured, including the size and the coarseness thereof.
Coordinate measurement instruments may include probe contact coordinate measurement instruments and optical non-contact coordinate measurement instruments, which are capable of performing coordinate measurements (usually three-dimensional measurements) of objects. Fixing apparatuses which are key components of the coordinate measurement instruments, are used to fix the objects in position.
As shown in
What is needed, therefore, are an apparatus for fixing an optical fiber hole insert in a coordinate measurement and a method for measuring the optical fiber hole insert, which can overcome the above shortcomings.
Many aspects of the present apparatus and method can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present apparatus and method. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Embodiments of the present apparatus and method will now be described in detail below and with reference to the drawings.
Referring to
Referring again to
Referring again to
The top surface 13 serves as a support surface. The top surface 13 has two pivot retaining members 17 formed thereon, for retaining the pivot 21. The top surface 13 further includes a number of first grooves 141 and corresponding second grooves 142 formed therein. Each of the first and second grooves 141, 142 has a semi-circular shape. The first grooves 141 are exposed at the front side surface 11, the second grooves 142 are exposed at the back side surface 12. A through hole 15 is formed in the main body 10 between the top surface 13 and the bottom surface 18. The first and second grooves 141, 142 communicate with the through hole 15. The first groove 141 retains the distal end 33 of the machined insert 35, and the second groove 142 retains the optical fiber hole mold portion 34 of the machined insert 35.
Referring again to
In application, the machined insert 35 is placed in the groove 14, with the vertical surface 331 of the machined insert 35 retained on the retaining surface 1621 of the protrusions 16, and the flat surface 332 of the distal end 33 opposing the cover plate 20. As the first grooves 141 and the second grooves 142 are semi-circular, diameters of the distal end 33 and optical fiber hole mold portion 34 can be the same as, or a little greater or a little less than those of the first and second grooves 141 and 142 with the help of the closed cover palate 20. The flat surface 332 allows a better contact with the cover plate 20, thus the machined insert 35 is well positioned. A distance between the front and back side surfaces 11, 12 is less than that of the machined insert 35, thus a part of the distal end 33 and a part of the optical fiber hole molding portion 34 locate outside the cover plate 20.
Coordinate measurements of coarseness and size of the distal end 33 and the optical fiber hole mold portion 34 can be carried out from the front side, the back side and the through hole 15 of the main body 10. Probe contact coordinate measurement or optical non-contact coordinate measurement can be used in the coordinate measurements.
Because of the flat surface 332, an X, Y Z coordinate system can be defined thereon, including the vertical surface 331 perpendicular thereto. In addition, in some situations, the cover plate 20 can be transparent to see the coordinate measurements.
A method for optical fiber hole insert coordinate measurement is also provided, the method may include the steps as follows. First, provide the apparatus 100 illustrated above. Second, machine a distal end of an optical fiber hole insert to be measured to form a flat surface 312 on the distal end, the flat surface 312 is parallel with a central axis of the insert. Third, position the machined insert in the apparatus 100 and allow the cover plate 20 in contact with the flat surface 312 of the machined insert. Fourth, perform coarseness and size coordinate measurement for the machined insert.
It is understood that the above-described embodiments are intended to illustrate rather than limit the disclosure. Variations may be made to the embodiments and methods without departing from the spirit of the disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
99114921 | May 2010 | TW | national |