The present invention relates to fixing apparatuses of data storage devices, and particularly to a fixing apparatus which readily mounts a data storage device in a bracket.
Generally speaking, when a computer is assembled, a drive bracket is mounted in a computer enclosure, and then data storage devices are fixed to the drive bracket. The data storage devices comprise various combinations of hard disk drives (HDDs), floppy disk drives (FDDs), and compact disk-read only memory (CD-ROM) drives.
A conventional data storage device is generally attached to a drive bracket by bolts or rails. However, fixing a data storage device to a drive bracket with bolts is unduly laborious and time-consuming. Furthermore, the computer enclosure needs extra operating space for carrying out the fixing operation. Fixing a data storage device in a drive bracket using rails is more convenient than using the above-described bolts. However, certain bolts are still needed to fix the rails to the drive bracket. Additionally, mounting systems using rails require a clearance between the data storage device and the drive bracket. This may cause electromagnetic interference (EMI) problems, and may lead to accumulation of static charges on the computer enclosure. Furthermore, the rails are generally made of plastic. This not only restricts grounding connection options between the data storage device and the drive bracket, but also tends to lead to extra maintenance because of the plastic rails easily wearing out and needing replacement.
What is desired, therefore, is to provide a fixing apparatus which readily attaches a data storage device in a drive bracket.
In one preferred embodiment, a fixing apparatus is provided for holding a data storage device defining a pair of holes in a sidewall thereof. The fixing apparatus includes a bracket, a sliding member, a rotating member, a pair of latch members, and a resilient member. The bracket includes a side panel defining a pair through holes therein. The sliding member is slidably attached to the side panel. The rotating member is rotatably attached to the sliding member. The resilient member is disposed between the sliding member and the rotating member. The latch members are pivotably attached to the rotating member and movably extend through the through hole of the bracket to engage in the holes of the data storage device.
Other advantages and novel features will become more apparent from the following detailed description of preferred embodiments when taken in conjunction with the accompanying drafting, in which:
Referring to
Referring also to
The sliding member 30 includes a pair of wings 32 in alignment with each other, and a pair of spaced plates 34 extending perpendicularly in parallel from a middle portion of the wings 32. A pair of short shafts 342 extends outwardly from outer surfaces of the plates 34, respectively. A fixing tab 344 extends perpendicularly from a right edge of a lower plate 34, for fixing the resilient member 60 therearound.
Referring also to
Each of the latch members 50 includes a block 54, and a rod 52. The rod 52 extends from the block 54, for movably extending through the through hole 242 of the corresponding post 24 of the bracket 20 to engage in the corresponding hole 12 of the data storage device 10. The block 54 defines a pivoting hole 542 therein, for pivotably engaging with the corresponding pole 472 of the rotating member 40.
Referring also to
Before installation of the data storage device 10, the rotating member 40 is rotated by manipulating the handgrip portion 424 outward thereof. The resilient member 60 is squeezed and the rods 52 of the latch members 50 retract into the through holes 242 of the posts 24 of the bracket 20. The actuating ends 44 of the rotating member 40 abut against a left wing 32 of the sliding member 30 to move the sliding member 30 rightward until a free end of the right wing 32 is blocked by the blocking protrusion 28 of the bracket 20. Distal ends of the rods 52 are completely withdrawn into the through holes 242 of the posts 24. The positioning blocks 442 abut against the right wing 32 of the sliding member 30. The data storage device 10 is then inserted into the bracket 20 to a predetermined position. The rotating member 40 is released. The resilient member 60 rebounds. The rotating member 40 and the sliding member 30 move back. The rods 52 of the latch members 50 move inward and engage in the holes 12 of the data storage device 10. The data storage device 10 is thus located and fixed in the bracket 20.
In disassembly, the rotating member 40 is rotated once again to squeeze the resilient member 60. The sliding member 30 is moved rightward. The rods 52 of the latch members 50 disengage from the holes 12 of the data storage device 10. Then the data storage device 10 can be easily taken out from the bracket 20.
It is believed that the present embodiment and its advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the example hereinbefore described merely being a preferred or exemplary embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2005 2 0121443 U | Dec 2005 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
280987 | Wolfrath | Jul 1883 | A |
1955969 | Marzolf | Apr 1934 | A |
2874986 | Henrichs | Feb 1959 | A |
4376522 | Banks | Mar 1983 | A |
4428608 | Cooke et al. | Jan 1984 | A |
4826221 | Harmon | May 1989 | A |
4828299 | Poe | May 1989 | A |
5593244 | Ruckert | Jan 1997 | A |
6654240 | Tseng et al. | Nov 2003 | B1 |
6728109 | Wu | Apr 2004 | B1 |
7611100 | Peng et al. | Nov 2009 | B2 |
7656654 | Liu et al. | Feb 2010 | B2 |
20070164170 | Huang et al. | Jul 2007 | A1 |
20070267951 | Lin | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070145866 A1 | Jun 2007 | US |