1. Field of the Invention
The present invention relates to a fixing device mounted in image forming apparatuses, such as electrophotographic copying machines and electrophotographic printers, and a heater used in the fixing device.
2. Description of the Related Art
In recent years, a film heating fixing device mounted in electrophotographic copying machines or electrophotographic printers has been in practical use.
In general, such a film heating fixing device includes a cylindrical film, a plate-like heater that is in contact with the inner surface of the film, and a pressing member that forms a nip portion together with the heater via the film. Since the film heating fixing device can be produced using a low heat-capacity member, the amount of power consumption and the wait time for heating can be advantageously reduced.
However, since the film heating fixing device includes a low heat-capacity member, the temperature of a non-sheet passage area from which heat is not removed by a recording medium easily rises if printing is continuously performed on recording media of a small size. That is, a temperature rise of a non-sheet passage area easily occurs.
To address such an issue, Japanese Patent Laid-Open No. 2005-234540 describes a heater including a heat generating resistor having a positive temperature coefficient (PTC).
In recent years, to further reduce FPOT (first print out time) and power consumption, the size and heat capacity of each of the components of a fixing device have been reduced. Thus, more strict prevention of a temperature rise of a non-sheet passage area is needed. As a result, a heater having an effect to prevent a temperature rise of a non-sheet passage area greater than that of the heater described in Japanese Patent Laid-Open No. 2005-234540 is needed.
According to a first aspect of the invention, a heater for used in a fixing device that fixes a toner image onto a recording medium bearing the toner image is provided. The heater includes an elongated substrate, a first conductor pattern formed at one end of the substrate in a short direction of the substrate and a second conductor pattern formed at the other end, a third conductor pattern formed between the first conductor pattern and the second conductor pattern in the short direction of the substrate, where the third conductor pattern is separated from each of the first conductor pattern and the second conductor pattern, a first electrical contact portion disposed at one of both ends of the first conductor pattern in a long direction of the substrate and a second electrical contact portion disposed at one of both ends of the second conductor pattern in the long direction of the substrate, a first heat generating resistor electrically connected to the first conductor pattern and the third conductor pattern, where the first heat generating resistor is disposed between the first conductor pattern and the third conductor pattern, and a second heat generating resistor electrically connected to the second conductor pattern and the third conductor pattern, the second heat generating resistor being disposed between the second conductor pattern and the third conductor pattern. The heater has both end regions in the long direction of the substrate in which the widths of the third conductor pattern in the short direction is smaller than the width of a middle portion of the third conductor pattern, and the widths of the first heat generating resistor and the second heat generating resistor in the short direction of the substrate in the end regions are smaller than the widths of the first heat generating resistor and the second heat generating resistor in the short direction of the substrate in a region other than the end regions.
According to a second aspect of the invention, a heater for used in a fixing device that fixes a toner image onto a recording medium bearing the toner image is provided. The heater includes an elongated substrate a first conductor pattern formed at one end of the substrate in a short direction of the substrate and a second conductor pattern formed at the other end with a spacing therebetween, where the first conductor pattern and the second conductor pattern extend in a long direction of the substrate, a first electrical contact portion disposed at one of both ends of the first conductor pattern in the long direction of the substrate and a second electrical contact portion disposed at one of both ends of the second conductor pattern in the long direction of the substrate, and a heat generating resistor electrically connected to the first conductor pattern and the second conductor pattern, where the heat generating resistor is disposed between the first conductor pattern and the second conductor pattern. The heater has both end regions in the long direction of the substrate in which by reducing at least one of the widths of the first conductor pattern and the second conductor pattern in the short direction of the substrate, the spacing is increased to a value larger than that in a middle portion, and the width of the heat generating resistor in the short direction of the substrate in the end regions is larger than the width of the heat generating resistor in a region other than the end regions.
According to a third aspect of the invention, a fixing device for fixing a toner image onto a recording medium bearing the toner image in a nip portion while conveying the recording medium is provided. The device includes a cylindrical film, a heater in contact with an inner peripheral surface of the film, and a pressing member configured to form the nip portion together with the heater via the film. The heater includes an elongated substrate, a first conductor pattern formed at one end of the substrate in a short direction of the substrate and a second conductor pattern formed at the other end, a third conductor pattern formed between the first conductor pattern and the second conductor pattern in the short direction of the substrate, where the third conductor pattern is separated from each of the first conductor pattern and the second conductor pattern, a first electrical contact portion disposed at one of both ends of the first conductor pattern in a long direction of the substrate and a second electrical contact portion disposed at one of both ends of the second conductor pattern in the long direction of the substrate, a first heat generating resistor electrically connected to the first conductor pattern and the third conductor pattern, the first heat generating resistor being disposed between the first conductor pattern and the third conductor pattern, and a second heat generating resistor electrically connected to the second conductor pattern and the third conductor pattern, the second heat generating resistor being disposed between the second conductor pattern and the third conductor pattern. The heater has both end regions in the long direction of the substrate in which the widths of the third conductor pattern in the short direction is smaller than the width of a middle portion of the third conductor pattern, and the widths of the first heat generating resistor and the second heat generating resistor in the short direction of the substrate in the end regions are smaller than the widths of the first heat generating resistor and the second heat generating resistor in the short direction of the substrate in a region other than the end regions.
According to a fourth aspect of the invention, a fixing device for fixing a toner image onto a recording medium bearing the toner image in a nip portion while conveying the recording medium is provided. The device includes a cylindrical film, a heater in contact with an inner peripheral surface of the film, and a pressing member configured to form the nip portion together with the heater via the film. The heater includes an elongated substrate, a first conductor pattern formed at one end of the substrate in a short direction of the substrate and a second conductor pattern formed at the other end with a spacing therebetween, the first conductor pattern and the second conductor pattern extending in a long direction of the substrate, a first electrical contact portion disposed at one of both ends of the first conductor pattern in the long direction of the substrate and a second electrical contact portion disposed at one of both ends of the second conductor pattern in the long direction of the substrate, and a heat generating resistor electrically connected to the first conductor pattern and the second conductor pattern, where the heat generating resistor is disposed between the first conductor pattern and the second conductor pattern. The heater has both end regions in the long direction of the substrate in which by reducing at least one of the widths of the first conductor pattern and the second conductor pattern in the short direction of the substrate, the spacing is increased to a value larger than that in a middle portion, and the width of the heat generating resistor in the short direction of the substrate in the end regions is larger than the width of the heat generating resistor in a region other than the end regions.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
The image forming apparatus includes an electrophotographic photosensitive member 1 serving as an image bearing member (hereinafter referred to as a “photoconductive drum”). The photoconductive drum 1 rotates at a predetermined circumferential speed in a direction indicated by an arrow. The photoconductive drum 1 is produced by forming a photoconductive material, such as an OPC (Organic Photoconductor) or amorphous silicon, on a cylindrical substrate made of, for example, aluminum or nickel.
The outer peripheral surface of the photoconductive drum 1 is uniformly charged by a charge roller 2 serving as a charging device while the photoconductive drum 1 is rotating. Thereafter, scanning exposure is performed on the outer peripheral surface of the photoconductive drum 1 that is uniformed charged using a laser beam L modulated in accordance with image information output from a laser beam scanner 3 serving as an exposure device. Thus, an electrostatic latent image corresponding to the image information is formed on the outer peripheral surface of the photoconductive drum 1. The electrostatic latent image is developed into a toner image by a developing roller 4a of a developing device 4.
In addition, a recording medium P serving as a medium to be heated is separated one by one by a feed roller 6 and is fed from a feeding cassette 5 to a registration roller 7. Thereafter, the recording medium P is introduced into a transfer nip portion T formed between the photoconductive drum 1 and a transfer roller 9 through a sheet path 8a by the registration roller 7 in synchronization with the toner image formed on the outer peripheral surface of the photoconductive drum 1. That is, conveyance of the recording medium P is controlled by the registration roller 7 so that when the leading edge of the toner image formed on the outer peripheral surface of the photoconductive drum 1 reaches the transfer nip portion T, the leading edge of the recording medium P exactly reaches the transfer nip portion T.
The recording medium P introduced into the transfer nip portion T is pinched by the transfer nip portion T and is conveyed. At that time, a transfer bias having a polarity that is opposite to the polarity of the toner is applied from a transfer bias application power supply (not illustrated) to the transfer roller 9. The toner image on the surface of the photoconductive drum 1 is electrostatically transferred to a surface of the recording medium P due to the effect of the transfer bias.
The recording medium P having the toner image transferred in the transfer nip portion T is separated from the surface of the photoconductive drum 1. Thereafter, the recording medium P passes through a sheet path 8b and is conveyed to a fixing device 11. The toner image is heat-fixed onto the surface of the recording medium P by the fixing device 11. Subsequently, the recording medium P exits from the fixing device 11. The recording medium P is led toward a sheet path 8c and is ejected onto an ejecting tray 14 through an ejecting port 13.
After the toner image is transferred, residual toner and dust of the recording medium P on the outer peripheral surface of the photoconductive drum 1 are removed by a cleaning device 10. In this manner, the outer peripheral surface is cleaned and is repeatedly used for image formation.
The feeding cassette 5 includes a regulating member (not illustrated) that is movable in a direction perpendicular to a recording medium conveyance direction. The regulating member is moved in accordance with the size of the recording medium P so as to regulate the positions of both side edges of the recording medium P in a direction parallel to the recording medium conveyance direction.
As used herein, the term “long direction” for the fixing device or the members that constitute the fixing device refers to a direction perpendicular to the recording medium conveyance direction. The term “short direction” refers to a direction parallel to the recording medium conveyance direction. The term “length” refers to the size of the fixing device or the members that constitute the fixing device in the long direction. The term “width” refers to the size of the fixing device or the members that constitute the fixing device in the short direction. The term “width direction” for a recording medium refers to a direction perpendicular to the recording medium conveyance direction. In addition, the term “width direction” for a recording medium is the same as a long direction for the fixing device or the members that constitute the fixing device. The term “width” of a recording medium refers to the size of the recording medium in the width direction.
According to the present exemplary embodiment, the fixing device 11 includes a cylindrical film 22 serving as a flexible member, a heater 23 serving as a heat generating member that is in contact with the inner surface of the film 22, and a pressing roller 24 serving as a pressing member that presses the film 22 to form a nip portion between the heater 23 and the film 22. Each of the film 22, the heater 23, and the pressing roller 24 is an elongated member that extends in the long direction. The fixing device 11 fixes a toner image onto the recording medium that bears the toner image while conveying the recording medium in the nip portion. In addition, the fixing device 11 includes a stay 21 serving as a guiding member which holds a surface of the heater 23 opposite to a surface facing the film 22 and guides the inner surface of the film 22. The stay 21 has heat resistance and rigidity. The stay 21 has a gutter shape in a longitudinal section and extends in the long direction.
The film 22 is fitted onto the stay 21 so as to surround the stay 21. The inner circumferential length of the film 22 is set so as to be greater than the outer circumferential length of the stay 21 by, for example, about 3 mm. Accordingly, the film 22 is fitted onto the stay 21 with some margin between the two circumferential lengths. The inner peripheral surface of the film 22 and the outer peripheral surface of the stay 21 have lubricant (not illustrated) therebetween. Thus, a sliding friction against the film 22 that rotates while in contact with the outer peripheral surface of the stay 21 can be reduced. According to the present exemplary embodiment, perfluoropolyether (PFPE) grease containing fluorine resin (polytetrafluoroethylene (PTFE)) as thickener is used as the lubricant.
As illustrated in
As illustrated in
The members of the fixing device 11 according to the present exemplary embodiment are described in more detail below. To reduce the heat capacity of the film 22 and improve the quick start property, the thickness of the film 22 is set to greater than or equal to 20 μm and less than or equal to 100 μm. The film 22 includes a base layer and a surface layer. The base layer can be a heat-resisting single layer of, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or fluorinated-ethylene-propylene (FEP). Alternatively, the following material can be used as the material of the base layer: polyimide, polyamide-imide, polyether ether ketone (PEEK), polyethersulfone (PES), or polyphenylene sulfide (PPS). The film 22 can be made as a composite layer formed by coating, for example, PTFE, PFA, or FEP, which serves as the surface layer, on the outer peripheral surface of the base layer. According to the present exemplary embodiment, the film 22 is formed by coating PFA on the outer peripheral surface of a polyimide film having a thickness of 50 μm. The outer diameter of the film 22 is 24 mm.
The stay 21 can be formed of a high heat resisting resin, such as polyimide, polyamide-imide, PEEK, PPS, or liquid crystal polymer, or a composite material of one of such resins and ceramic, metal, or glass. According to the present exemplary embodiment, liquid crystal polymer is used as the material of the stay 21. The stay 21 is formed so as to have a semi-circular gutter shape. Both ends of the stay 21 in the long direction are supported by two side plates (not illustrated) of the fixing device 11. The bottom surface of the stay 21 adjacent to the pressing roller 24 has a U-shaped groove 21a that extends in the long direction. The groove 21a holds the heater 23.
As illustrated in
The heater 23 according to the present exemplary embodiment is described next.
To cause the heater 23 to generate heat, voltages of different polarities are applied to the first electrical contact portion 29d and the second electrical contact portion 30d using a connector (not illustrated) connected to the AC power supply 34 illustrated in
A method for manufacturing the patterns of the heater 23 is described next. First, the first heat generating resistor 26-1 and the second heat generating resistor 26-2 are applied to a surface of the substrate 27 using screen printing. Subsequently, the first conductor pattern 29, the second conductor pattern 30, the third conductor pattern 31, the first electrical contact portion 29d, and the second electrical contact portion 30d are applied to the substrate 27 using, for example, screen printing. Thereafter, a protection layer 28 is coated thereon. At that time, the first heat generating resistor 26-1, the second heat generating resistor 26-2, the first conductor pattern 29, the second conductor pattern 30, and the third conductor pattern 31 are formed so as to have areas thereof that overlap each other by at least 0.5 mm in the short direction of the substrate 27. This is because stable electrical connection in the short direction of the substrate 27 is reliably maintained.
The material of the heater 23 is described next. The substrate 27 can be made of a high thermal conducting ceramic, such as alumina or aluminum nitride. According to the present exemplary embodiment, an alumina substrate having a width of 11 mm, a length of 270 mm, and a thickness of 1 mm is used as the substrate 27. The first heat generating resistor 26-1 and the second heat generating resistor 26-2 are made of an electrical resistance material, such as ruthenium oxide (RuO2). The heat generating resistor has a positive temperature coefficient. The protection layer 28 is made of, for example, glass or fluorine resin. The first conductor pattern 29, the second conductor pattern 30, and the third conductor pattern 31 are made of a conducting material, such as Ag. According to the present exemplary embodiment, a heat resisting glass layer having a thickness of about 60 μm is used as the protection layer 28. The protection layer 28 improves electrical insulation between the heat generating resistor 26 and the surface of the substrate 27 and the ease of sliding between the heater 23 and the inner surface of the film 22.
A relationship among the lengths of the first heat generating resistor 26-1 and the second heat generating resistor 26-2 in the long direction of the substrate 27 and the widths of a letter (LTR) size recording medium and an A4 size recording medium is described next. According to the present exemplary embodiment, an LTR size recording medium is a recording medium having the largest printable width. An A4 size recording medium is a recording medium having the second largest printable width. More specifically, since the image forming apparatus according to the present exemplary embodiment feeds a recording medium with the short edge as the leading edge, a width e of an LTR size recording medium is 216 mm, and a width f of an A4 size recording medium is 210 mm.
In
A length a of each of the first heat generating resistor 26-1 and the second heat generating resistor 26-2 in the long direction of the substrate 27 is 220 mm. That is, the length a is greater than the width of the LTR size recording medium (216 mm), which is the largest width of the recording medium P that passes through the nip portion N illustrated in
The third conductor pattern 31 disposed between the first conductor pattern 29 and the second conductor pattern 30 in the short direction of the substrate 27 is electrically connected to the first heat generating resistor 26-1 and the second heat generating resistor 26-2. The third conductor pattern 31 includes end regions 31a and 31b at either end thereof in the long direction of the substrate 27 and a middle region 31c located between the end regions 31a and 31b. The width of each of the end regions 31a and 31b of the third conductor pattern 31 in the short direction of the substrate 27 is 0.5 mm. The width of the middle region 31c in the short direction of the substrate 27 is 2.5 mm. That is, the width of the end regions 31a and 31b of the third conductor pattern 31 in the short direction of the substrate 27 is set so as to be greater than the width of the middle region 31c in the short direction of the substrate 27. The reason for this is described in detail below. Note that the width of each of the conductor patterns 29 and 30 in the short direction of the substrate 27 is 1.5 mm.
The width of the first heat generating resistor 26-1 in the short direction of the substrate 27 is 3.0 mm for the end regions 26a-1 and 26b-1 and is 2.0 mm for the middle region 26c-1. That is, in terms of the width of the first heat generating resistor 26-1 in the short direction of the substrate 27, the width of the end region 26a-1 (26b-1) is set so as to be greater than the width of the middle region 26c-1. Similarly, in terms of the width of the second heat generating resistor 26-2 in the short direction of the substrate 27, the width of the end region 26a-2 (26b-2) is set so as to be greater than the width of the middle region 26c-2. The reason for this is described in detail below.
A length from the first conductor pattern 29 to the second conductor pattern 30 in the short direction of the substrate 27 is set to 9.5 mm throughout the length of the substrate 27 in the long direction. According to the present exemplary embodiment, the first conductor pattern 29 and the second conductor pattern 30 are formed of Ag having a sheet resistance of 3 mΩ/square. The sheet resistance values of the first heat generating resistor 26-1 and the second heat generating resistor 26-2 are controlled so that the total electrical resistance between the first electrical contact portion 29d and the second electrical contact portion 30d is 50Ω. Note that each of the conductor pattern and the heat generating resistor is formed so that the resistance value per unit area is the same.
According to the present exemplary embodiment, as described above, the width of each of the end regions 31a and 31b of the third conductor pattern 31 in the short direction of the substrate 27 is smaller than the width of the middle region 31c in the short direction of the substrate 27. In addition, in terms of the width of the first heat generating resistor 26-1 in the short direction of the substrate 27, the width of the end region 26a-1 (26b-1) is larger than the width of the middle region 26c-1. Similarly, in terms of the width of the second heat generating resistor 26-2 in the short direction of the substrate 27, the width of the end region 26a-2 (26b-2) is larger than the width of the middle region 26c-2. That is, in a heater, the width of the heat generating resistor disposed in a region of the third conductor pattern 31 having a small width in the short direction of the substrate 27 is made larger than the width of a region of the heat generating resistor other than the above-described region in the width direction.
In this manner, in the heat generating resistor 26-1 (26-2), the electrical resistance value of the end region 26a-1 (26b-1) is higher than that of the middle region 26c-1 (26c-2). Thus, the amount of heat generation of the end region 26a-1 (26b-1) is smaller than that of the middle region 26c-1 (26c-2).
According to the modification of the first exemplary embodiment, the heater produces the effect if the electrical resistance values of the conductor pattern and an electrical contact portion are not vanishingly smaller than that of the heat generating resistor. According to the first exemplary embodiment and the modification of the first exemplary embodiment, if voltages of different polarities are applied to the two electrical contact portions, the voltage of the conductor pattern gradually decreases with distance from the electrical contact portion in the long direction of the substrate 27. The difference is that according to the first exemplary embodiment, the potential difference between the first conductor pattern 29 and the second conductor pattern 30 is maximized in an end portion on the side in which the two electrical contact portions of the heater 23 are located and, thus, the amount of heat generation is maximized. In addition, the potential difference is minimized at an end portion on the side in which the two electrical contact portions of the heater 23 are not located and, thus, the amount of heat generation is minimized. As a result, the nonuniformity of heat generation of the heater 23 in the long direction of the substrate 27 is large. Accordingly, a rise of the temperature of a non-sheet passage area in the end portion located on the side in which the electrical contact portions of the heater 23 are located in the long direction of the substrate 27 easily occurs.
In contrast, as illustrated in
The heat distributions of the heaters in the long direction of the substrate 27 according to the first exemplary embodiment and the modification of the first exemplary embodiment occurring when, as described above, the nonuniformity of heat generation of the substrate 27 is negligible are described next. The heat distributions of the heaters in the long direction of the substrate 27 according to the first exemplary embodiment and the modification of the first exemplary embodiment are illustrated in
As can be seen from
As described above, unlike the existing heater illustrated in
The result of an experiment conducted to study the effects (the fixability and temperature rise in the non-sheet passage area) of the heater of the first exemplary embodiment and an existing heater (refer to
In terms of the fixability, the fixability of an unfixed toner image obtained when the LTR size recording medium having the largest printable width passes through the nip portion N is evaluated. The fixability is evaluated using a three grade system, in which (x) indicates that a toner image is completely destroyed when a finger runs back and forth over the toner image after a fixing process, (Δ) indicates that a toner image is partially destroyed, and (◯) indicates that a toner image is not destroyed at all. According to the present exemplary embodiment, the evaluation (◯) is at an acceptable level.
In terms of the temperature rise in a non-sheet passage area, the temperature in the non-sheet passage area is measured when the A4 size recording medium is intentionally shifted to one side and is conveyed through the nip portion N. To measure the temperature in the nip portion N, the temperature of the pressing roller that is easily damaged by a temperature rise in the non-sheet passage area is measured. The pressing roller is made of silicon rubber having a withstand temperature limit of 230° C. A temperature rise in the non-sheet passage area is evaluated using a three grade system, in which (x) indicates that the temperature of the pressing roller is higher than or equal to 230° C., (Δ) indicates that the temperature is between 200° C. to 230° C., and (◯) indicates that the temperature is lower than or equal to 200° C. According to the present exemplary embodiment, the evaluation (◯) indicating that the temperature is lower than or equal to 200° C. is at an acceptable level.
The above-described technique for setting a distance between the regulating members 51 and 52 for a recording medium to the width of an LTR size, causing a side edge of the A4 size recording medium in the width direction to be in contact with one of the regulating members 51 and 52, and conveying the A4 size recording medium in the nip portion N is referred to as a “shifted sheet conveyance mode”. In such a mode, the temperature rise in the non-sheet passage area is most prominent. In this experiment, the conveyance speed and the sheet-to-sheet interval is the same for LTR size recording media and A4 size recording media.
Table 1 indicates the results of the fixability and a temperature rise in the non-sheet passage area according to the present exemplary embodiment and the comparative examples 1 to 4. Note that the value “(average amount of heat generation d in the end region)/(average amount of heat generation c in the middle region)” in Table 1 is described in detail below.
As indicated by comparative examples 1 to 4 in Table 1, if the length is less than or equal to 215 mm, the fixability for an LTR size recording medium is not satisfactory. In addition, if the length is greater than or equal to 216 mm, prevention of the temperature rise in the non-sheet passage area is not satisfactory. That is, it is difficult for existing heaters having the amount of heat generation of the heat generating resistor that is uniform along the length direction to satisfy the fixability for an LTR size recording medium and prevention of a temperature rise in the non-sheet passage area at the same time. In contrast, according to the first exemplary embodiment, the fixability for an LTR size recording medium and prevention of a temperature rise in the non-sheet passage area can be satisfied at the same time.
This is because by using a parameter of the width (the length in the short direction of the substrate 27) of the end portion of the heat generating resistor in the long direction of the substrate 27 in addition to a parameter of the length of the heat generating resistor in the long direction of the substrate 27, the amount of heat generation of the end portion of the heater can be reduced.
To determine the condition for satisfying the fixability for the LTR size recording medium and prevention of a temperature rise in the non-sheet passage area, a value equivalent to the amount of heat generation of the non-sheet passage area is calculated, and description is made with reference to the equivalent value.
The value equivalent to the amount of heat generation of the non-sheet passage area serves as a parameter related to the amount of heat generated by the heat generating resistor in a shifted sheet conveyance mode. The value equivalent to the amount of heat generation of the non-sheet passage area is defined as follows:
The value equivalent to the amount of heat generation of the non-sheet passage area=b×(d/c)+{a/2−(f−e/2)−b}×(c/c)
where
a: the length of the heat generating resistor in the long direction (mm)
b: the length of the end portion of the heat generating resistor (mm)
c: the average amount of heat generation per unit length of the middle region in the short direction of a substrate (W)
d: the average amount of heat generation per unit length of the end region in the short direction of the substrate (W)
e: the width of an LTR size recording medium (216 mm)
f: the width of an A4 size recording medium (210 mm)
For simplicity, d and c are divided by c so that the amount of heat generation per unit length of the middle region 26c is 1. The first term b×(d/c) of the above-described equation is an equivalent value of the amount of heat generation of the end region 26a or 26b of the non-sheet passage area. The term {a/2−(f−e/2)−b}×(c/c) is an equivalent value of the amount of heat generation of the middle region 26c in the non-sheet passage area. The sum of the two equivalent values is the equivalent value of heat generation of the entire non-sheet passage area. For example, according to the present exemplary embodiment, the parameters are set as follows:
a: 220 mm,
b: 5 mm,
d/c: 0.65,
e: 216 mm, and
f: 210 mm.
Accordingly, the equivalent value of the heat generation of the non-sheet passage area can be calculated as follows:
5×0.65+{220/2−(210−216/2)−5}×1=6.25
Note that if a plurality of the heat generating resistors are provided in the short direction of the substrate 27, the same calculation is performed for each of the heat generating resistors. Thereafter, the average value of the resultant values is calculated to obtain the equivalent value of the heat generation of the non-sheet passage area.
To conduct the experiment, the parameters are set in consideration of the following conditions. That is, to obtain the fixability from the data in Table 1, it is desirable that the length of the heat generating resistor be greater than or equal to 216 mm, which is the same value as the width of the LTR size. To ensure prevention of a temperature rise in the non-sheet passage area from the data in Table 1, it is desirable that the border between the end region and the middle region be located within the width of the LTR size recording medium (216 mm). In addition, if an A4 size recording medium is conveyed in the shifted sheet conveyance mode, the recording medium passes through an area within a 204-mm range, which is a sheet passage area. Accordingly, heat of the heater is removed. Thus, the amount of heat generation of the heater need not be reduced. That is, it is desirable that the end region is located outside the 204-mm range.
Table 2 indicates the specification of the heater used in the experiment and the result of the experiment. The method for evaluating the fixability and prevention of a temperature rise in the non-sheet passage area is the same as described above. As can be seen from Table 2, an increase in the equivalent value of the amount of heat generation of the non-sheet passage area has a disadvantage for prevention of the temperature rise in the non-sheet passage area, and a decrease in the equivalent value has a disadvantage for the fixability.
If the equivalent value of the amount of heat generation of the non-sheet passage area is in the range from 5.4 to 6.4, the fixability and prevention of a temperature rise in the non-sheet passage area can be made satisfactory regardless of the length of the heat generating resistor.
As described above, in the heater 23 according to the first exemplary embodiment, the length of the heat generating resistor 26 is longer than the width of an LTR size recording medium that is the largest printable width (216 mm). The average amount of heat generation of the end region 26a (26a-1, 26a-2) and the end region 26b (26b-1, 26b-2) of the heat generating resistor 26 is set to less than the average amount of heat generation of the middle region 26c (26c-1, 26c-2). In addition, setting is performed such that the side edges of an LTR size recording medium are located within the end regions 26a and 26b each having the average amount of heat generation less than that in the middle region 26c. Furthermore, the position of the border between the middle region 26c and the end region 26a (26b) is determined such that when one of the side edges of an A4 size recording medium in the width direction is in contact with the regulating member set to the position corresponding to an LTR size, the other side edge is located in the middle region 26c of the heat generating resistor. In this manner, an unfixed toner image t can be excellently fixed to an LTR size recording medium. In addition, if an A4 size recording medium is shifted to one side, a temperature rise of the non-sheet passage area can be reduced.
While the first exemplary embodiment has been described with reference to the technique in which the largest printable width is determined as the width of an LTR size recording medium and an A4 size recording medium having the width smaller than the width of the LTR size recording medium is shifted and conveyed, the technique is not limited thereto. For example, the largest printable width may be determined as the width of an A3 size recording medium (297 mm×420 mm), and a Ledger size recording medium (11″×17″≅279 mm×432 mm) may be shifted and conveyed.
According to a second exemplary embodiment, the configurations other than the pattern of the heater 23 are the same as those in the first exemplary embodiment. Accordingly, descriptions of the configurations other than the pattern of the heater 23 are not repeated. The pattern of the heater 23 according to the second exemplary embodiment is described below with reference to
In addition, the first conductor pattern 29 has end regions 29a and 29b located at either end thereof in the long direction of the substrate 27 and a middle region 29c located between the end regions 29a and 29b. The conductor pattern 30 has end regions 30a and 30b located at either end thereof in the long direction of the substrate 27 and a middle region 30c located between the end regions 30a and 30b. According to the present exemplary embodiment, the width of the end region 29a (29b) of the first conductor pattern 29 in the short direction of the substrate 27 is smaller than that of the middle region 29c. Furthermore, the width of the end region 30a (30b) of the second conductor pattern 30 in the short direction of the substrate 27 is smaller than that of the middle region 30c. More specifically, according to the second exemplary embodiment, the width of the end region 29a (29b) of the first conductor pattern 29 in the short direction of the substrate 27 is 0.5 mm, and the width of the middle region 29c of the first conductor pattern 29 in the short direction of the substrate 27 is 1.5 mm. Similarly, the width of the end region 30a (30b) of the second conductor pattern 30 in the short direction of the substrate 27 is 0.5 mm, and the width of the middle region 30c of the second conductor pattern 30 in the short direction of the substrate 27 is 1.5 mm.
The heat generating resistor 26 has end regions 26a and 26b at either end thereof in the long direction of the substrate 27 and a middle region 26c between the end regions 26a and 26b. In the end regions at either end in the long direction of the substrate 27, by using a space produced by decreasing the widths of the two conductor patterns (29, 30) in the short direction of the substrate 27, the width of the heat generating resistor 26 in the short direction of the substrate 27 can be increased.
That is, in a region of the heater in which the width of the conductor pattern (29, 30) in the short direction of the substrate is small, the width of the heat generating resistor 26 in the short direction of the substrate is set to greater than the width of a region of the heat generating resistor 26 other than that region in the short direction of the substrate. More specifically, according to the present exemplary embodiment, the width of each of the end regions 26a and 26b of the heat generating resistor 26 in the short direction of the substrate 27 is set to 8. 5 mm, and the width of the middle region 26c in the short direction of the substrate 27 is set to 6.5 mm.
Note that in the second exemplary embodiment and the modification of the second exemplary embodiment, the widths of the first conductor pattern and the second conductor pattern in the short direction of the substrate 27 are reduced. However, at least one of the first conductor pattern and the second conductor pattern may be reduced in each of the end regions of the substrate 27 in the long direction of the substrate 27. That is, to provide, in the end region in the long direction of the substrate 27, a space in which a distance between the first conductor pattern and the second conductor pattern in the short direction of the substrate 27 is greater than that in the middle region, the width of at least one of the first conductor pattern and the second conductor pattern in the short direction of the substrate 27 is reduced. In addition, in the region in which the distance between the first conductor pattern and the second conductor pattern in the short direction of the substrate 27 is greater than that in the middle region, the width of the heat generating resistor 26 in the short direction of the substrate 27 is increased.
By decreasing the width of the conductor pattern and increasing the width of the heat generating resistor in the short direction of the substrate 27 in this manner, the width of the heat generating resistor can be increased without increasing the width of the substrate 27. Accordingly, the size of the heater 23 can be advantageously reduced to be smaller than that in the first exemplary embodiment.
An inhibitory effect of the heater on a temperature rise in the non-sheet passage area according to the second exemplary embodiment is discussed below with reference to
According to the second exemplary embodiment and the modification of the second exemplary embodiment, the average amount of heat generation of the end region 26a (26b) of the heat generating resistor 26 can be reduced from that of the middle region 26c by 35%, as in the first exemplary embodiment. However, the amount of heat generation of the end region of the conductor pattern 29 (30) is at a level that is not negligible. According to the second exemplary embodiment, heat generation of the end region of the conductor pattern occurs in the end regions (29b, 30b) in the vicinity of the electrical contact portions 29d and 30d. In contrast, according to the modification of the second exemplary embodiment, heat generation of the end region of the conductor pattern occurs in both the end region (29a, 30a) and the end region (29b, 30b). The amount of heat generation of the end region of the conductor pattern is about 10% of the average amount of heat generation of the middle region 26c of the heat generating resistor 26 in each of the second exemplary embodiment and the modification of the second exemplary embodiment. The increase in the average amount of heat generation of the end region of the conductor pattern is caused by an increase in the resistance value of the conductor pattern due to reduction of the width of the conductor pattern.
Note that if, like the second exemplary embodiment, the absolute value of the reduced amount of heat generation of the end region of the heat generating resistor 26 is greater than the absolute value of the increased amount of heat generation of the end region of the conductor pattern, the amount of heat generation of the end region of the heater 23 is smaller than that in the middle region. Accordingly, an inhibitory effect of the heater on a temperature rise in the non-sheet passage area can be obtained.
In addition, if the electrical resistance value of the heat generating resistor is sufficiently greater than the electrical resistance value of the conductor pattern, an increase in the amount of heat generation of the end region of the conductor pattern is vanishingly small.
As described above, by using the heater according to the second exemplary embodiment or the modification of the second exemplary embodiment in a fixing device, a temperature rise in the non-sheet passage area can be prevented without increasing the width of the heater.
Like the second exemplary embodiment, the configurations of the third exemplary embodiment other than the pattern of the heater 23 are the same as those of the first exemplary embodiment. Accordingly, description of the configurations other than the pattern of the heater 23 are not repeated.
A relationship between the heat generating member and the long direction of an LTR sheet and an A4 sheet is described next. Note that an LTR sheet has the largest printable width according to the present exemplary embodiment, and an A4 sheet has the second largest printable width. More specifically, since the image forming apparatus according to the present exemplary embodiment feeds a sheet with the short edge as the leading edge, a width e of an LTR sheet is 216 mm, and a width f of an A4 sheet is 210 mm.
In
A length a of the heat generating member 26 in the long direction of the substrate 27 is 220 mm. That is, the length a is greater than the width of the LTR size sheet (216 mm), which is the largest width of the recording medium P that passes through the nip portion N illustrated in
The length of the middle region 26c in the long direction of the substrate 27 is 206 mm. The length of each of the end regions 26a and 26b in the long direction of the substrate 27 is 7 mm. The width of each of the end regions 26a and 26b of the heat generating member 26 in the short direction of the substrate is 7.5 mm. The width of the middle region 26c is 4.5 mm. That is, the width of the middle region 26c is set to smaller than the width of the end regions 26a and 26b. In addition, the width of the end regions 29a, 29b, 30a, and 30b of the conductor members in the short direction of the substrate is 1.0 mm. The width of each of the middle regions 29c and 30c of the conductor members is 2.5 mm. In this manner, the distance between the outer edge of the conductor member 29 and the outer edge of the conductor member 30 in the short direction of the substrate is set to 9.5 mm throughout the length of the substrate. According to the present exemplary embodiment, the first conductor pattern 29 and the second conductor pattern 30 are formed of Ag having a sheet resistance of 3 mΩ/square. The sheet resistance value of the heat generating member 26 is controlled so that the total electrical resistance between the power supply electrodes 29d and 30d is 19Ω. Note that each of the conductor member and the heat generating member is formed so as to have the same resistance value per unit area.
The heat distribution in the long direction of the substrate according to the third exemplary embodiment is illustrated in
Since the electric resistance of each of the end regions 26a and 26b is greater than that of the middle region 26c, the amount of heat generation of each of the end regions 26a and 26b is greater than that of the middle region 26c, as illustrated in
A thermometric element 25 serving as a temperature detecting unit is disposed in the substantially middle of the back surface of the substrate 27 in the long direction of the substrate (in the small-size sheet passage area). According to the present exemplary embodiment, an external thermistor separated from the heat generating member 23 is used as the thermometric element 25. The external thermometric element 25 has a configuration in which for example, a heat insulating layer is formed on a support member (not illustrated), a chip thermistor element is fixed on the heat insulating layer, and the chip thermistor element is in pressure contact with the back surface of the substrate 27 using a predetermined pressing force with the chip thermistor element facing the back surface. According to the present exemplary embodiment, high heat resistance liquid crystal polymer is used as the support member, and stacked ceramic paper is used as a heat insulating layer.
In the heater 23, the substrate 27 is fixed to and supported by the groove 21a so that the substrate 27 is disposed with the front surface facing downward and is exposed through the groove 21a of the stay 21.
The fixability and a temperature rise in the non-sheet passage area of the heater according to the present exemplary embodiment and comparative examples (an existing heater illustrated in
In terms of the fixability, the fixability of an unfixed toner image obtained when the LTR size recording medium having the largest printable width passes through the nip portion N is evaluated. The fixability is evaluated using a three grade system, in which (x) indicates that a toner image is completely destroyed when a finger runs back and forth over the toner image after a heat-fixing process, (Δ) indicates that a toner image is partially destroyed, and (◯) indicates that a toner image is not destroyed at all. In this evaluation system, the evaluation (◯) is at an acceptable level.
In terms of the temperature rise in the non-sheet passage area, an excessive temperature rise in the non-sheet passage area (the tendency of a temperature rise in the non-sheet passage area) is evaluated when the A4 sheet is shifted to one side and is conveyed through the nip portion N. To evaluate the tendency of a temperature rise in the non-sheet passage area, the temperature of the pressing roller that is damaged first by the temperature rise in the non-sheet passage area is measured. The pressing roller is made of silicon rubber having a withstand temperature limit of 230° C. The temperature rise in the non-sheet passage area is evaluated using a three grade system, in which (x) indicates that the temperature of the pressing roller is higher than or equal to 230° C., (Δ) indicates that the temperature is between 200° C. to 230° C., and (◯) indicates that the temperature is lower than or equal to 200° C. In this evaluation system, the evaluation (◯) that indicates that the temperature is lower than or equal to 200° C. is at an acceptable level.
The above-described technique for setting a distance between the regulating members 51 and 52 to the width of an LTR size, causing a side edge of the A4 sheet in the width direction to be in contact with one of the regulating members 51 and 52, and conveying the A4 size recording medium in the nip portion N is referred to as a “shifted sheet passage mode”. In such a mode, the temperature rise in the non-sheet passage area is most prominent.
In this evaluation, the conveyance speed and the sheet-to-sheet interval are the same for LTR sheets and A4 sheets.
Table 3 indicates the results of evaluation of the fixability and a temperature rise in the non-sheet passage area according to the present exemplary embodiment and the comparative examples 5 to 8.
As indicated by the comparative examples 5 to 8 in Table 3, if the length is less than or equal to 215 mm, the fixability for an LTR sheet is not satisfactory. In addition, if the length is greater than or equal to 216 mm, prevention of a temperature rise in the non-sheet passage area is not satisfactory. That is, it is difficult for existing heaters having the amount of heat generation of the heat generating member that is uniform along the long direction to satisfy the fixability for an LTR sheet and prevention of a temperature rise in the non-sheet passage area at the same time. In contrast, according to the present exemplary embodiment, the fixability for an LTR sheet and prevention of a temperature rise in the non-sheet passage area are satisfactory at the same time.
This is because by using a parameter of the width (the length in the short direction of the substrate) of the end portion of the heat generating member in addition to a parameter of the length of the heat generating member, the amount of heat generation of the end portion of the heater can be controlled. In addition, according to the present exemplary embodiment, by cutting and removing part of the conductor member, the width of the heat generating member is increased. Accordingly, the width of the heater substrate in the short direction need not be increased to maintain the heat capacity of the heater substrate. As a result, the FPOT is not increased.
To determine the condition for satisfying the fixability and prevention of a temperature rise in the non-sheet passage area, a value equivalent to the amount of heat generation of the non-sheet passage area is calculated, and description is made with reference to the equivalent value.
The value equivalent to the amount of heat generation of the non-sheet passage area serves as a parameter related to the amount of heat generated by the heat generating member in a shifted sheet conveyance mode. The value equivalent to the amount of heat generation of the non-sheet passage area is defined as follows:
The value equivalent to the amount of heat generation of the non-sheet passage area=b×(d/c)+{a/2−(f−e/2)−b}×(c/c)
where
a: the length of the heat generating member in the long direction (mm)
b: the length of the end portion of the heat generating member (mm)
c: the average amount of heat generation per unit length of the middle portion in the short direction of a substrate (W)
d: the average amount of heat generation per unit length of the end portion in the short direction of the substrate (W)
e: the width of an LTR sheet (216 mm)
f: the width of an A4 sheet (210 mm)
For simplicity, d and c are divided by c so that the amount of heat generation per unit length of the middle region 26c is 1. The first term b×(d/c) of the above-described equation is an equivalent value of the amount of heat generation of the end region 26a or 26b of the non-sheet passage area. The term {a/2−(f−e/2)−b}×(c/c) is an equivalent value of the amount of heat generation of the middle region 26c of the non-sheet passage area. The sum of the two equivalent values is an equivalent value of heat generation of the entire non-sheet passage area.
For example, according to the third exemplary embodiment, the parameters are set as follows:
a: 220 mm,
b: 7 mm,
d/c: 0.6,
e: 216 mm, and
f: 210 mm.
Thus, the equivalent value of heat generation of the non-sheet passage area can be calculated as follows:
7×0.6+{220/2−(210−216/2)−7}×1=5.2.
To conduct the experiment, the parameters are set in consideration of the following conditions.
That is, to obtain the fixability from the data in Table 3, the length of the heat generating member needs to be greater than or equal to 216 mm, which is the same value as the width of the LTR size. To ensure prevention of a temperature rise in the non-sheet passage area from the data in Table 3, the border between the end region and the middle region needs to be located within a 216-mm range, which is the width of the LTR size sheet. In addition, if an A4 sheet is conveyed in the shifted sheet conveyance mode, the A4 sheet passes through an area of a 204-mm range, which is a sheet passage area. Accordingly, in this area, heat of the heater is removed. Thus, the amount of heat generation of the heater need not be reduced. That is, the end region can be located outside the 204-mm range.
Table 4 indicates the specification of the heater used in the experiment and the result of the experiment. In the experiment, the length a of the heat generating member and the length b of the end region are changed. In addition, the ratio of the average amount of heat generation per unit length of the end portion d to the average amount of heat generation per unit length of the middle portion c is changed by changing the ratio of the width of the heat generating member to the width of the conductor in the end region. At that time, the fixability for an LTR sheet and a temperature rise in the non-sheet passage area in a shifted sheet conveyance mode of an A4 sheet are measured.
The evaluation system of the fixability and a temperature rise in the non-sheet passage area is the same as described above. As can be seen from Table 4, an increase in the equivalent value of the amount of heat generation of the non-sheet passage area has a disadvantage for prevention of the temperature rise in the non-sheet passage area, and a decrease in the equivalent value has a disadvantage for the fixability.
In addition, Table 4 indicates that if the equivalent value of the amount of heat generation of the non-sheet passage area is in the range from 5.2 to 6.6, the fixability and prevention of a temperature rise in the non-sheet passage area can be made satisfactory regardless of the length of the heat generating member.
As described above, in the heater 23 according to the present exemplary embodiment, the length of the heat generating member 26 is longer than the width of an LTR sheet that is the largest printable width (216 mm). The average amount of heat generation of each of the end regions 26a and 26b of the heat generating member 26 is set to less than the average amount of heat generation of the middle region 26c. In addition, the position of the border between the middle region 26c and the end region 26a (26b) is determined such that the positions of the side edges of an LTR sheet are located in the end regions 26a and 26b having the average amount of heat generation lower than that of the middle region 26c and, when one of the side edges of an A4 sheet, which is a standard-sized sheet having a second largest width just behind an LTR sheet, is shifted to one side, the position of the other side edge is located in the middle region 26c. In this manner, the unfixed toner image t can be excellently fixed to an LTR sheet. In addition, if an A4 sheet is shifted to one side, a temperature rise of the non-sheet passage area can be reduced.
Accordingly, the fixing device 11 using the heater 23 according to the present exemplary embodiment can prevent an excessive temperature rise of the heater 23 during printing A4 sheets even when the conveyance speed and the sheet-to-sheet interval for A4 sheets are set to substantially the same as those for LTR sheets. In addition, for LTR sheets, an excellent fixability of the unfixed toner image t can be provided.
In addition, according to the present exemplary embodiment, by cutting and removing part of the conductor member, the width of the heat generating member can be increased. Accordingly, the width of the substrate in the short direction need not be increased to maintain the heat capacity of the heater substrate. As a result, the amount of heat generation of the end region can be controlled without increasing the FPOT.
While the present exemplary embodiment has been described with reference to the technique in which the largest printable width is determined as the width of an LTR sheet and an A4 sheet having the width smaller than the width of an LTR sheet is shifted to one side and conveyed, the technique is not limited thereto. For example, the largest printable width may be determined as the width of an A3 sheet (297 mm×420 mm), and a Ledger sheet (11″×17″≅279 mm×432 mm) may be shifted to one side and be conveyed.
Alternatively, as illustrated in
In addition, it is desirable to avoid the nonuniformity of heat generation that increases toward the power supply unit in the long direction of the substrate. Accordingly, as illustrated in
In the configuration according to the third exemplary embodiment, by cutting out rectangular part of the conductor member, the width of the heat generating member can be increased to larger than that of the middle region in the long direction of the substrate and, thus, the amount of heat generation of the end region can be decreased. However, if rectangular part of the conductor member is cut out, an electrical current is locally concentrated into the border of the cut-out part (the border between the middle region and the end region illustrated in
Thus, according to the present exemplary embodiment, by changing the shape of the cut-out part, a configuration by which the occurrence of a local peak of heat generation is reduced and the amount of heat generation of the end region is reduced while preventing the glossy unevenness is provided. The heater pattern according to the present exemplary embodiment is illustrated in
Like the third exemplary embodiment, an electrical resistance material (a heat generating member 26), such as ruthenium oxide (RuO2), is applied to a surface of a heater substrate 27 made of a high thermal conducting material, such as alumina or aluminum nitride using, for example, screen printing. Thereafter, an electric conductive material (conductor members 29 and 30), such as Ag, is applied using, for example, screen printing. Subsequently, glass or fluorine contained resin, for example, is coated thereon as a protection layer 28. According to the present exemplary embodiment, an alumina substrate having a width of 11 mm, a length of 270 mm, and a thickness of 1 mm is used as the substrate 27. In addition, a heat resisting glass layer having a thickness of about 60 μm is used as the protection layer 28. The protection layer 28 improves electrical insulation between the heat generating member 26 and the substrate 27 and the ease of sliding between the heater 23 and the inner peripheral surface (the inner surface) of the film 22. To provide excellent contact between the heat generation pattern and the conductor pattern in the short direction of the substrate, the members are formed so as to have an overlapping area of 0.5 mm or greater. As illustrated in
A length a of the heat generating member 26 in the long direction of the substrate 27 is 220 mm. That is, the length a is greater than the width of an LTR size sheet (216 mm), which is the largest width of the recording medium P that passes through the nip portion N illustrated in
The length of the middle region 26c in the long direction of the substrate 27 is 206 mm. The length of each of the end regions 26a and 26b in the long direction of the substrate 27 is 7 mm. The width of the middle region 26c of the heat generating member 26 in the short direction of the substrate 27 is 4.5 mm, which is uniform along the length thereof. In contrast, as illustrated in
The width of each of the middle regions 29c and 30c of the conductor members 29 and 30, respectively, in the width direction of the substrate is set to 2.5 mm throughout the length thereof. In contrast, as illustrated in
As described above, the ratio of the width of the heat generating member to the width of the conductor member in the end region is set to higher than that in the middle region. Thus, the resistance value of the end region of the heat generating member in the short direction of the substrate is set to higher than that that of the middle region. In addition, as illustrated in
According to the present exemplary embodiment, the conductor members 29 and 30 are formed of Ag having a sheet resistance of 3 mΩ/square. The sheet resistance value of the heat generating member 26 is controlled so that the total electrical resistance between the power supply electrodes 29d and 30d is 19Ω. Note that each of the conductor members 29 and 30 and the heat generating member 26 is formed so as to have the same resistance value per unit area.
The heat distribution of the heater pattern in
Since the electric resistance of each of the end regions 26a and 26b is greater than that of the middle region 26c, the amount of heat generation of each of the end regions 26a and 26b is less than that of the middle region 26c, as illustrated in
Note that, by forming the heat pattern of the present exemplary embodiment, the average amount of heat generation of each of the end regions 26a and 26b can be about 70% of the average amount of heat generation of the middle region 26c.
As described above, by employing the configuration of the present exemplary embodiment, a peak of heat generation at the border between the middle region and the end region can be reduced, and the amount of heat generation in the end region of the heat generating member in the long direction of the substrate can be reduced.
The results of evaluation of the fixability, the temperature rise in the non-sheet passage area, and the glossy unevenness of the heater according to the present exemplary embodiment are discussed below. Table 5 indicates the results of evaluation of the fixability, the temperature rise in the non-sheet passage area, and the glossy unevenness in the image forming apparatus when the shape of the cut-out part is changed. Note that in evaluation of the glossy unevenness, (x) indicates that a glossy unevenness appears when printing is performed on an OHT having an LTR size, and (◯) indicates that no glossy unevenness appears. In addition, the evaluation systems for the fixability and a temperature rise in the non-sheet passage area and a technique for calculating the equivalent value of the amount of heat generation of the non-sheet passage area are the same as those in the third exemplary embodiment.
As the comparative examples, four types of heater are prepared. A heater having a rectangular cut-out portion (the third exemplary embodiment) and heaters having different decreases in the width of the conductor members per unit length in the long direction of the substrate are evaluated as the comparative examples.
As can be seen from the results of evaluation of the four types of heater pattern in Table 5, by employing a diagonal cut-out part, the glossy unevenness occurring in an OHT of an LTR size can be prevented. However, if the rate of a decrease in the width of the conductor member per unit length in the long direction of the substrate is too low, the effect of reduction in the amount of heat generation of the end portion is small. As a result, the temperature rise in the non-sheet passage area is not satisfactory when an A4 sheet is shifted to one side and is conveyed.
That is, even when part of the conductor member is diagonally cut out, it is necessary to control the decrease in the width per unit length in the long direction of the substrate so that the equivalent value of the amount of heat generation of the non-sheet passage area is in the range from 5.2 to 6.6. In this manner, the glossy unevenness can be prevented, and the fixability and the temperature rise in the non-sheet passage area can be made satisfactory at the same time.
As described above, in the heater 23 according to the present exemplary embodiment, part of each of the end regions 29a, 29b, 30a, and 30b is diagonally cut out and, thus, the average amount of heat generation of each of the end regions 26a and 26b of the heat generating member 26 is set to lower than that of the middle region 26c. In this manner, the unfixed toner image t is excellently fixed to an LTR sheet without glossy unevenness. In addition, when an A4 sheet is shifted to one side, a temperature rise in the non-sheet passage area can be reduced.
Accordingly, the fixing device 11 using the heater 23 according to the present exemplary embodiment can prevent an excessive temperature rise of the heater 23 during printing an A4 sheet even when the conveyance speed and the sheet-to-sheet interval for A4 sheets are set to substantially the same as those for LTR sheets. In addition, for LTR sheets, an excellent fixability of the unfixed toner image t can be provided.
While the present exemplary embodiment has been described with reference to the technique in which the largest printable width is determined as the width of an LTR sheet and an A4 sheet having the width smaller than the width of the LTR sheet is shifted to one side and conveyed, the technique is not limited thereto. For example, the largest printable width may be determined as the width of an A3 sheet (297 mm×420 mm), and a Ledger sheet (11″×17″≅279 mm×432 mm) may be shifted to one side and be conveyed.
Like the above-described exemplary embodiments, the configurations of the fifth exemplary embodiment other than the pattern of the heater are the same as those of the first exemplary embodiment. Accordingly, description of the configurations other than the pattern of the heater are not repeated.
Conductor members formed on the substrate 140 is described below. A first conductor member is formed so as to have a long annular shape that extends in the long direction of the substrate. The first conductor member includes a conductor portion 310b and a conductor portion 310c. In addition, an annular second conductor member including a conductor portion 310a and a conductor portion 310d is formed so as to outwardly surround the first conductor member with a space therebetween. The first conductor member and the second conductor member are formed of a conductive material, such as Ag or Ag/Pd, containing glass powders.
An electrical contact portion of the conductor member formed in the heater 130 is described next. A first electrical contact portion 320b is formed in one end portion of the first conductor member in the long direction of the substrate, and a second electrical contact portion 320c is formed in the other end portion of the first conductor member in the long direction of the substrate. A third electrical contact portion 320a is formed in an end portion of the second conductor member in the long direction of the substrate and on the same side as the first electrical contact portion 320b. A fourth electrical contact portion 320d is formed in an end portion of the second conductor member in the long direction of the substrate and on the same side as the second electrical contact portion 320c.
A technique to apply voltages to the above-described electrical contact portions is described next. Voltages having the same polarity are applied to the first electrical contact portion 320b and the second electrical contact portion 320c. In addition, voltages having the same polarity are applied to the third electrical contact portion 320a and the fourth electrical contact portion 320d. The voltages applied to the first electrical contact portion 320b and the second electrical contact portion 320c have a polarity that is opposite to the polarity of the voltages applied to the third electrical contact portion 320a and the fourth electrical contact portion 320d. A first power supply connector is attached to the first electrical contact portion 320b and the third electrical contact portion 320a, and a second power supply connector is attached to the second electrical contact portion 320c and the fourth electrical contact portion 320d. In this manner, according to the fifth exemplary embodiment, each of the first conductor member and the second conductor member is configured to receive power from both end portions in the long direction of the substrate 140.
The configuration of heat generating resistors is described next. Two heat generating resistors, that is, a first heat generating resistor 350a and a second heat generating resistor 350b, are disposed on the substrate 140. The first heat generating resistor 350a is disposed between a conductor portion 310b of the first conductor member and a conductor portion 310a of the second conductor member and is electrically connected to the conductor portion 310b and the conductor portion 310a. The second heat generating resistor 350b is disposed between a conductor portion 310c of the first conductor member and a conductor portion 310d of the second conductor member and is electrically connected to the conductor portion 310c and the conductor portion 310d. In this manner, according to the fifth exemplary embodiment, the heater 130 has two heat generating regions arranged in the short direction of the substrate, and each of the two heat generating regions is formed from a set of the first conductor member, the second conductor member, and the heat generating resistor. Note that the first heat generating resistor 350a and the second heat generating resistor 350b have a PTC and a temperature coefficient of resistance (TCR) of 500 ppm/° C.
The width of each of the conductor portion 310a and the conductor portion 310d of the second conductor member in the short direction of the substrate 140 is 0.5 mm. The width of each of the conductor portion 310b and the conductor portion 310c of the first conductor member in the short direction of the substrate 140 is 1.7 mm. The width of the conductor portion 310a and the conductor portion 310d in the short direction of the substrate 140 of the second conductor member is set to smaller than the width of the conductor portion 310b and the conductor portion 310c of the first conductor member in the short direction of the substrate 140. This setting is employed in order to minimize the distance between the heat generating resistor and an end portion of the substrate in the short direction of the substrate.
The electrical contact portion, the conductor member, and the heat generating resistor are formed on the substrate 140 using screen printing so that the thickness thereof is easily controlled. The conductor member and the electrical contact portion is screen-printed on the substrate 140 using the same paste material. In addition, the heat generating resistor 350a and the heat generating resistor 350b are screen-printed on the substrate 140 using the same paste material. The length of each of the heat generating resistors 350a and 350b in the long direction of the substrate is about 220 mm. The heat generating resistors 350a and 350b are formed of an electrical resistance material, such as ruthenium oxide or silver-palladium (Ag/Pd), containing glass powders. By changing the compounding ratio of the materials, the volume resistivity of the resistors can be changed. According to the present exemplary embodiment, ruthenium oxide is used.
The paste for the conductor member and the electrical contact portion are screen-printed on the substrate 140 at the same time. Thereafter, the heat generating resistors 350a and 350b are screen-printed on the conductor member. Subsequently, a glass layer is screen-printed so as to cover the heat generating resistors.
Nonuniformity of heat generation and heater cracking, which are the issues to be solved for a heater used in fixing devices, are described below. Nonuniformity of heat generation is described first. Nonuniformity of heat generation negligibly occurs if the electrical resistance value of the conductor member is negligibly small with respect to the resistance value of the heat generating resistor. This is because since the conductor member has substantially uniform potential along the long direction of the substrate, the heat generating resistor uniformly generates heat throughout the length thereof. However, in reality, since the conductor member has a limitation on, for example, the width in the short direction of the substrate, it is difficult to reduce the electrical resistance value of the conductor member to a negligible level with respect to the electrical resistance value of the heat generating resistor. Accordingly, the voltage of the conductor member drops in the long direction of the substrate and, thus, the nonuniformity of heat generation occurs in the long direction of the substrate. The level of nonuniformity of heat generation varies from pattern to pattern on the substrate 140.
Heater cracking is described next. To prevent heater cracking, it is desirable that in the short direction of the substrate, each of the two heat generating resistors be located in the vicinity of the end portion of the substrate in the short direction of the substrate.
Note that in
The results of evaluation of the nonuniformity of heat generation and the heater cracking margin for the heaters according to the fifth exemplary embodiment, a comparative example 10, and a comparative example 20 are shown in Table 6.
The configuration that is common to the comparative example 10 and the comparative example 20 (an existing heater) is described next. The substrate 140 of the heater is an elongated plate made of alumina. The substrate 140 is 1 mm in thickness, is 290 mm in length in a direction perpendicular to the recording medium conveyance direction, and is 10 mm in width in the recording medium conveyance direction. The heat generating resistor formed on the substrate 140 is 1.6 mm in width in the short direction of the substrate.
The widths of the conductor members of the comparative examples 10 and 20 in the short direction of the substrate differ from each other. In the comparative example 10, the width of the conductor member in the short direction of the substrate is 1.2 mm throughout the length thereof. In the comparative example 20, the width of the conductor member in the short direction of the substrate is 0.5 mm throughout the length thereof.
In evaluation of the nonuniformity of heat generation in the long direction of the substrate for the comparative example 10, the comparative example 20, and the fifth exemplary embodiment, the total resistance value of the heater is 20Ω. The nonuniformity of heat generation is evaluated by supplying 800-W power to the heater and acquiring, when some part of the heater surface becomes 200° C., a difference temperature obtained by subtracting the lowest temperature of the heater surface from 200° C.
In evaluation of heater cracking margin, as indicated in Table 6, a period of time from start of supplying a constant power of 1400 W to the heater until cracking occurs in the substrate is measured. Thereafter, a difference between the time to cracking of the substrate and a thermal switch turn-off time is obtained, and the differences are compared with one another. Note that to ensure safety, it is desirable that the heater cracking margin be 2 seconds or longer.
The results of evaluation of the heaters in the comparative example 10 and the comparative example 20 are described below. For the heater in the comparative example 10, since the width of the conductor member is set to a large value of 1.2 mm, the electric resistance of the conductor member is low and, thus, voltage drop of the conductor member in the long direction of the substrate is decreased. Accordingly, the nonuniformity of heat generation of the heater in the long direction of the substrate can be a small value of 6° C. In contrast, in terms of a heater cracking margin, since the width of the conductor member is set to a large value, t/d is a large value of 0.25. Thus, it is difficult to dispose the heat generating resistor at a position sufficiently close to an end portion of the substrate in the short direction of the substrate. Consequently, the heater cracking margin is 1.5 seconds, which is less than 2 seconds. As a result, although the existing heater in the comparative example 10 has a satisfactory level of nonuniformity of heat generation, the heater has an unsatisfactory heater cracking margin.
For the heater in the comparative example 20 illustrated in
As described above, it is difficult for the heaters in the comparative example 10 and the comparative example 20 to prevent the nonuniformity of heat generation of the heater in the long direction of the substrate and provide a satisfactory heater cracking margin at the same time.
The result of evaluation of the heaters according to the fifth exemplary embodiment is described below. According to the fifth exemplary embodiment, since the width of each of the conductor portion 310a and the conductor portion 310d of the conductor member is set to a small value of 0.5 mm, t/d can be a small value of 0.18. Accordingly, since the heat generating resistor can be disposed so as to be sufficiently close to an end portion of the heater substrate in the short direction of the substrate, the heater cracking margin can be 6.1 seconds. As a result, a satisfactory result can be obtained.
The nonuniformity of heat generation in the length direction of the heater according to the fifth exemplary embodiment is described next.
In terms of the nonuniformity of heat generation according to the fifth exemplary embodiment, since the width of each of the conductor portion 310a and the conductor portion 310d in the short direction of the substrate is small, voltage drop in the long direction of the substrate increases, as in the comparative example 20. However, by increasing the width of each of the conductor portion 310b and the conductor portion 310c, the voltage drop of each of the conductor portion 310b and the conductor portion 310c is decreased. In this manner, the voltage drop of each of the conductor portion 310a and the conductor portion 310d can be compensated for. As a result, the nonuniformity of heat generation can be reduced to 8° C., which is satisfactory.
As described above, according to the fifth exemplary embodiment, the heater can prevent the nonuniformity of heat generation of the heater in the long direction of the substrate and provide a satisfactory heater cracking margin at the same time.
The configurations of an image forming apparatus and a fixing device 8 according to a sixth exemplary embodiment are the same as those of the fifth exemplary embodiment. Accordingly, descriptions of the configurations are not repeated. Only the configuration of a heater according to the sixth exemplary embodiment is described below.
The heater according to the sixth exemplary embodiment (refer to
The results of evaluation of the nonuniformity of heat generation in the long direction of the substrate and the heater cracking margin for the heater according to the fifth exemplary embodiment and the heater according to the sixth exemplary embodiment are shown in Table 7. Since the evaluation system for the nonuniformity of heat generation and the heater cracking margin are the same as that in the fifth exemplary embodiment, description of the evaluation system is not repeated.
The nonuniformity of heat generation of the heater according to the sixth exemplary embodiment is described next.
The heater cracking margin of the heater according to the sixth exemplary embodiment is described next. According to the sixth exemplary embodiment, the conductive width of each of the conductor portion 310a and the conductor portion 310d is set to a small value of 0.5 mm. Accordingly, t/d can be a small value of 0.18 and, thus, the heat generating resistor can be disposed close to the end portion of the substrate. As a result, the heater cracking time is a long time of 6.2 seconds and, thus, heater cracking during thermal runaway can be sufficiently prevented.
As described above, according to the configuration of the sixth exemplary embodiment, the heater can prevent the nonuniformity of heat generation of the heater in the long direction of the substrate more effectively than in the fifth exemplary embodiment and provide a satisfactory heater cracking margin at the same time.
Note that when the dimensions of the conductor member are large and if a glass layer is provided on the conductor member, the impedance of the glass decreases and, thus, an electric current easily flows in the glass layer. That is, large dimensions of the conductor member have a negative impact on the withstand voltage. As used herein, the term “withstand voltage” refers to a voltage obtained when an electrode A is in contact with the glass layer of the heater, an electrode B is in contact with the electrical contact portion of the heater, the voltage is applied between the electrodes A and B, and leakage occurs. That is, the sixth exemplary embodiment has an advantage over the fifth exemplary embodiment in terms of the nonuniformity of heat generation, but has a disadvantage over the fifth exemplary embodiment in terms of an actual withstand voltage.
Accordingly, if a withstand voltage margin has a priority over the nonuniformity of heat generation, it is desirable that the configuration according to the fifth exemplary embodiment be employed. In contrast, if the nonuniformity of heat generation has a priority over a withstand voltage margin, it is desirable that the configuration according to the sixth exemplary embodiment be employed.
The configuration according to a seventh exemplary embodiment is illustrated in
According to the fifth exemplary embodiment, the electrical contact portion 320a is disposed in one of the end portions of the substrate in the long direction of the substrate. In the end portion, the conductor portion 310a merges with the conductor portion 310d. In addition, the electrical contact portion 320d is disposed in the other end portion. In the end portion, the conductor portion 310a merges with the conductor portion 310d. Furthermore, according to the fifth exemplary embodiment, the electrical contact portion 320b is disposed in one of the end portions of the substrate in the long direction of the substrate. In the end portion, the conductor portion 310b merges with the conductor portion 310c. In addition, the electrical contact portion 320c is disposed in the other end portion. In the end portion, the conductor portion 310b merges with the conductor portion 310c.
In contrast, unlike the fifth exemplary embodiment, according to the seventh exemplary embodiment, electrical contact portions disposed in the end portions of the conductor portion 310b and the conductor portion 310c, which serve as the first conductor member, in the long direction of the substrate are separated from each other on the substrate. The conductor portion 310b and the conductor portion 310c are electrically connected to each other inside a power supply connector (not illustrated) via the electrical contact portions. This is a difference from the fifth exemplary embodiment. In addition, according to the seventh exemplary embodiment, end portions of the conductor portion 310a and the conductor portion 310d, which serve as the second conductor member, in the long direction of the substrate are separated from each other on the substrate. The conductor portion 310a and the conductor portion 310d are electrically connected to each other inside a power supply connector (not illustrated) via the electrical contact portions. This is another difference from the fifth exemplary embodiment.
According to the seventh exemplary embodiment, an electrical contact portion 320a-1 is disposed in one of both end portions of the conductor portion 310a in the long direction of the substrate, and an electrical contact portion 320d-1 is disposed in the other end portion. In addition, an electrical contact portion 320a-2 is disposed in one of both end portions of the conductor portion 310d in the long direction of the substrate, and an electrical contact portion 320d-2 is disposed in the other end portion. Furthermore, an electrical contact portion 320b-1 is disposed in one of both end portions of the conductor portion 310b in the long direction of the substrate, and an electrical contact portion 320c-1 is disposed in the other end portion. Still furthermore, an electrical contact portion 320b-2 is disposed in one of both end portions of the conductor portion 310c in the long direction of the substrate, and an electrical contact portion 320c-2 is disposed in the other end portion. Voltages having the same polarity are applied to the electrical contact portion 320b-1 and the electrical contact portion 320b-2 by a first power supply connector (not illustrated), and voltages having the same polarity are applied to the electrical contact portion 320c-1 and the electrical contact portion 320c-2 by a second power supply connector (not illustrated). Voltages having the same polarity are applied to the electrical contact portion 320a-1 and the electrical contact portion 320a-2 by a third power supply connector (not illustrated), and voltages having the same polarity are applied to the electrical contact portion 320d-1 and the electrical contact portion 320d-2 by a fourth power supply connector (not illustrated). The polarity of the voltage applied by the first power supply connector is the same as the polarity of the voltage applied by the second power supply connector, and the polarity of the voltage applied by the third power supply connector is the same as the polarity of the voltage applied by the fourth power supply connector. Still furthermore, the polarity of the voltage applied by the first power supply connector is opposite to the polarity of the voltage applied by the third power supply connector. Note that like the fifth exemplary embodiment, the width of the conductor portion 310a and the conductor portion 310d in the short direction of the substrate is smaller than the width of the conductor portion 310b and the conductor portion 310c in the short direction of the substrate.
Yet still furthermore, according to a modification of the seventh exemplary embodiment, the heater may have a configuration illustrated in
The operations and the effects of the seventh exemplary embodiment and the modification of the seventh exemplary embodiment are the same as those of the fifth exemplary embodiment and the sixth exemplary embodiment, respectively.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2012-274526 filed Dec. 17, 2012 and No. 2013-251320 filed Dec. 4, 2013, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2012-274526 | Dec 2012 | JP | national |
2013-251320 | Dec 2013 | JP | national |