In an image forming apparatus, a recording medium fed from a feeding unit is fed to a transfer unit and a toner image formed on the transfer unit is secondarily transferred to the recording medium. After the toner image is transferred to the recording medium, toner disposed on the recording medium is melted and fixed by a fixing unit (e.g., fixing device). The recording medium onto which the toner is fixed is discharged from a discharging unit that is located at a downstream.
A conventional fixing device, for example, a fixing device included in an image forming apparatus of Patent Document 1, is formed by using a belt-nip method and includes an endless fixing belt and an elastic roller (e.g., a pressure roller) that are one pair of members for forming a nip portion. The fixing device may include a fixing member disposed on an inner circumferential surface of the fixing belt, and a load of the elastic roller may be applied to the fixing member.
[Patent Document 1] Japanese Patent Application Publication No. 2001-42670
However, according to a conventional technology disclosed in Patent Document 1, when the fixing device is not used for a long time or is re-used a predetermined period of time after the use of the fixing device has been stopped, since the fixing belt and the fixing member closely contact each other, a torque needed to drive the fixing belt may be increased.
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the drawings, the same elements or portions are denoted by the same reference numerals, and a repeated explanation thereof will not be given.
An image forming apparatus 1 according to an embodiment may form a color image by using magenta, yellow, cyan, and black colors. As shown in
The recording medium feeding unit 10 may receive the recording medium P on which the image is finally recorded and may feed the recording medium P to a feeding path R1. In this case, a plurality of the recording media P may be stacked and stored in a cassette K. The recording medium feeding unit 10 may feed the recording medium P to a secondary transfer region R2 at a time when the toner image transferred to the recording medium reaches the secondary transfer region R2.
Four developing devices 20 may be arranged according to colors. Each of the developing devices 20 may include a developer roller 21 that presses the toner against the photosensitive drum 40. The developing device 20 sufficiently charges the toner by mixing the toner with carrier particles and presses a developing agent produced due to the mixture of the toner and the carrier particles against the developer roller 21. Next, when the developing agent is carried to a region that faces the photosensitive drum 40 due to rotation of the developer roller 21, the toner of the developing agent pressed by the developer roller 21 moves to the electrostatic latent image formed on the circumferential surface of the photosensitive drum 40 to develop the electrostatic latent image.
In order to secondarily transfer the toner image formed by the developing device 20 to the recording medium P, the transfer unit 30 may be fed to the secondary transfer region R2. The transfer unit 30 may include a transfer belt 31, rotating rollers 31a, 31b, 31c, and 31d that rotate the transfer belt 31, a primary transfer roller 32 that allows the transfer belt 31 to be held between the primary transfer roller 32 and the photosensitive drum 40, and a secondary transfer roller 33 that allows the transfer belt 31 to be held between the secondary transfer roller 33 and the rotating roller 31d.
The transfer belt 31 is an endless belt that is rotated by the rotating rollers 31a, 31b, 31c, and 31d. The primary transfer roller 32 may be disposed to apply a pressure from an inner circumference of the transfer belt 31 to the photosensitive drum 40. The secondary transfer roller 33 may be disposed to apply a pressure from an outer circumference of the transfer belt 31 to the rotating roller 31d.
The photosensitive drum 40 is an electrostatic latent image bearing member having a circumferential surface on which an image is formed. In the image forming apparatus 1 for forming a color image according to an embodiment, four photosensitive drums 40 corresponding to, for example, magenta, yellow, cyan, and black colors, may be arranged in a direction (referred to as a movement direction) in which the transfer belt 21 moves. The developing device 20, a charge roller 41, an exposure unit 42, and a cleaning unit 43 may be arranged around each of the photosensitive drums 40 as shown in
The charge roller 41 may uniformly charge a surface of the photosensitive drum 40 by using a predetermined potential. The exposure unit 42 may expose to light the surface of the photosensitive drum 40 charged by the charge roller 41, and in this case, the surface of the photosensitive drum 40 may be exposed to light to correspond to an image to be formed on paper that is the recording medium P. Accordingly, a potential of a portion of the surface of the photosensitive drum 40 that is exposed to light by the exposure unit 42 may be changed, and thus the electrostatic latent image may be formed. Four developing devices 20 may receive the toner from toner tanks 22 that are arranged to respectively correspond to the four developing devices 20, may develop the electrostatic latent images formed on the photosensitive drums 40 by using the toner supplied from the toner tanks 22, and may generate the toner images. For example, magenta, yellow, cyan, and black toner may be respectively filled in the four toner tanks 22. The cleaning unit 43 may retrieve the toner remaining on each of the photosensitive drums 40 after the toner image formed on the photosensitive drum 40 is primarily transferred to the transfer belt 31.
The fixing device 50 may attach and fix the toner image secondarily transferred to the recording medium P from the transfer belt 31 onto the recording medium P. The fixing device 50 according to an embodiment may include, for example, a fixing belt 51 that heats the recording medium P and a pressure roller (e.g., an elastic roller) 52 that applies a pressure to the fixing belt 51. The fixing belt 51 and the pressure roller 52 may be formed to have cylindrical shapes. A fixing nip portion 53 that is a contact portion may be formed between the fixing belt 51 and the pressure roller 52, and the toner image may be melted and fixed onto the recording medium P as the recording medium P passes through the fixing nip portion 53 in a feeding direction.
Also, the image forming apparatus 1 according to an embodiment may further include discharge rollers 71 and 72 that discharge the recording medium P onto which the toner image is fixed by the fixing device 50 to the outside of the image forming apparatus 1.
An operation of the image forming apparatus 1 will now be explained. When an image signal of an image to be recorded is input to the image forming apparatus 1, a controller of the image forming device 1 may uniformly charge a surface of the photosensitive drum 40 to a predetermined potential by using the charge roller 41 according to the received image signal.
Next, an electrostatic latent image may be formed by emitting a laser beam to the surface of the photosensitive drum 40 by using the exposure unit 42.
A toner image may be formed when the developing device 20 develops the electrostatic latent image. The toner image is primarily transferred from the photosensitive drum 40 to the transfer belt 31 when the photosensitive drum 40 and the transfer belt 31 face each other. The toner images formed on the four photosensitive drums 40 may be sequentially stacked on the transfer belt 31 to form one stacked toner image.
Next, the staked toner image may be fed to the secondary transfer region R2 where the rotating roller 31d and the secondary transfer roller 33 face each other, and may be secondarily transferred to the recording medium P that is fed from the recording medium feeding unit 10 in the secondary transfer region R2.
The recording medium P to which the stacked toner image is secondarily transferred may be fed to the fixing device 50. The stacked toner image may be melted and fixed onto the recording medium P by applying heat and a pressure to the recording medium P when the recording medium P passes between the fixing belt 51 and the pressure roller 52.
Next, the recording medium P may be discharged to the outside of the image forming apparatus 1 by the discharge rollers 71 and 72.
The fixing device 50 will now be explained in more detail with reference to
As shown in
The fixing nip portion 53 is a portion at which the recording medium P is held between the fixing belt 51 and the pressure roller 52 as shown in
The fixing belt 51 may be a flexible rotating body having a cylindrical shape and may include, for example, a metal. Examples of the metal that may be included in the fixing belt 51 may include stainless. Also, the fixing belt 51 may include, for example, a synthetic resin.
The fixing belt 51 may include a plurality of materials that are stacked as shown in
The elastic layer 58 may include, for example, rubber. The surface layer 59 may include a fluorine synthetic resin. For example, the fluorine synthetic resin may be at least one selected from among polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA) fluorine synthetic resin, and a modifier thereof. A thickness of the base portion 57 may be, for example, equal to or greater than 20 μm and equal to or less than 120 μm. A thickness of the elastic layer 58 may be, for example, equal to or greater than 100 μm and equal to or less than 400 μm. A thickness of the surface layer 59 may be, for example, equal to or greater than 10 μm and equal to or less than 50 μm.
The pressure roller 52 may be an elastic rotating body having a cylindrical shape and may include, for example, rubber (e.g., an elastic material). The pressure roller 52 may include an elastic layer 61 that includes an elastic material and a surface layer 62 that is formed on the elastic layer 61. Also, a rotating shaft 60 may be disposed to be inserted into and pass through the pressure roller 52.
The contact member 54 may be disposed inside the fixing belt 51 and may apply a pressure to the fixing belt 51 along with the pressure roller 52. An elastic force may be applied to the contact member 54 by using, for example, a spring member (not shown), and the contact member 54 may be pressed towards the pressure roller 52 due to the elastic force. However, embodiments are not limited thereto, and an elastic force may be applied to the pressure roller 52 and the pressure roller 52 may be pressed towards the contact member 54. Alternatively, at the same time as an elastic force may be applied to the pressure roller 52 and the pressure roller 52 may be pressed towards the contact member 54, an elastic force may be applied to the contact member 54 and the contact member 54 may be pressed towards the pressure roller 52.
The contact member 54 may extend along a rotational axis of the fixing belt 51 having a cylindrical shape, and may include a structure 63 that is disposed inside the fixing belt 51, a support 64 that is fixed to the structure 63, and a fixed sliding member 65 that is supported by the support 64.
Cross-sections of the structure 63, the support 64, and the fixed sliding member 65 taken in a direction perpendicular to a longitudinal direction thereof may have, for example, ⊏ shapes. The structure 63 may include one pair of side walls 63a that extend in a direction perpendicular to the feeding direction R3 of the recording medium P and a main body portion 63b that connects ends of the one pair of side walls 63a. The main body portion 63b of the structure 63 may have a plate shape, and a thickness direction of the main body portion 63b may be a direction in which a straight line L1 that connects a center of rotation O51 of the fixing belt 51 and a center of rotation P52 of the pressure roller 52 extends.
The support 64 may include one pair of side walls 64a that extend in the direction perpendicular to the feeding direction R3 of the recording medium P and a main body portion 64b that connects ends of the one pair of side walls 64a. The main body portion 64b of the support 64 may have a plate shape, and a thickness direction of the main body portion 64b may be a direction in which the straight line L1 extends. The support 64 may be mounted on the structure 63 to be supported by the structure 63, and may be disposed to cover a portion of the structure 63 that is close to the pressure roller 52. For example, the main body portion 64b of the support 64 may cover the main body portion 63b of the structure 63, and the one pair of side walls 64a of the support 64 may cover the one pair of side walls 63a of the structure 63.
The fixed sliding member 65 may include one pair of side walls 65a that extend in the direction perpendicular to the feeding direction R3 of the recording medium P, and a main body portion (e.g., a contact portion) 65b that connects ends of the one pair of side walls 65a. The main body portion 65b of the fixed sliding member 65 may have a plate shape, and a thickness direction of the main body portion 65b may be a direction in which the straight line L1 extends. The fixed sliding member 65 may be mounted on the support 64 to be supported by the support 64, and may be disposed to cover a portion of the support 64 that is close to the pressure roller 52. The main body portion 65b of the fixed sliding member 65 may cover the main body portion 64b of the support 64, and the one pair of side walls 65a of the fixed sliding member 65 may cover the one pair of side walls 64a of the support 64.
The fixed sliding member 65 may include a base portion and a surface layer that is formed on the base portion. The base portion of the fixed sliding member 65 may include a metal material such as aluminum or stainless. Also, the fixed sliding member 65 may include a synthetic resin having heat resistance such as LCP or polyphenylene sulfide (PPS).
Also, a fluorine synthetic resin may be applied to a surface of the main body portion 65b of the fixed sliding member 65. The fluorine synthetic resin may be at least one selected from among PTFE, PFA fluorine synthetic resin, and a modifier thereof.
The main body portion 65b of the fixed sliding member 65 included in the contact member 54 is a contact portion that contacts an inner circumferential surface 51b of the fixing belt 51 as shown in
At the fixing nip portion 53, the fixing belt 51 may receive a pressure from the pressure roller 52 and may slide while contacting the main body portion 65b of the fixed sliding member 65. The fixing belt 51 may form a plane along the main body portion 65b of the fixed sliding member 65 at the fixing nip portion 53 to correspond to the plate shape of the main body portion 65b. At the fixing nip portion 53, a movement direction Y of the fixing belt 51 may be the same as the feeding direction R3 of the recording medium P. A nip surface N of the fixing nip portion 53 is a virtual surface set between the fixing belt 51 and the pressure roller 52.
A plurality of protrusions 67 that protrude from a reference surface 66 toward the pressure roller 52 may be disposed on the main body portion 65b of the fixed sliding member 65 as shown in
At the fixing nip portion 53, a length LX67 of each of the protrusions 67 in a width direction X of the fixing belt 51 that is perpendicular to the movement direction Y of the fixing belt 51 may be equal to or greater than, for example, 0.55 mm. Also, a pitch (e.g., an interval) between the protrusions 67 in the width direction X may be equal to or greater than, for example, 1.1 mm.
Also, the plurality of protrusions 67 may be arranged at regular intervals in parallel in the width direction X to form a plurality of rows (e.g., a first row X1 and a second row X2). Also, the plurality of protrusions 67 arranged to include rows in the width direction X may be arranged at regular intervals in the movement direction Y. For example, the protrusions 67 of the second row X2 may be arranged at positions corresponding to spaces between the plurality of protrusions 67 of the first row X1. Accordingly, the plurality of protrusions of the first row X1 and the second row X2 may be alternately arranged in the movement direction Y of the fixing belt 51 at the fixing nip portion 53. In this case, the length LX67 of each of the protrusions 67 may be greater than a distance D67 between the protrusions 67.
One or more protrusions 67 may be arranged in the movement direction Y of the fixing belt 51. For example, when the plurality of protrusions 67 are viewed in the movement direction Y of the fixing belt 51, the protrusions 67 may be arranged without any gaps over the entire width in the width direction X. That is, the main body portion 65b may contact with the fixing belt 51 in the entire longitudinal direction of the main body portion 65b in the feeding direction R3 of the recording medium P. Accordingly, in a longitudinal direction of the fixed sliding member 65, a load of the pressure roller 52 may be uniformized and a portion of the fixing nip portion 53 to which no load is applied may be prevented.
A height H67 of each of the plurality of protrusions 67 may be, for example, equal to or greater than 5 μm and equal to or less than 30 μm. The height H67 of each of the plurality of protrusions 67 is a height difference between the reference surface 66 and a top surface of the protrusion 67.
When the fixed sliding member 65 including the plurality of protrusions 67 includes a metal material, the plurality of protrusions 67 may be formed by using, for example, press working, etching, or laser engraving. Also, when the fixed sliding member 65 including the plurality of protrusions 67 includes a synthetic resin material, the plurality of protrusions 67 may be formed by using, for example, injection molding, etching, or laser engraving. The protrusions 67 may be formed by eroding a surface of a material by using a chemical, performing etching, and performing wrinkling on a surface of the contact portion. Also, the plurality of protrusions 67 may be formed by performing etching on a surface of the contact portion to have a geometric shape.
Also, when the plurality of protrusions 67 are formed by using laser engraving, a laser engraving machine for emitting a laser beam in a plurality of directions may be used. Accordingly, the plurality of protrusions 67 having complex shapes may be formed.
Also, when the base portion of the fixed sliding member 65 includes an aluminum plate material and a thickness of the base portion is, for example, equal to or greater than 0.2 mm and equal to or less than 0.5 mm, spring back which may occur when press working is performed may be prevented. Accordingly, the plurality of protrusions 67 may be more accurately formed.
Also, when the base portion of the fixed sliding member 65 includes a stainless plate material and a thickness of the base portion is, for example, equal to or greater than 0.1 mm and equal to or less than 0.3 mm, spring back which may occur when press working is performed may be prevented. Accordingly, the plurality of protrusions 67 may be more accurately formed.
Since the plurality of protrusions 67 that protrude from the reference surface 66 are disposed on the main body portion 65b of the fixed sliding member 65 included in the fixing device 50 according to an embodiment, a contact area that may be formed between the inner circumferential surface 51b of the fixing belt 51 and the main body portion 65b of the fixed sliding member 65 may be reduced. Accordingly, an increase in torque which may occur when the fixing belt 51 starts to be driven may be prevented. Also, since friction between the fixed sliding member 65 and the fixing belt 51 is reduced, energy consumption which may occur when the fixing belt 51 is driven may be prevented. Also, sliding resistance may be reduced without placing another member such as a sliding sheet between the fixed sliding member 65 and the inner circumferential surface 51b of the fixing belt 51. Accordingly, the fixing device 50 may be simplified, manufacturing costs may be reduced, and an increase in torque which may occur when the fixing belt 51 starts to be driven may be prevented. Also, since the plurality of protrusions 67 that protrude from the reference surface 66 are disposed on the main body portion 65b of the fixed sliding member 65, a lubricant may be distributed over the reference surface 66 (e.g., a non-contact portion) disposed around the plurality of protrusions 67, that is, in spaces between the plurality of protrusions 67. Accordingly, the fixing belt 51 may more easily slide, the degradation of the fixing belt 51 as time passes may be reduced, and the quality of the fixing device 50 may be maintained for a long time. Also, a length of each of the protrusions 67 contacting the inner circumferential surface 51b of the fixing belt 51 in the width direction X may be equal to or greater than 0.55 mm. Also, a pitch P67 between adjacent protrusions of the plurality of protrusions 67 may be equal to or greater than 1.1 mm. Since the plurality of protrusions 67 are included in the fixing device 50 according to an embodiment as described above, contact power between the fixing belt 51 and the fixed sliding member 65 may be reduced, and thus an increase in torque which may occur when the fixing belt 51 is driven may be prevented. Also, since the fixed sliding member 65 is used, a load applied by the pressure roller 52 in a state where the fixing belt 51 is driven may be uniformized and a portion of the fixing nip portion 53 to which no load is applied may be prevented. Also, when the plurality of protrusions 67 are included in the fixing device 50, an internal pressure of the fixing nip portion 53 may be equal to or less than 0.098 MPa.
A first modification of protrusions will now be explained with reference to
Diagonal lines L2 that are longer ones from among diagonal lines of the protrusions 68 having diamond shapes may be arranged to travel, for example, in the movement direction Y of the fixing belt 51. Diagonal lines L3 that are shorter ones from among the diagonal lines of the protrusions 68 may be arranged to travel, for example, in the width direction X of the fixing belt 51.
A length LX68 of each of the protrusions 68 in the width direction X of the fixing belt 51 that is perpendicular to the movement direction Y of the fixing belt 51 may be, for example, equal to or greater than 0.55 mm. Also, a pitch P68 between adjacent protrusions of the protrusions 68 in the width direction X of the fixing belt may be, for example, equal to or greater than 1.1 mm. Also, the length LX68 of the protrusion 68 may be greater than a distance D68 between the protrusions 68.
A second modification of protrusions will now be explained with reference to
The plurality of protrusions 69 may be arranged in parallel in the width direction X (e.g., a first direction) of the fixing belt 51 to form rows, and the plurality of protrusions 69 arranged to form the rows in the width direction X may form a plurality of rows in the movement direction Y (e.g., a second direction) of the fixing belt 51. Also, the plurality of protrusions 69 of adjacent rows in the width direction X of the fixing belt 51 may be arranged not to correspond to each other in the width direction X of the fixing belt 51. The plurality of protrusions 69 may be arranged in a matrix. Also, directions in which the protrusions 69 form rows are not limited to the width direction X of the fixing belt 51 and the movement direction Y of the fixing belt 51, and may be other directions. Also, the first direction and the second direction may be perpendicular to each other or may intersect at a predetermined angle, instead of 90°.
A diameter LX69 of each of the protrusions 69 may be, for example, equal to or greater than 0.55 mm. Also, a pitch P69 between adjacent protrusions of the protrusions 69 in the width direction X may be, for example, equal to or greater than 1.1 mm. Also, the diameter LX69 of the protrusion 69 may be greater than a distance D69 between the protrusions 69.
Protrusions of a fixing sliding member according to a second embodiment will now be explained with reference to
The lubricant supporting protrusions 83 may be arranged outside the protrusions 82 in the width direction X of the fixing belt 51. In the fixing device 50 according to an embodiment, a lubricant may be distributed between the main body portion 81b of the fixed sliding member 81 and the inner circumferential surface 51b of the fixing belt 51. The lubricant supporting protrusions 83 may be lubricant supports for supporting the lubricant distributed between the main body portion 81b of the fixed sliding member 81 and the inner circumferential surface 51b of the fixing belt 51. The lubricant supporting protrusions 83 may be arranged outside an image forming region of the recording medium P in the width direction X and may be arranged inside a nip load region to which a load is applied by the pressure roller 52. The image forming region of the recording medium P is a region where a toner image may be formed on the recording medium P. The nip load region is a region where the fixing belt 51 and the pressure roller 52 may contact each other.
A width LY82 of each of the protrusions 82 may be, for example, equal to or greater than 0.55 mm. Also, a pitch P82 between adjacent protrusions of the protrusions 82 in the movement direction Y of the fixing belt 51 may be, for example, equal to or greater than 1.1 mm. A width of each of the lubricant supporting protrusions 83 may be, for example, equal to or greater than the width LY82 of each of the protrusions 82.
As described above, when the lubricant supporting protrusions 83 having band shapes are arranged on both end portions in the width direction X of the fixing belt 51, a lubricant distributed between the main body portion 65b and the inner circumferential surface 51b of the fixing belt 51 may have a limited movement in the width direction X of the fixing belt 51. Accordingly, leakage of the lubricant to the outside of the fixing nip portion 53 in the width direction X of the fixing belt 51 may be prevented.
A modification of protrusions having band shapes will now be explained with reference to
As shown in
As shown in
Also, protrusions having band shapes may be arranged so that portions ranging from a central portion to both end portions are inclined in a longitudinal direction without including a portion of the central portion that is perpendicular to the movement direction Y of the fixing belt. For example, the protrusions may be arranged to have V shapes with a center of an entire length as a vertex. Even in this case, the central portion may be disposed at an inlet of the fixing nip portion 53, that is, at an upstream of the movement direction Y of the fixing belt 51, and outer portions may be disposed at an outlet of the fixing nip portion 53, that is, at a downstream of the movement direction Y of the fixing belt 51.
Also, protrusions having band shapes may include a portion of a central portion perpendicular to the movement direction Y of the fixing belt 51 in a longitudinal direction, and curved portions that are curved outward in the longitudinal direction from the central portion may be disposed at an outlet of the fixing nip portion 53, that is, at a downstream of the movement direction Y of the fixing belt 51.
As shown in
A torque that may be generated when a fixing belt is driven will now be explained with reference to
In Embodiment 1, a fixing device including the fixed sliding member 65 on which the plurality of protrusions 67 having rectangular shape are formed as shown in
In Embodiment 1 and Comparative Example 1, a torque is measured a plurality of times by changing a load of the fixing nip portion 53. In
A fixing device 90 according to a third embodiment will now be explained with reference to
The fixing device 90 may include the fixing belt 51, the pressure roller 52, the contact member 54, and the heat source (e.g., heater) 55. Also, the fixing device 90 may include the separation member 56 that separates the recording medium P attached to the outer circumferential surface 51a of the fixing belt 51 from the fixing belt 51. The separation member 56 may be disposed at an outlet of the fixing nip portion 53 in the feeding direction R3 of the recording medium P.
The contact member 54 may be disposed inside the fixing belt 51 and may apply a pressure to the recording medium P along with the pressure roller 52. The contact member 54 may extend in an axial direction of the fixing belt 51 having a cylindrical shape, and may include the structure 63 that extends in the axial direction, the support 64 that is supported on the structure 63, and the fixed sliding member 65 that is supported by the support 64. The fixed sliding member 65 may include the plurality of protrusions 67.
Also, the fixing device 90 may include a reflecting plate 92 that covers an outer surface of the contact member 54. The reflecting plate 92 may extend in the axial direction of the fixing belt 51, and a cross-section of the reflecting plate 92 taken in a direction perpendicular to a longitudinal direction may have a “⊏” shape. The reflecting plate 92 may include one pair of side walls 92a that extend in a direction perpendicular to a feeding direction of the recording medium P, and a connection portion 92b that connects end portions of the one pair of side walls 92a. In
The one pair of side walls 92a may be mounted to cover the one pair of side walls 65a of the fixed sliding member 65. The reflecting plate 92 may reflect radiant heat applied from the heat source 55 to the inner circumferential surface 51b of the fixing belt 51. Also, the reflecting plate 92 may reflect radiant heat applied from the inner circumferential surface 51b of the fixing belt 51 to the inner circumferential surface 51b of the fixing belt 51.
Also, the fixing device 90 may further include a lubricant supply portion 93 that is disposed at an upstream of the main body portion 65b that is a contact portion of the fixed sliding member 65, that is, at an inlet of the fixing hip portion 53 and a film thickness regulating portion 94 that is disposed at a downstream of the main body portion 65b, that is, at an outlet of the fixing nip portion 53, in the movement direction Y of the fixing belt 51.
The lubricant supply portion 93 may be disposed at end portion of the upstream of the main body portion 65b of the fixed sliding member 65, that is, at the inlet of the fixing nip portion 53, in the movement direction Y of the fixing belt 51, and may be supported on the fixed sliding member 65. The lubricant supply portion 93 may have a length corresponding to a width of the fixing belt 51 in the axial direction of the fixing belt 51. A lubricant may be filled in the lubricant supply portion 93, and part of the lubricant leaching out of the lubricant supply portion 93 may be applied to the inner circumferential surface 51b of the fixing belt 51. Also, the lubricant attached to the inner circumferential surface 51b may be moved as the fixing belt 51 moves and may be supplied between the main body portion 63b and the inner circumferential surface 51b.
The film thickness regulating portion 94 may be disposed at end portion of the downstream of the main body portion 65b of the fixed sliding member 65, that is, at the outlet of the fixing nip portion 53, in the movement direction Y of the fixing belt 51 and may be supported by the support 64. The film thickness regulating portion 94 may have a length corresponding to a width of the fixing belt 51 in the axial direction of the fixing belt 51.
Also, when the film thickness regulating portion 94 may contact the inner circumferential surface 51b of the fixing belt 51 and may regulate a shape of the fixing belt 51 when the fixing belt 51 rotates. The film thickness regulating portion 94 may extend in a diameter direction of the fixing belt 51 to protrude outward, and may be disposed to press the inner circumferential surface 51b. Also, the film thickness regulating portion 94 may regulate a film thickness of a lubricant passing through the main portion 65b and moved to the outlet of the fixing nip portion 53. That is, the lubricant attached to the inner circumferential surface 51b of the fixing belt 51 may have a limited movement to the outlet of the fixing nip portion 53 due to the film thickness regulating portion 94.
The film thickness regulating portion 94 may include a nonwoven fabric. The nonwoven fabric may include, for example, a heat-resistant fiber. The nonwoven fabric may have heat resistance of, for example, 300° C. or more. Also, the nonwoven fabric may have flame resistance as well as heat resistance, and a UL94 flammability rating of the nonwoven fabric may be equal to or greater than V-0. Also, a thickness of the nonwoven fabric may be, for example, equal to or greater than 0.8 mm and equal to or less than 4.5 mm. Also, a weight of the nonwoven fabric may be, for example, equal to or greater than 200 g/m2. Also, an Aramid fiber that is a heat-resistant fiber may be included in the nonwoven fabric.
For example, the film thickness regulating portion 94 may be formed by winding the nonwoven fabric around a member having a bar shape. Also, the film thickness regulating portion 94 may be formed by stacking a plurality of layers formed of the nonwoven fabric. Also, the film thickness regulating portion 94 may be formed of a material such as a synthetic resin.
In the fixing device 90 according to an embodiment, a lubricant may be supplied from the upstream of the fixed sliding member 65, that is, from the inlet of the fixing nip portion 53, and may be distributed between the main body portion 65b of the fixed sliding member 65 and the inner circumferential surface 51b of the fixing belt 51. Accordingly, frictional resistance between the main body portion 65b of the fixed sliding member 65 and the inner circumferential surface 51b of the fixing belt 51 may be reduced, an increase in torque of the fixing belt 51 may be prevented, and a torque may be reduced even when the fixing device 90 starts to be driven or is driven.
In the fixing device 90 according to an embodiment, since a lubricant may be distributed between the main body portion 65b of the fixed sliding member 65 and the inner circumferential surface 51b of the fixing belt 51, when compared to a case where no lubricant is distributed, friction dust produced due to friction between the fixed sliding member 65 and the fixing belt 51 may be prevented, and thus contamination due to the friction dust may be prevented. For example, although a surface layer formed on the inner circumferential surface 51b of the fixing belt 51 is detached and thus wear dust may be produced, the fixing device 90 according to an embodiment may prevent friction dust from being produced because a lubricant is distributed as described above. Accordingly, the amount of friction dust moved to the outlet of the fixing nip portion 53 along with a remaining lubricant may be reduced, and thus contamination of the inside of the fixing belt 51 may be prevented.
Also, in the fixing device 90 according to an embodiment, a film thickness of a lubricant attached to the inner circumferential surface 51b of the fixing belt 51 may be regulated by the film thickness regulating portion 94. A lubricant having a thickness equal to or greater than a predetermined thickness may contact the film thickness regulating portion 94, and thus may not move to the outlet of the fixing unit 53. The film thickness regulating portion 94 may include a nonwoven fabric, and a remaining lubricant attached to the inner circumferential surface 51b of the fixing belt 51 may be removed by the nonwoven fabric. Also, a small amount of wear dust, which may be produced due to friction between the fixed sliding member 65 and the fixing belt 51 may also be removed along with the remaining lubricant by the nonwoven fabric included in the film thickness regulating portion 94.
As the remaining lubricant and the wear dust are removed as described above, contamination due to the remaining lubricant and the wear dust may be prevented. Accordingly, since the remaining lubricant and the wear dust are prevented from being attached to the inner circumferential surface 51b of the fixing belt 51, the remaining lubricant and the wear dust may be prevented from dropping from the inner circumferential surface 51b of the fixing belt 51. Also, the amount of the remaining lubricant and the wear dust attached to the reflecting plate 92 may be reduced, and thus reflection efficiency may be prevented from being reduced. As a result, since radiant heat from the heat source 55 may be efficiently transmitted to the fixing belt 51, the fixing belt 51 may be more efficiently heated and a toner image may be more reliably fixed onto the recording medium P.
Also, in the fixing device 90 according to an embodiment, since the film thickness regulating portion 94 contacts the inner circumferential surface 51b of the fixing belt 51, a shape of the fixing belt 51 that rotates may be defined. The fixing belt 51 may receive an external pressure in the diameter direction due to the film thickness regulating portion 94, and thus a shape of the fixing belt 51 may be defined. Accordingly, a rotational displacement of the fixing belt 51 may be defined. The rotational displacement refers to a displacement of the fixing belt 51 which may occur when the fixing belt 51 rotates, and especially refers to a displacement in a thickness direction of the fixing belt 51. In the fixing device 90 according to an embodiment, since a rotational displacement of the fixing belt 51 may be defined, unnecessary contact between the fixing belt 51 and the separation member 56 that is disposed close to the outer circumferential surface 51a of the fixing belt 51 may be prevented. Also, since a rotational shape (e.g., an orbit) of the fixing belt 51 may be stabilized, abrupt contact between the fixing belt 51 and the separation member 56 may be prevented.
Also, in the fixing device 90 according to an embodiment, since a rotational shape of the fixing belt 51 that is disposed near the outlet of the fixing nip portion 53 may be more stably defined, a front end portion of the separation member 56 may be disposed to be closer to the outer circumferential surface 51a of the fixing belt 51. Accordingly, the recording medium P attached to the outer circumferential surface 51a of the fixing belt 51 may be more reliably separated.
Also, since the film thickness regulating portion 94 may prevent a remaining lubricant and wear dust attached to the fixing belt 51 from passing through the film thickness regulating portion 94 and moved to the outlet of the fixing nip portion 53 and may more stably regulate a rotational shape of the fixing belt 51, an additional structure may not need to be provided and thus a structure of the fixing device 90 may be simplified.
A fixing device 100 according to a fourth embodiment will now be explained with reference to
The fixing device 100 according to an embodiment may include a film thickness regulating member 101 including the film thickness regulating portion 102. The film thickness regulating member 101 may extend in an axial direction of the fixing belt 51. In this case, the film thickness regulating member 101 may have a length corresponding to a width of the fixing belt 51 in the axial direction of the fixing belt 51. The film thickness regulating member 101 may include a support 101a in addition to the film thickness regulating portion 102. The support 101a may be disposed to be supported on the contact member 54.
The support 101a may be formed to have, for example, a pillar shape, and may extend in the axial direction of the fixing belt 51. The support 101a may be disposed to be supported on, for example, a side wall 64a at a downstream (e.g., at a downstream of the movement direction Y of the fixing belt 51) of the support 64. However, embodiments are not limited thereto, and the support 101a may be disposed to be supported on the structure 63 of the contact member 54.
The film thickness regulating portion 102 may be disposed to be supported by the support 101a (e.g., the film thickness regulating portion 102 may be integrally formed with the support 101a). The film thickness regulating portion 102 may include a guide surface 102a, an edge portion 102b, and an inclined surface 102c. The film thickness regulating portion 102 may protrude outward from the support 101a in a diameter direction of the fixing belt 51. The film thickness regulating portion 102 may include the guide surface 102a that contacts the inner circumferential surface 51b of the fixing belt 51. For example, the guide surface 102a may extend in a circumferential direction about the center of rotation O51 of the fixing belt 51. Also, the guide surface 102a may have a predetermined length in the circumferential direction of the fixing belt 51. For example, a length of the guide surface 102a may be 10% of a length of a circumference of the fixing belt 51.
Also, the guide surface 102a may include, for example, a synthetic resin. The guide surface 102a may include a synthetic resin having high heat resistance and high flame resistance, for example, PPS, polyethylene terephthalate (PET), LCP, or PEEK. Also, the guide surface 102a may include a nonwoven fabric.
One surface of the edge portion 102b that faces the center of rotation O51 of the fixing belt 51 may be the inclined surface 102c that is inclined with respect to a tangent line L51b that contacts the inner circumferential surface 51b of the fixing belt 51. An inclination angle θ102c of a straight line L102c that follows the inclined surface 102c and the tangent line L51b may be, for example, but not limited to, equal to or greater than 15° and equal to or less than 45°.
The fixing device 100 may include the lubricant receiving portion 103 that receives a lubricant retrieved from the film thickness regulating portion 102. The lubricant receiving portion 103 may be disposed at a downstream of the fixed sliding member 65, that is, at an outlet of the fixing nip portion 53, and may be disposed at a further upstream than the edge portion 102b, in the movement direction Y of the fixing belt 51. The lubricant receiving portion 103 may include an opening close to the inner circumferential surface 51b of the fixing belt 51.
The lubricant receiving portion 103 may receive a remaining lubricant in a space formed between the side wall 65a (see
Contamination due to the remaining lubricant and wear dust may be prevented due to the fixing device 100 of the fourth embodiment.
Also, in the fixing device 100 of the fourth embodiment, although the film thickness regulating member 101 and the support 64 are separate elements, the film thickness regulating member 101 and the support 64 may be integrated as one member. Accordingly, the number of parts in the fixing device 100 may be reduced and a structure of the fixing device 100 may be simplified.
Embodiments are not limited thereto and various modifications may be made without departing from the scope of the inventive concept.
In the fixing device 100, the fixing belt 51 may include the base portion 57 formed of a synthetic resin, and the lubricant supply portion 93 may supply a black lubricant. Accordingly, the black lubricant may be applied to the inner circumferential surface 51b of the fixing belt 51. When the fixing belt 51 is formed of a synthetic resin that does not allow for black surface treatment, an absorbance of radiant heat of the fixing belt 51 may be increased by applying a black lubricant to the inner circumferential surface 51b of the fixing belt 51. Accordingly, heating efficiency may be improved and an image may be stably fixed onto the recording medium by using the fixing device 100. The black lubricant may be a fluorine-based lubricant to which carbon black or black dye is added. However, embodiments are not limited thereto, and a lubricant may be black by using other methods.
Also, in the embodiments, protrusions may be included in the main body portion 65b that is a contact portion of the fixed sliding member 65, or may not be included in the main body portion 65b of the fixing device 90 or 100 of the third or fourth embodiment.
Also, shapes of the protrusions are not limited to diamond shapes, circular shapes, and band shapes, and may be any of other shapes such as trapezoidal shapes or elliptical shapes.
Also, a pitch between the plurality of protrusions is not limited to 1.1 mm or more, and may be less than 1.1 mm. Also, the pitch between the protrusions may be constant or may vary according to positions, for example, in the width direction X. Also, a length of each of the protrusions contacting the fixing belt is not limited to 0.5 mm or more, and may be less than 0.55 mm.
According to an embodiment, there may be provided a fixing device that may prevent an increase in torque which may be generated when a fixing belt starts to be driven and an image forming apparatus including the fixing device.
While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2015-249896 | Dec 2015 | JP | national |
10-2016-0091446 | Jul 2016 | KR | national |
This application is a continuation application of U.S. patent application Ser. No. 15/297,666, filed Oct. 19, 2016, which claims the benefit of Japan Patent Application No. 2015-249896, filed on Dec. 22, 2015, in the Japan Patent Office, and Korean Patent Application No. 10-2016-0091446, filed on Jul. 19, 2016, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5499087 | Hiraoka | Mar 1996 | A |
8655211 | Fujimoto et al. | Feb 2014 | B2 |
10031452 | Suzuki | Jul 2018 | B2 |
20060083567 | Ito | Apr 2006 | A1 |
20110236089 | Tanaka et al. | Sep 2011 | A1 |
20120275830 | Suzuki et al. | Nov 2012 | A1 |
20140294465 | Hazeyama et al. | Oct 2014 | A1 |
20150093167 | Hazeyama | Apr 2015 | A1 |
20150098737 | Matsumoto | Apr 2015 | A1 |
20170097598 | Kudo | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2001-42670 | Feb 2001 | JP |
2002-023534 | Jan 2002 | JP |
2002-299007 | Oct 2002 | JP |
2004-029394 | Jan 2004 | JP |
2004-037552 | Feb 2004 | JP |
2005-077847 | Mar 2005 | JP |
2006-047769 | Feb 2006 | JP |
2007-114698 | May 2007 | JP |
2009-229494 | Mar 2008 | JP |
2009-15227 | Jan 2009 | JP |
4543670 | Jul 2010 | JP |
4683156 | Feb 2011 | JP |
2012-181421 | Mar 2011 | JP |
2012-103424 | May 2012 | JP |
2012-198516 | Oct 2012 | JP |
2013-134422 | Jul 2013 | JP |
2013-148837 | Aug 2013 | JP |
2013-171171 | Sep 2013 | JP |
2013-195908 | Sep 2013 | JP |
2014-139641 | Jul 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20180299808 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15297666 | Oct 2016 | US |
Child | 16016045 | US |