This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2011-040631, filed on Feb. 25, 2011, in the Japanese Patent Office, the entire disclosure of which is hereby incorporated herein by reference.
Exemplary aspects of the present invention relate to a fixing device and an image forming apparatus, and more particularly, to a fixing device for fixing a toner image on a recording medium and an image forming apparatus including the fixing device.
Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having at least one of copying, printing, scanning, and facsimile functions, typically form an image on a recording medium according to image data. Thus, for example, a charger uniformly charges a surface of an image carrier; an optical writer emits a light beam onto the charged surface of the image carrier to form an electrostatic latent image on the image carrier according to the image data; a development device supplies toner to the electrostatic latent image formed on the image carrier to render the electrostatic latent image visible as a toner image; the toner image is directly transferred from the image carrier onto a recording medium or is indirectly transferred from the image carrier onto a recording medium via an intermediate transfer member; a cleaner then cleans the surface of the image carrier after the toner image is transferred from the image carrier onto the recording medium; finally, a fixing device applies heat and pressure to the recording medium bearing the toner image to fix the toner image on the recording medium, thus forming the image on the recording medium.
The fixing device used in such image forming apparatuses may employ an induction heater to warm up the fixing device quickly. For example, the induction heater is disposed opposite the outer circumferential surface of a fixing roller to heat the fixing roller. The fixing roller presses against a pressing roller to form a fixing nip therebetween through which the recording medium bearing the toner image is conveyed. As the recording medium passes through the fixing nip, the fixing roller heated by the induction heater and the pressing roller apply heat and pressure to the recording medium, melting and fixing the toner image on the recording medium.
A thermopile is disposed opposite the outer circumferential surface of the fixing roller to detect the temperature of the fixing roller based on which a heating amount of the induction heater for heating the fixing roller is adjusted. However, the thermopile raises a problem that it may detect not only infrared rays from the fixing roller but also infrared rays from the components other than the fixing roller, resulting in faulty detection of the temperature of the fixing roller. To address this problem, the thermopile is disposed opposite the fixing roller via a through-hole produced in the induction heater. Accordingly, the thermopile detects infrared rays radiated from the fixing roller and traveling through the through-hole only, thus detecting the temperature of the fixing roller precisely.
Although effective for its intended purpose, the through-hole raises another problem. That is, as the recording medium bearing the unfixed toner image is conveyed through the fixing nip, heat conducted from the fixing roller vaporizes water contained in the recording medium into steam and volatilizes wax contained in toner of the unfixed toner image. When the steam and volatilized wax move from the fixing nip into the through-hole of the induction heater, they may adhere to the interior wall of the through-hole, causing detection error of the thermopile.
Accordingly, there is a need for a technology that prevents faulty detection of the temperature of the fixing roller by the thermopile caused by the infrared rays radiated from the components other than the fixing roller and the steam and volatilized wax generated from the recording medium bearing the toner image at the fixing nip.
This specification describes below an improved fixing device. In one exemplary embodiment of the present invention, the fixing device includes a fixing rotary body rotatable in a predetermined direction of rotation to radiate infrared rays; a pressing rotary body, rotatable in a direction counter to the direction of rotation of the fixing rotary body, pressed against the fixing rotary body to form a fixing nip therebetween through which a recording medium bearing a toner image is conveyed; a heater disposed opposite the fixing rotary body to heat the fixing rotary body; a temperature detector spaced apart from the fixing rotary body to detect a temperature of the fixing rotary body based on the infrared rays from the fixing rotary body and disposed below the fixing nip in a vertical direction; and a tube disposed between the fixing rotary body and the temperature detector, the tube through which the infrared rays from the fixing rotary body enter the temperature detector.
This specification further describes an improved image forming apparatus. In one exemplary embodiment, the image forming apparatus includes the fixing device described above.
A more complete appreciation of the invention and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, in particular to
A description is now given of the structure of the image forming apparatus 1 with reference to
Below the writer 2 is a paper tray 7 that loads a plurality of recording media P (e.g., sheets). Above the paper tray 7 is a feed roller 8 that picks up and feeds an uppermost recording medium P from the paper tray 7 toward a secondary transfer roller 18 disposed opposite the intermediate transfer belt 17 to transfer the color toner image formed on the intermediate transfer belt 17 onto the recording medium P conveyed from the paper tray 7. A belt cleaner 16 is disposed opposite the intermediate transfer belt 17 to remove residual toner not transferred onto the recording medium P and therefore remaining on the intermediate transfer belt 17 therefrom. Above the secondary transfer roller 18 is a fixing device 19 that fixes the color toner image on the recording medium P by heating the recording medium P by electromagnetic induction. Above the fixing device 19 is an output roller pair 9 that discharges the recording medium P bearing the fixed color toner image conveyed from the fixing device 19 to an outside of the image forming apparatus 1.
A description is now given of the operation of the image forming apparatus 1 having the above-described structure to form a color toner image on a recording medium P.
The original document reader 4 optically reads an image on the original document D placed on the exposure glass 5 into image data. For example, a lamp of the original document reader 4 emits a light beam onto the original document D bearing the image in such a manner that the light beam scans the original document D. The light beam reflected by the original document D travels to a color sensor through mirrors and a lens, where the image is formed. The color sensor reads and separates the image into red, green, and blue images, and converts the images into electric image signals for red, green, and blue. Based on the respective electric image signals, an image processor of the original document reader 4 performs processing such as color conversion, color correction, and space frequency correction, thus producing yellow, magenta, cyan, and black image data.
Thereafter, the yellow, magenta, cyan, and black image data are sent to the writer 2. The writer 2 emits laser beams onto the photoconductive drums 11Y, 11M, 11C, and 11K according to the yellow, magenta, cyan, and black image data sent from the original document reader 4.
A detailed description is now given of five processes performed on the photoconductive drums 11Y, 11M, 11C, and 11K, that is, a charging process, an exposure process, a development process, a primary transfer process, and a cleaning process.
The four photoconductive drums 11Y, 11M, 11C, and 11K rotate clockwise in
In the exposure process, four light sources of the writer 2, disposed opposite the photoconductive drums 11Y, 11M, 11C, and 11K, emit laser beams according to the yellow, magenta, cyan, and black image data, respectively. The laser beams corresponding to the yellow, magenta, cyan, and black image data travel through different optical paths, respectively.
For example, the laser beam corresponding to the yellow image data irradiates the outer circumferential surface of the leftmost photoconductive drum 11Y in
Similarly, the laser beam corresponding to the magenta image data irradiates the outer circumferential surface of the second photoconductive drum 11M from the left in
Thereafter, the outer circumferential surface of the respective photoconductive drums 11Y, 11M, 11C, and 11K formed with the electrostatic latent images reaches a position where the photoconductive drums 11Y, 11M, 11C, and 11K are disposed opposite the development devices 13Y, 13M, 13C, and 13K, respectively.
In the development process, the development devices 13Y, 13M, 13C, and 13K disposed opposite the photoconductive drums 11Y, 11M, 11C, and 11K supply yellow, magenta, cyan, and black toners to the electrostatic latent images formed on the photoconductive drums 11Y, 11M, 11C, and 11K, respectively, thus rendering the electrostatic latent images visible as yellow, magenta, cyan, and black toner images. Thereafter, the outer circumferential surface of the respective photoconductive drums 11Y, 11M, 11C, and 11K formed with the yellow, magenta, cyan, and black toner images reaches a position where the photoconductive drums 11Y, 11M, 11C, and 11K are disposed opposite the intermediate transfer belt 17. The four primary transfer rollers 14Y, 14M, 14C, and 14K are disposed opposite the four photoconductive drums 11Y, 11M, 11C, and 11K, respectively, via the intermediate transfer belt 17 in a state in which the primary transfer rollers 14Y, 14M, 14C, and 14K contact an inner circumferential surface of the intermediate transfer belt 17.
In the primary transfer process, the primary transfer rollers 14Y, 14M, 14C, and 14K transfer the yellow, magenta, cyan, and black toner images from the photoconductive drums 11Y, 11M, 11C, and 11K onto the intermediate transfer belt 17 rotating counterclockwise in
Thereafter, the outer circumferential surface of the respective photoconductive drums 11Y, 11M, 11C, and 11K that no longer carry the yellow, magenta, cyan, and black toner images reaches a position where the photoconductive drums 11Y, 11M, 11C, and 11K are disposed opposite the cleaners 15Y, 15M, 15C, and 15K, respectively.
In the cleaning process, the cleaners 15Y, 15M, 15C, and 15K disposed opposite the photoconductive drums 11Y, 11M, 11C, and 11K collect residual toners not transferred and therefore remaining on the photoconductive drums 11Y, 11M, 11C, and 11K from the photoconductive drums 11Y, 11M, 11C, and 11K, respectively. Thereafter, dischargers disposed opposite the photoconductive drums 11Y, 11M, 11C, and 11K discharge the outer circumferential surface of the respective photoconductive drums 11Y, 11M, 11C, and 11K, thus completing a series of processes performed on the photoconductive drums 11Y, 11M, 11C, and 11K. The outer circumferential surface of the intermediate transfer belt 17 transferred with the color toner image reaches a position where it is disposed opposite the secondary transfer roller 18, that is, a secondary transfer nip. Specifically, the secondary transfer nip is created by the secondary transfer roller 18 and a secondary transfer backup roller that sandwich the intermediate transfer belt 17. As a recording medium P conveyed from the paper tray 7 passes through the secondary transfer nip, the color toner image formed on the intermediate transfer belt 17 is transferred onto the recording medium P in the secondary transfer process.
After the transfer of the color toner image from the intermediate transfer belt 17, residual toner not transferred onto the recording medium P remains on the intermediate transfer belt 17. Thereafter, the outer circumferential surface of the intermediate transfer belt 17 that no longer carries the color toner image reaches a position where it is disposed opposite the belt cleaner 16. The belt cleaner 16 collects the residual toner from the intermediate transfer belt 17, thus completing a series of processes performed on the intermediate transfer belt 17.
A detailed description is now given of two processes performed on the recording medium P, that is, the secondary transfer process described above and a fixing process.
The recording medium P is conveyed from the paper tray 7 disposed in the lower portion of the image forming apparatus 1 to the secondary transfer nip through a conveyance path K1 disposed with the feed roller 8 and the registration roller pair. For example, the paper tray 7 contains a plurality of recording media P. As the feed roller 8 rotates counterclockwise in
After the secondary transfer process, the recording medium P bearing the color toner image is conveyed to the fixing device 19 incorporated with a fixing roller 20 and a pressing roller 30. As the recording medium P bearing the color toner image passes between the fixing roller 20 and the pressing roller 30, they apply heat and pressure to the recording medium P to fix the color toner image on the recording medium P. Then, the output roller pair 9 disposed downstream from the fixing device 19 in a conveyance direction of the recording medium P discharges the recording medium P bearing the fixed color toner image in a direction indicated by the broken line arrow to the outside of the image forming apparatus 1, thus completing a series of processes for forming the color toner image on the recording medium P.
Referring to
As illustrated in
A detailed description is now given of the fixing roller 20.
The fixing roller 20 having an outer diameter of about 40 mm is constructed of three layers: a metal core 23 made of iron, stainless steel, or the like; a heat insulating elastic layer 22 disposed on the metal core 23 and made of silicone rubber foam or the like; and a sleeve layer 21 disposed on the heat insulating elastic layer 22.
The sleeve layer 21 has a multilayer structure constructed of a base layer constituting an inner circumferential surface, a first antioxidant layer, a heat generating layer, a second antioxidant layer, an elastic layer, and a release layer. For example, the base layer having a thickness of about 40 micrometers is made of stainless steel or the like. The first antioxidant layer and the second antioxidant layer are treated with nickel strike plating with a thickness of about 1 micrometer or smaller. The heat generating layer having a thickness of about 10 micrometers is made of copper or the like. The elastic layer having a thickness of about 150 micrometers is made of silicone rubber or the like. The release layer having a thickness of about 30 micrometers is made of tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) or the like. With the above-described structure, the heat generating layer of the sleeve layer 21 of the fixing roller 20 is heated by electromagnetic induction by a magnetic flux generated by the induction heater 25.
It is to be noted that the structure of the fixing roller 20 is not limited to the above. For example, the sleeve layer 21 may be separately provided from the heat insulating elastic layer 22 by not being adhered to the heat insulating elastic layer 22. In this case, the heat insulating elastic layer 22 serves as a supplemental fixing roller. Further, it is preferable that the fixing roller 20 may further include a mechanism that prevents the sleeve layer 21 from shifting from the heat insulating elastic layer 22 in an axial direction, that is, a thrust direction, of the fixing roller 20 as the fixing roller 20 rotates.
A detailed description is now given of the components surrounding the fixing roller 20.
The spur guide 42 is disposed opposite the fixing roller 20 and upstream from the fixing nip N in the conveyance direction of the recording medium P. The spur guide 42 includes a plurality of spurs arranged in the axial direction of the fixing roller 20 substantially orthogonal to the conveyance direction of the recording medium P. The spur guide 42 is disposed opposite an image side of the recording medium P conveyed toward the fixing nip N, guiding the recording medium P to the fixing nip N. The plurality of spurs of the spur guide 42 has a sawtooth circumferential surface portion to prevent the plurality of spurs from scratching and damaging the toner image T on the recording medium P even when the plurality of spurs contacts the image side of the recording medium P.
The separation guide 43 is disposed opposite the fixing roller 20 and downstream from the fixing nip N in the conveyance direction of the recording medium P. The separation guide 43 is disposed opposite the image side of the recording medium P conveyed from the fixing nip N. The separation guide 43 prevents the recording medium P bearing the fixed toner image T from being attracted and adhered to the fixing roller 20 as the recording medium P is discharged from the fixing nip N. For example, if the recording medium P is attracted to the fixing roller 20, the separation guide 43 contacts a leading edge of the recording medium P and separates the recording medium P from the fixing roller 20.
The thermistor 62 is disposed in proximity to and upstream from the fixing nip N in the conveyance direction of the recording medium P. The thermistor 62 serving as a contact temperature detecting sensor contacts the fixing roller 20 at one lateral end of the fixing roller 20 in the axial direction thereof where the fixing roller 20 is driven, thus detecting a surface temperature of the fixing roller 20.
A thermopile 34 serving as a non-contact temperature detector is disposed opposite the fixing roller 20 at a center of the fixing roller 20 in the axial direction thereof.
A thermopile is an element that detects a temperature of an object based on infrared rays radiated from the object. For example, the infrared rays radiated from the object are absorbed by a thermal conversion film disposed inside the thermopile and converted into heat. Thereafter, lots of small thermocouples disposed on the thermal conversion film detect the heat as a temperature.
The thermistor 62 and the thermopile 34 described above detect the temperature of the fixing roller 20, that is, a fixing temperature at which the toner image T is fixed on the recording medium P. The thermistor 62 and the thermopile 34 are operatively connected to a controller 80, that is, a central processing unit (CPU) provided with a random-access memory (RAM) and a read-only memory (ROM), for example. The controller 80 is operatively connected to the induction heater 25 to control the induction heater 25 to adjust a heating amount of the induction heater 25 that heats the fixing roller 20 based on the temperature of the fixing roller 20 detected by the thermistor 62 and the thermopile 34. According to this exemplary embodiment, the controller 80 controls the induction heater 25 to heat the fixing roller 20 to the temperature in a range of from about 160 degrees centigrade to about 165 degrees centigrade during the fixing process, that is, when the recording medium P bearing the toner image T passes through the fixing nip N.
As shown in
The thermistor 61 is disposed in proximity to and upstream from the fixing nip N in the conveyance direction of the recording medium P. The thermistor 61 serves as a contact temperature detecting sensor that contacts the pressing roller 30 at one lateral end of the pressing roller 30 in an axial direction thereof where the pressing roller 30 is driven, thus detecting a surface temperature of the pressing roller 30. The thermistor 61 described above detects the temperature of the pressing roller 30. The thermistor 61 is operatively connected to the controller 80 that is operatively connected to the heater 33 to control the heater 33 to adjust a heating amount of the heater 33 that heats the pressing roller 30 based on the temperature of the pressing roller 30 detected by the thermistor 61.
The entry guide 41 is disposed upstream from the fixing nip N in the conveyance direction of the recording medium P. The entry guide 41 is opposite the pressing roller 30 and a non-image side of the recording medium P not bearing the unfixed toner image T conveyed toward the fixing nip N, thus guiding the recording medium P to the fixing nip N.
It is to be noted that the non-image side of the recording medium P defines a side of the recording medium P that bears no unfixed toner image, that is, the side of the recording medium P that bears no toner image or bears the fixed toner image in duplex printing.
The exit guide 50 is disposed downstream from the fixing nip N in the conveyance direction of the recording medium P. The exit guide 50 is disposed opposite the pressing roller 30 and the non-image side of the recording medium P discharged from the fixing nip N. The exit guide 50 guides the recording medium P bearing the fixed toner image T discharged from the fixing nip N in a direction Y2 to a conveyance path disposed downstream from the fixing device 19 in the conveyance direction of the recording medium P. The exit guide 50 is rotatable about a shaft 50a in a rotation direction R4.
The induction heater 25 serving as a heater or a magnetic flux generator includes a coil 26 (e.g., an exciting coil), a core 27 (e.g., an exciting coil core), a coil guide 28, and a frame 29. The coil 26 is constructed of litz wire made of bundled thin wire wound around the coil guide 28 that covers a part of an outer circumferential surface of the fixing roller 20 and extending in the axial direction of the fixing roller 20. The coil guide 28 is made of a heat resistant resin such as polyethylene-terephthalate (PET) that contains glass at a rate of about 45 percent. The coil guide 28 is disposed opposite the fixing roller 20 to hold the coil 26 with respect to the outer circumferential surface of the fixing roller 20. According to this exemplary embodiment, the outer circumferential surface of the fixing roller 20 is spaced by a distance in a range of from about 1.9 mm to about 2.1 mm apart from an inner circumferential surface of the coil guide 28 that faces the outer circumferential surface of the fixing roller 20. The core 27 is made of ferromagnet such as ferrite having a magnetic permeability of about 2,500 and is constructed of an arch core, a center core, and a side core to generate a magnetic flux toward the heat generating layer of the fixing roller 20 effectively.
According to this exemplary embodiment, the induction heater 25 is disposed opposite the left half of the fixing roller 20 in
Referring to
A driver (e.g., a motor) drives and rotates the fixing roller 20 counterclockwise in
Thereafter, as the fixing roller 20 rotates in the rotation direction R2, a portion of the outer circumferential surface of the fixing roller 20 heated by the induction heater 25 reaches the fixing nip N formed between the fixing roller 20 and the pressing roller 30 contacting each other. As a recording medium P bearing an unfixed toner image T is conveyed through the fixing nip N, the fixing roller 20 heats and melts the unfixed toner image T on the recording medium P. For example, the recording medium P bearing the toner image T formed by the above-described image forming processes is conveyed in the direction Y1 to the fixing nip N while guided by the entry guide 41 or the spur guide 42. As the recording medium P bearing the toner image T passes through the fixing nip N, the fixing roller 20 heats the recording medium P and at the same time the pressing roller 30 applies pressure to the recording medium P, thus melting and fixing the toner image T on the recording medium P. Then, the recording medium P is discharged from the fixing nip N and is conveyed in the direction Y2.
After the recording medium P bearing the fixed toner image T is discharged from the fixing nip N, the heated portion of the fixing roller 20 having passed through the fixing nip N and now cooled by the recording medium P returns to an opposed position where the fixing roller 20 is disposed opposite the induction heater 25. Thus, a series of the above-described processes is repeated, completing the fixing process constituting a part of the image forming processes.
The fixing device 19 depicted in
Referring to
As illustrated in
The tube 35 is made of a heat resistant resin or the like and has two openings, that is, an inlet 35A at one end and an outlet 35B at another end of the tube 35 in a longitudinal direction thereof. The inlet 35A is disposed opposite a lower part of the outer circumferential surface of the fixing roller 20; the outlet 35B is disposed opposite and in proximity to a detecting face 34a of the thermopile 34 that detects the temperature of the fixing roller 20. With this configuration, an inner diameter of the tube 35 defines an aperture angle of the tube 35, that is, a viewing angle of the detecting face 34a of the thermopile 34, thus prohibiting entry of infrared rays from components other than the fixing roller 20 to the detecting face 34a of the thermopile 34. The tube 35 also allows heat to escape from an interval between the outer circumferential surface of the fixing roller 20 and the inner circumferential surface of the coil guide 28 to the outer circumferential face of the induction heater 25.
Further, as the recording medium P bearing the unfixed toner image T is conveyed through the fixing nip N, heat conducted from the fixing roller 20 and the pressing roller 30 vaporizes water from the recording medium P into steam and volatilizes wax from toner of the unfixed toner image T. To address this circumstance, the thermopile 34 is situated below the fixing nip N in the vertical direction to minimize adhesion of steam and volatilized wax to the thermopile 34. For example, steam and wax volatilized at the fixing nip N are moved upward by up-current of air generated by temperature differential. Since the thermopile 34 is situated below the fixing nip N in the vertical direction, the thermopile 34 is less likely to contact an atmosphere of steam and volatilized wax, preventing adhesion of steam and volatilized wax to the thermopile 34. As a result, the thermopile 34 detects the temperature of the fixing roller 20 precisely, preventing system failure and faulty fixing.
As shown in
Referring to
Referring to
Referring to
According to the first to fourth embodiments described above, the thermopile (e.g., the thermopiles 34 and 34S) and the tube (e.g., the tubes 35, 35T, and 35U) are situated below the fixing nip N in the vertical direction in the fixing device 19 incorporated with the induction heater 25 as shown in
With the simple configurations according to the first to fourth embodiments described above, the non-contact temperature detector (e.g., the thermopiles 34 and 34S) detects the temperature of the fixing rotary body (e.g., the fixing roller 20) precisely, preventing detection error of the non-contact temperature detector and resultant system failure and faulty fixing at decreased costs.
The present invention has been described above with reference to specific exemplary embodiments. Note that the present invention is not limited to the details of the embodiments described above, but various modifications and enhancements are possible without departing from the spirit and scope of the invention. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative exemplary embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-040631 | Feb 2011 | JP | national |