This application is based on and claims the benefit of priority from Japanese patent application No. 2015-166790 filed on Aug. 26, 2015, which is incorporated by reference in its entirety.
The present disclosure relates to a fixing device configured to fix a toner image on a sheet and an image forming apparatus including the fixing device.
Conventionally, an electrographic image forming apparatus, such as a copying machine or a printer, includes a fixing device configured to fix a toner image on a sheet.
The fixing device commonly includes a detecting mechanism configured to detect the sheet so as to confirm passing of the sheet. For example, the detecting mechanism includes a sensor including a light emitting part and a light receiving part and an actuator configured to be swingable between a position where the actuator does not block a light directed from the light emitting part toward the light receiving part and another position where the actuator blocks the light directed from the light emitting part toward the light receiving part.
Additionally, the fixing device commonly includes a guide member configured to be rotatable between a position where the guide member covers a sheet conveying path and another position where the guide member exposes the sheet conveying path so as to facilitate JAM processing.
In accordance with an embodiment of the present disclosure, a fixing device includes a fixing member, a pressuring member, a fixing device main body, a guide member and a detecting mechanism. The fixing member is configured to be rotatable. The pressuring member is configured to be rotatable and to come into pressure contact with the fixing member so as to form a fixing nip. The fixing device main body is configured to rotatably support the fixing member. The guide member is supported by the fixing device main body so as to be rotatable between a closing position where the guide member covers a sheet conveying path formed in the fixing device main body and an opening position where the guide member exposes the sheet conveying path formed in the fixing device main body. The detecting mechanism is configured to detect a sheet. The detecting mechanism includes a sensor and an actuator. The sensor includes a light emitting part and a light receiving part. The actuator is supported by the guide member so as to be swingable between a non-blocking position where the actuator does not block a light directed from the light emitting part toward the light receiving part and a blocking position where the actuator blocks the light directed from the light emitting part toward the light receiving part. The rotation center of the guide member is arranged at a different position from a swing center of the actuator. When the actuator rotates integrally with the guide member according to a rotation of the guide member between the closing position and the opening position, the actuator passes between the light emitting part and the light receiving part.
In accordance with an embodiment of the present disclosure, an image forming apparatus includes the fixing device.
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present disclosure is shown by way of illustrative example.
Hereinafter, with reference to drawings, a structure of a color printer 1 (an image forming apparatus) will be described. Hereinafter, a near side in
As shown in FIG.1, the color printer 1 includes a box-formed printer main body 2. In a lower part of the printer main body 2, a sheet feeding cartridge 3 to store a sheet is arranged. In an upper part of the printer main body 2, a first sheet ejecting tray 4 is arranged, and above the first sheet ejecting tray 4, a second sheet ejecting tray 5 is arranged. In a right end part of the printer main body 2, a cover 6 configured to be openable and closable is arranged.
In the printer main body 2, an intermediate transferring belt 7 (an image carrier) is bridged over a plurality of rollers. Below the intermediate transferring belt 7, four image forming parts 8 are arranged for respective colors of toners (for example, four colors of magenta, cyan, yellow, black) along a lower part of the intermediate transferring belt 7. In each image forming part 8, a photosensitive drum 9 is rotatably arranged. Around the photosensitive drum 9, a charger 10, a development device 11, a primary transferring part 12, a cleaning device 13 and a static eliminator 14 are arranged in order of a primary transferring process. Above the development device 11, four containers 18 are arranged. In each container 18, the toner with the color corresponding to each image forming part 8 is contained. Below the four image forming parts 8, an exposure device 19 is arranged.
At a right side part of the printer main body 2, a sheet conveying path 20 (hereinafter, simply called as a “conveying path 20”) is arranged. At an upstream end of the conveying path 20, a sheet feeding part 21 is arranged. At an intermediate stream part of the conveying path 20, a secondary transferring part 22 is arranged at a right end side of the intermediate transferring belt 7. At a downstream part of the conveying path 20, a fixing device 23 is arranged.
The conveying path 20 branches off, at a part closer to a downstream side than the fixing device 23, into a first branched path 24 as a lower side branched path and a second branched path 26 as an upper side branched path. The second branched path 26 is connected with a portion of the conveying path 20 via a duplex conveying path 28 arranged at a right side of the conveying path 20, the portion being closer to an upstream side than the secondary transferring part 22.
Next, printing operation of the color printer 1 will be described.
When power is supplied to the color printer 1, various parameters are initialized, and initial determination, such as temperature determination of the fixing device 23, is carried out. Subsequently, when image data is inputted and a printing start is directed from a computer or the like connected with the color printer 1, image forming operation is carried out as follows.
First, the surface of the photosensitive drum 9 is electrically charged by the charger 10. Then, exposure corresponding to the image data is carried out on the photosensitive drum 9 by a laser (refer to an arrow P) from the exposure device 19, thereby forming an electrostatic latent image on the surface of the photosensitive drum 9. Next, by the toner supplied from each container 18, the electrostatic latent image is developed by the development device 11 to a toner image having a corresponding color. The toner image is primarily transferred on the surface of the intermediate transferring belt 7 in the primary transferring part 12. The above-mentioned operation is repeated in order by each image forming part 8, thereby forming the toner image with full color on the intermediate transferring belt 7. Incidentally, the toner and electric charge remained on the photosensitive drum 9 are eliminated by the cleaning device 13 and the static eliminator 14.
On the other hand, a sheet fed from the sheet feeding cartridge 3 by the sheet feeding part 21 is conveyed to the secondary transferring part 22 in a suitable timing for the above-mentioned image forming operation. Then, in the secondary transferring part 22, the toner image with the full color on the intermediate transferring belt 7 is secondarily transferred to the sheet. The sheet with the secondarily transferred toner image is conveyed to a downstream side on the conveying path 20 to enter the fixing device 23, and then, the toner image is fixed on the sheet in the fixing device 23. The sheet with the fixed toner image enters either one of the first branched path 24 or the second branched path 26. The sheet entering the first branched path 24 is ejected to the first sheet ejecting tray 4. The sheet entering the second branched path 26 is ejected to the second sheet ejecting tray 5 or conveyed to the duplex conveying path 28 for duplex printing.
Next, the fixing device 23 will be described in detail. An arrow Y assigned in
As shown in
As shown in
At a right side part of the fixing device main body 31 (a left side part in
As shown in
Inside the heat roller 32, a pair of upper and lower heaters 46 are accommodated, and each heater 46 heats the heat roller 32. Each heater 46 is composed of a halogen heater or a ceramic heater, for example. At an upper side of the heat roller 32 (a downstream side in the sheet conveying direction), a separating member 47 is arranged, and this separating member 47 separates the sheet from a surface of the heat roller 32.
Both front and rear end parts of the heat roller 32 are attached to the side plates 42 of the fixing device main body 31, respectively, via a first bearing 48. Thus, the heat roller 32 is rotatably supported by the fixing device main body 31. The heat roller 32 is rotatable around a rotation axis A extending in the front and rear direction. That is, in the present embodiment, the front and rear direction is a direction of the rotation axis of the heat roller 32.
The pressuring roller 33 is formed in a columnar shape. The pressuring roller 33 includes a core material which has a columnar shape and is made of metal, such as aluminum or iron, an elastic layer which is provided around this core material and is made of a silicon rubber and the like, and a release layer which covers this elastic layer and is made of a fluorine resin, such as PFA. The pressuring roller 33 comes into pressure contact with the heat roller 32 so as to form a fixing nip N between the heat roller 32 and the pressuring roller 33.
At a front end side and a rear end side of the pressuring roller 33, swing members 50 are respectively arranged. Each swing member 50 is swingably supported by the fixing device main body 31. The pressuring roller 33 is rotatably supported by each swing member 50 via a second bearing 51.
As shown in
In an outer face of the main body part 91 of the guide member 35, multiple conveying ribs 94 are arranged in a row at intervals in the front and rear direction. As shown in
As shown in
As shown in
As shown in
The sensor 100 of the detecting mechanism 36 is attached to a rear face (a face at the inside in the front and rear direction) of the attachment member 43. Thus, the sensor 100 is held by the front side plate 42 of the fixing device main body 31 via the attachment member 43.
The sensor 100 of the detecting mechanism 36 includes a light emitting part 102, and a light receiving part 103 arranged at a lower right side of the light emitting part 102 (a lower left side in
The actuator 101 of the detecting mechanism 36 includes a shaft 104 elongated along the front and rear direction, a pressed piece 105 protruding from a rear part (a part at the inside in the front and rear direction) of the shaft 104 to an outer diameter side, and a detected piece 106 protruding from a front end part (an end part at the outside in the front and rear direction) of the shaft 104 to the outer diameter side.
The shaft 104 of the actuator 101 of the detecting mechanism 36 is rotatably attached to the guide member 35 (not shown except for the front boss 93 in
The pressed piece 105 of the actuator 101 of the detecting mechanism 36 is formed in a straight bar shape. The pressed piece 105 is arranged in a minimum passing region (a region through which the sheet with a minimum size passes). As shown in
As shown in
The actuator 101 of the detecting mechanism 36 is swingably arranged between a non-blocking position (see
Next, a control system of the fixing device 23 will be described with reference to
The fixing device 23 includes a control part 111. The control part 111 is connected to a storage part 112 composed of a storage device, such as a ROM or a RAM, and the control part 111 is configured to control each part of the fixing device 23 based on a control program or control data stored in the storage part 112.
The control part 111 is connected to each heater 46, and each heater 46 is powered on based on a signal from the control part 111 and each heater 46 heats the heat roller 32.
The control part 111 is connected to a detecting part 113. The detecting part 113 has a function of detecting opening or closing of the cover 6, and a detection result of the detecting part 113 is outputted to the control part 111.
The control part 111 is connected to the sensor 100 of the detecting mechanism 36, and a detection result of the sensor 100 is outputted to the control part 111.
The control part 111 is connected to a driving source 114 composed of a motor or the like. The driving source 114 is connected to the heat roller 32 via a driving gear 115.
An operation of fixing the toner image on the sheet in the fixing device 23 configured as described above will be described.
To fix the toner image on the sheet, the driving source 114 is rotated. When the driving source 114 is rotated in this way, a rotation of the driving source 114 is transmitted to the heat roller 32 via the driving gear 115, and the heat roller 32 is rotated (see an arrow B in
Further, to fix the toner image on the sheet, each heater 46 is powered on. When each heater 46 is powered on in this way, each heater 46 heats the heat roller 32. When the sheet passes through the fixing nip N in this state, the sheet and the toner image are heated and pressured, so that the toner image is fixed on the sheet.
Next, operation of detecting the sheet by using the detecting mechanism 36 of the fixing device 23 configured as described above will be described.
As shown in
By contrast with this, while the sheet is passing through the fixing device 23, as shown in
Meanwhile, when the sheet has passed through the fixing device 23, as shown in
Thus, the actuator 101 swings between the blocking position and the non-blocking position every time the sheet passes through the fixing device 23. According to this, the detecting mechanism 36 detects sheets.
Next, an operation of performing JAM processing in the fixing device 23 configured as described above will be described.
To perform the JAM processing, the cover 6 is opened first as indicated by the two-dot chain line in
Next, a track of the bent part 108 of the detected piece 106 of the actuator 101 in the fixing device 23 configured as described above will be described.
A region surrounded by a bold line R1 in
A region surrounded by a bold line R2 in
As described above, according to the present embodiment, it is possible to prevent the rotation of the guide member 35 from being blocked by the interference between the bent part 108 of the detected piece 106 and the light emitting part 102 or the light receiving part 103 of the sensor 100 without using a link mechanism. Consequently, it is possible to prevent both of a rise in manufacturing cost of the fixing device 23 caused by introduction of the link mechanism and a sheet detection failure.
Further, each conveying rib 94 of the main body part 91 of the guide member 35 forms a part of the duplex conveying path 28 for performing the duplex printing to the sheet. By applying such a configuration, it is possible to reliably guide the sheet along the duplex conveying path 28.
Further, the sensor 100 is held by the front side plate 42 of the fixing device main body 31 via the attachment member 43. By applying such a configuration, it is possible to arrange the sensor 100 at the outside in the front and rear direction of the heat roller 32, and easily secure an installation space of the sensor 100 compared to a case where the sensor 100 is arranged such that the position of the sensor 100 in the front and rear direction overlaps that of the heat roller 32.
Further, when the sheet presses the pressed piece 105, the actuator 101 is configured to swing around the shaft 104 from the non-blocking position to the blocking position, so that the bent part 108 of the detected piece 106 blocks the light L directed from the light emitting part 102 toward the light receiving part 103. By applying such a configuration, it is possible to simplify the configuration of the actuator 101.
Further, as shown in
In the present embodiment, when the sheet presses the pressed piece 105, the actuator 101 swings from the non-blocking position to the blocking position. In other embodiments, when the sheet presses the pressed piece 105, the actuator 101 may swing from the blocking position to the non-blocking position.
In the present embodiment, the rotation of the driving source 114 is transmitted to the heat roller 32, and the heat roller 32 and the pressuring roller 33 coming into pressure contact with the heat roller 32 are rotated. In other embodiments, the rotation of the driving source 114 may be transmitted to the pressuring roller 33, and the pressuring roller 33 and the heat roller 32 coming into pressure contact with the pressuring roller 33 may be rotated.
In the present embodiment, the heat roller 32 is used as the fixing member. In other embodiments, a fixing belt may be used as the fixing member.
In the present embodiment, a configuration of the present disclosure is applied to the color printer 1. In other embodiments, the configuration of the present disclosure may be applied to another image forming apparatus, such as a monochrome printer, a copying machine, a facsimile, an MFP (multi-function peripheral) or the like.
While the present disclosure has been described with reference to the particular illustrative embodiments, it is not to be restricted by the embodiments. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope and spirit of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2015-166790 | Aug 2015 | JP | national |