This application is based on and claims priority under 35 USC §119 from Japanese Patent Applications No. 2009-42065 filed Feb. 25, 2009, and No. 2009-80574 filed Mar. 27, 2009.
1. Technical Field
The present invention relates to a fixing device and an image forming apparatus.
2. Related Art
Fixing devices using an electromagnetic induction heating system are known as the fixing devices each installed in an image forming apparatus, such as a copy machine and a printer, using an electrophotographic system.
According to an aspect of the present invention, there is provided a fixing device including: a fixing member that includes a conductive layer capable of self-heating by electromagnetic induction; a drive unit that rotationally drives the fixing member; a magnetic field generating member that generates an alternate-current magnetic field intersecting with the conductive layer of the fixing member; a fixation pressing member that is movable so as to come into pressure contact with an outer circumferential surface of the fixing member and to separate from the outer circumferential surface; and a temperature measurement unit that includes a temperature detector and a support portion, that measures temperature of the fixing member with the temperature detector which is pressed by the support portion to be brought into contact with an inner circumferential surface of the fixing member, and that holds a contact state between the temperature detector and the inner circumferential surface of the fixing member in every state where the fixing member is displaced in accordance with movement of the fixation pressing member.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
An exemplary embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
The image formation unit 10 includes four image forming units 11Y, 11M, 11C and 11K (also collectively referred to as an “image forming unit 11”) as examples of a toner image forming unit, which are arranged side by side at certain intervals. Each of the image forming units 11 includes: a photoconductive drum 12 as an example of an image carrier that forms an electrostatic latent image and holds a toner image; a charging device 13 that uniformly charges the surface of the photoconductive drum 12 at a predetermined potential; a light emitting diode (LED) print head 14 that exposes, on the basis of color image data, the photoconductive drum 12 charged by the charging device 13; a developing device 15 that develops the electrostatic latent image formed on the photoconductive drum 12; and a drum cleaner 16 that cleans the surface of the photoconductive drum 12 after the transfer.
The image forming units 11 have almost the same configuration except toner contained in the developing device 15, and form yellow (Y), magenta (M), cyan (C) and black (K) color toner images, respectively.
Further, the image formation unit 10 includes: an intermediate transfer belt 20 onto which multiple layers of color toner images formed on the photoconductive drums 12 of the image forming units 11 are transferred; and primary transfer rolls 21 that sequentially transfer (primarily transfer) color toner images formed in respective image forming units 11 onto the intermediate transfer belt 20. Furthermore, the image formation unit 10 includes: a secondary transfer roll 22 that collectively transfers (secondarily transfers) the color toner images superimposingly transferred onto the intermediate transfer belt 20 onto a sheet P which is a recording medium (recording sheet); and a fixing unit 60 as an example of a fixing unit (a fixing device) that fixes the color toner images having been secondarily transferred, onto the sheet P. Note that, in the image forming apparatus 1 according to the present exemplary embodiment, the intermediate transfer belt 20, the primary transfer rolls 21 and the secondary transfer roll 22 configure a transfer unit.
In the image forming apparatus 1 of the present exemplary embodiment, image formation processing using the following processes is performed under operations controlled by the controller 31. Specifically, image data from the PC 3 or the scanner 4 is received by the communication unit 32, and after the image data is subjected to certain image processing performed by the image processor 33, the image data of each color is generated and sent to a corresponding one of the image forming units 11. Then, in the image forming unit 11K that forms a black-color (K) toner image, for example, the photoconductive drum 12 is uniformly charged by the charging device 13 at the potential set in advance while rotating in a direction of an arrow A, and then is exposed by the LED print head 14 on the basis of the black-color image data transmitted from the image processor 33. Thereby, an electrostatic latent image for the black-color image is formed on the photoconductive drum 12. The black-color electrostatic latent image formed on the photoconductive drum 12 is then developed by the developing device 15. Then, the black-color toner image is formed on the photoconductive drum 12. In the same manner, yellow (Y), magenta (M) and cyan (C) color toner images are formed in the image forming units 11Y, 11M and 11C, respectively.
The color toner images formed on the respective photoconductive drums 12 in the image forming units 11 are electrostatically transferred (primarily transferred), in sequence, onto the intermediate transfer belt 20 that moves in a direction of an arrow B, by the primary transfer rolls 21. Then, superimposed toner images on which the color toner images are superimposed on one another are formed. Then, the superimposed toner images on the intermediate transfer belt 20 are transported to a region (secondary transfer portion T) at which the secondary transfer roll 22 is arranged, along with the movement of the intermediate transfer belt 20. The sheet P is supplied from a sheet holding unit 40 to the secondary transfer portion T at a timing when the superimposed toner images being transported arrive at the secondary transfer portion T. Then, the superimposed toner images are collectively and electrostatically transferred (secondarily transferred) onto the transported sheet P by action of a transfer electric field formed at the secondary transfer portion T by the secondary transfer roll 22.
Thereafter, the sheet P onto which the superimposed toner images are electrostatically transferred is transported toward the fixing unit 60. The toner images on the sheet P transported to the fixing unit 60 are heated and pressurized by the fixing unit 60 and thereby are fixed onto the sheet P. Then, the sheet P including the fixed images formed thereon is transported to a sheet output unit 45 provided at an output portion of the image forming apparatus 1.
Meanwhile, the toner (primary-transfer residual toner) attached to the photoconductive drums 12 after the primary transfer and the toner (secondary-transfer residual toner) attached to the intermediate transfer belt 20 after the secondary transfer are removed by the drum cleaners 16 and a belt cleaner 25, respectively.
In this way, the image formation processing in the image forming apparatus 1 is repeatedly performed for a designated number of print sheets.
Next, a description will be given of the fixing unit 60 in the present exemplary embodiment.
Firstly, as shown in
The fixing unit 60a further includes: a frame (holder) 65 that supports a constituent member such as the pressing pad 63; a temperature-sensitive magnetic member 64 that forms a magnetic path by inducing the AC magnetic field generated at the IH heater 80; an induction member 66 that induces magnetic field lines passing through the temperature-sensitive magnetic member 64; a magnetic path shielding member 73 that prevents the magnetic path from leaking toward the frame 65; a temperature sensor 100 as an example of a temperature measurement unit that is arranged so as to be in contact with the surface of the fixing belt 61 and that measures the temperature of the fixing belt 61; and a peeling assisting member 70 that assists peeling of the sheet P from the fixing belt 61.
The fixing belt 61 is formed of an endless belt member originally formed into a cylindrical shape, and is formed with a diameter of 30 mm and a width-direction length of 370 mm in the original shape (cylindrical shape), for example. In addition, as shown in
The base layer 611 is formed of a heat-resistant sheet-like member that supports the conductive heat-generating layer 612, which is a thin layer, and that gives a mechanical strength to the entire fixing belt 61. Moreover, the base layer 611 is formed of a specified material with a specified thickness. The base layer material has properties (relative permeability, specific resistance) that allow a magnetic field to pass therethrough so that the AC magnetic field generated at the IH heater 80 may act on the temperature-sensitive magnetic member 64. Meanwhile, the base layer 611 itself is formed so as not to generate heat by action of the magnetic field or not to easily generate heat.
Specifically, for example, a non-magnetic metal such as a non-magnetic stainless steel having a thickness of 30 to 200 μm (preferably, 50 to 150 μm), or a resin material or the like having a thickness of 60 to 200 μm is used as the base layer 611.
The conductive heat-generating layer 612 is an example of a conductive layer and is an electromagnetic induction heat-generating layer that is self-heated by electromagnetic induction of the AC magnetic field generated at the IH heater 80. Specifically, the conductive heat-generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes therethrough in the thickness direction.
Normally, an inexpensively manufacturable general-purpose power supply is used as the power supply for an excitation circuit that supplies an AC current to the IH heater 80 (also refer to later described
A region of the conductive heat-generating layer 612, where the AC magnetic field is allowed to enter is defined as a “skin depth (δ)” representing a region where the AC magnetic field attenuates to 1/e. The skin depth (δ) is calculated by use of the following formula (1), where f is a frequency of the AC magnetic field (20 kHz, for example), ρ is a specific resistance value (Ω·m), and μr is a relative permeability.
Accordingly, in order to allow the AC magnetic field having a frequency of 20 kHz to 100 kHz to enter and then to pass through the conductive heat-generating layer 612, the thickness of the conductive heat-generating layer 612 is formed to be smaller than the skin depth (δ) of the conductive heat-generating layer 612, which is defined by the formula (1). In addition, as the material that forms the conductive heat-generating layer 612, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be or Sb, or a metal alloy including at least one of these elements is used, for example.
Specifically, as the conductive heat-generating layer 612, a non-magnetic metal (a paramagnetic material having a relative permeability substantially equal to 1) including Cu or the like, having a thickness of 2 to 20 μm and a specific resistance value not greater than 2.7×10−8 Ω·m is used, for example.
In addition, in view of shortening the period of time required for heating the fixing belt 61 to reach a fixation setting temperature (hereinafter, referred to as a “warm-up time”) as well, the conductive heat-generating layer 612 may be formed of a thin layer.
Next, the elastic layer 613 is formed of a heat-resistant elastic material such as a silicone rubber. The toner image to be held on the sheet P, which is to become the fixation target, is formed of a multi-layer of color toner as powder. For this reason, in order to uniformly supply heat to the entire toner image at a nip portion (fixation pressure applying unit) N, the surface of the fixing belt 61 may particularly be deformed so as to correspond with unevenness of the toner image on the sheet P. In this respect, a silicone rubber having a thickness of 100 to 600 μm and a hardness of 10° to 30° (JIS-A), for example, may be used for the elastic layer 613.
The surface release layer 614 directly contacts with an unfixed toner image held on the sheet P. Accordingly, a material with a high releasing property is used. For example, a PFA (a copolymer of tetrafluoroethylene and perfluoroalkylvinylether) layer, a PTFE (polytetrafluoroethylene) layer or a silicone copolymer layer or a composite layer formed of these layers is used. As to the thickness of the surface release layer 614, if the thickness is too small, no sufficient wear resistance is obtained, hence, reducing the life of the fixing belt 61. On the other hand, if the thickness is too large, the heat capacity of the fixing belt 61 becomes so large that the warm-up time becomes longer. In this respect, the thickness of the surface release layer 614 may be particularly 1 to 50 μm in consideration of the balance between the wear resistance and heat capacity.
The pressing pad 63, which is an example of a pressing member, is formed of an elastic material such as a silicone rubber or fluorine rubber, and is supported by the frame 65 at a position facing the pressing roll 62. Then, the pressing pad 63 is arranged in a state of being pressed by the pressing roll 62 with the fixing belt 61 therebetween, and forms the nip portion N with the pressing roll 62.
In addition, the pressing pad 63 has two different nip pressures set for a pre-nip region 63a on the sheet entering side of the nip portion N (upstream side in the transport direction of the sheet P) and a peeling nip region 63b on the sheet exit side of the nip portion N (downstream side in the transport direction of the sheet P), respectively. Specifically, a surface of the pre-nip region 63a at the pressing roll 62 side is formed into a circular arc shape approximately corresponding with the outer circumferential surface of the pressing roll 62, and the nip portion N, which is uniform and wide, is formed. Moreover, a surface of the peeling nip region 63b at the pressing roll 62 side is formed into a shape so as to be locally pressed with a larger nip pressure from the surface of the pressing roll 62 in order that a curvature radius of the fixing belt 61 passing through the nip portion N of the peeling nip region 63b may be small. Thereby, a curl (down curl) in a direction in which the sheet P is separated from the surface of the fixing belt 61 is formed on the sheet P passing through the peeling nip region 63b, thereby promoting the peeling of the sheet P from the surface of the fixing belt 61.
Note that, in the present exemplary embodiment, the peeling assisting member 70 is arranged at the downstream side of the nip portion N as an assistance unit for the peeling of the sheet P by the pressing pad 63. In the peeling assisting member 70, a peeling baffle 71 is supported by a frame 72 in a state of being positioned to be close to the fixing belt 61 in a direction opposite to the rotational moving direction of the fixing belt 61 (so-called counter direction). Then, the peeling baffle 71 supports the curl portion formed on the sheet P at the exit of the pressing pad 63, thereby preventing the sheet P from moving toward the fixing belt 61.
In the present exemplary embodiment, the temperature-sensitive magnetic member 64 is ferromagnetic within a temperature range not greater than permeability change start temperature. Accordingly, the temperature-sensitive magnetic member 64 starts self-heating by electromagnetic induction heating. The temperature of the fixing belt 61 herein decreases since the fixing belt 61 loses heat when performing fixation. However, the fixing belt 61 may be re-heated by the heat generated by this temperature-sensitive magnetic member 64 along with the heat generated from the fixing belt 61 by the electromagnetic induction heating in the same manner. Accordingly, the temperature of the fixing belt 61 may be promptly increased to the fixation setting temperature.
The temperature-sensitive magnetic member 64 is formed into a circular arc shape corresponding with the inner circumferential surface of the fixing belt 61 and arranged to be in contact with the inner circumferential surface of the fixing belt 61. The reason for arranging the temperature-sensitive magnetic member 64 to be in contact with the fixing belt 61 is to allow the heat generated from the temperature-sensitive magnetic member 64 by electromagnetic induction heating to be easily supplied to the fixing belt 61. In addition, the temperature-sensitive magnetic member 64 is kept at the temperature higher than that of the fixing belt 61 by 20 degrees C. to 30 degrees C. in order to supply heat to the fixing belt 61.
Moreover, the temperature-sensitive magnetic member 64 is formed of a material whose “permeability change start temperature” (refer to later part of the description) at which the permeability of the magnetic properties drastically changes is not less than the fixation setting temperature at which each color toner image starts melting, and whose permeability change start temperature is also set within a temperature range lower than the heat-resistant temperatures of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. Specifically, the temperature-sensitive magnetic member 64 is formed of a material having a property (“temperature-sensitive magnetic property”) that reversibly changes between the ferromagnetic property and the non-magnetic property (paramagnetic property) in a temperature range including the fixation setting temperature. Thus, the temperature-sensitive magnetic member 64 functions as a magnetic path forming member that forms a magnetic path in the temperature-sensitive magnetic member 64 within the temperature range not greater than the permeability change start temperature. Further, within the temperature range not greater than the permeability change start temperature, where the temperature-sensitive magnetic member 64 has the ferromagnetic property, the temperature-sensitive magnetic member 64 induces magnetic field lines generated by the IH heater 80 and going through the fixing belt 61 to the inside thereof, and forms a magnetic path so that the AC magnetic field (magnetic field lines) may pass through the inside of the temperature-sensitive magnetic member 64. Thereby, the temperature-sensitive magnetic member 64 forms a closed magnetic path that internally wraps the fixing belt 61 and an excitation coil 82 (refer to later-described
Note that, the “permeability change start temperature” herein refers to a temperature at which a permeability (permeability measured by JIS C2531, for example) starts decreasing continuously and refers to a temperature point at which the amount of the magnetic flux (the number of magnetic field lines) going through a member such as the temperature-sensitive magnetic member 64 starts to change, for example. Accordingly, the permeability change start temperature is a temperature close to the Curie point, which is a temperature at which the magnetic property is lost, but is a temperature with a concept different from the Curie point.
Examples of the material of the temperature-sensitive magnetic member 64 include a binary magnetism-adjusted steel such as a Fe—Ni alloy (permalloy) or a ternary magnetism-adjusted steel such as a Fe—Ni—Cr alloy whose permeability change start temperature is set within a range of, for example, 140 degrees C. (the fixation setting temperature) to 240 degrees C. For example, the permeability change start temperature may be set around 225 degrees C. by setting the ratios of Fe and Ni at approximately 64% and 36% (atom number ratio), respectively, in a binary magnetism-adjusted steel of Fe—Ni. The aforementioned metal alloys or the like including the permalloy and the magnetism-adjusted steel are suitable for the temperature-sensitive magnetic member 64 since they are excellent in molding property and processability, and a high heat conductivity as well as less expensive costs. Another example of the material includes a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like.
In addition, the temperature-sensitive magnetic member 64 is formed with a thickness smaller than the skin depth δ (refer to the formula (1) described above) with respect to the AC magnetic field (magnetic field lines) generated by the IH heater 80. Specifically, a thickness of approximately 50 to 300 μm is set when a Fe—Ni alloy is used as the material, for example.
The frame 65 that supports the pressing pad 63 is formed of a material having a high rigidity so that the amount of deflection in a state where the pressing pad 63 receives pressing force from the pressing roll 62 may be a certain amount or less. In this manner, the amount of pressure (nip pressure) at the nip portion N in the longitudinal direction is kept uniform. Moreover, since the fixing unit 60a of the present exemplary embodiment employs a configuration in which the fixing belt 61 is self-heated by use of electromagnetic induction, the frame 65 is formed of a material that provides no influence or hardly provides influence to an induction magnetic field, and that is not influenced or is hardly influenced by the induction magnetic field. For example, a heat-resistant resin such as glass mixed PPS (polyphenylene sulfide), or a paramagnetic metal material such as Al, Cu or Ag is used.
In the present exemplary embodiment, the induction member 66 is formed into a circular arc shape corresponding with the inner circumferential surface of the temperature-sensitive magnetic member 64 and arranged to be in contact with the inner circumferential surface of the temperature-sensitive magnetic member 64. Then, when the temperature of the temperature-sensitive magnetic member 64 increases to the permeability change start temperature or higher, the induction member 66 induces the AC magnetic field (magnetic field lines) generated by the IH heater 80 to the inside thereof and forms a state where an eddy current I is easily generated than in the conductive heat-generating layer 612 of the fixing belt 61.
Magnetic field lines H after passing through the temperature-sensitive magnetic member 64 arrive at the induction member 66 and then are induced to the inside thereof. The thickness, material and shape of the induction member 66 are selected for inducing, at this time, most of the magnetic field lines H from the excitation coil 82 to the induction member 66 and suppressing the leak of the magnetic field lines H from the fixing unit 60a. Specifically, the induction member 66 may be formed with a thickness set in advance (1.0 mm, for example) sufficiently larger than the skin depth δ (refer to the formula (1) described above) in order to allow the eddy current I to easily flow. Thereby, even when the eddy current I flows into the induction member 66, the amount of heat generated becomes extremely small. In the present exemplary embodiment, the induction member 66 is formed of aluminum (Al) having an approximately circular arc shape along the shape of the temperature-sensitive magnetic member 64 and with a thickness of 1 mm, and is arranged to be in contact with the inner circumferential surface of the temperature-sensitive magnetic member 64. As another example of the material, Ag or Cu may be particularly used.
Moreover, as described above, the induction member 66 has a function to induce the magnetic field lines having passed through the temperature-sensitive magnetic member 64, but also has a function to diffuse the heat generated at the temperature-sensitive magnetic member 64 as well. In actual fixing operations, the size of the sheet P passing through the fixing unit 60 varies. Therefore, the temperature at a portion where the sheet P has passed, of the fixing belt 61 decreases because of loss of heat due to the fixing onto the sheet P. However, the temperature at a portion other than the portion where the sheet P has passed, of the fixing belt 61 does not decrease much. Accordingly, the temperature distribution on the fixing belt 61 becomes non-uniform. For this reason, the non-uniform temperature distribution of the fixing belt 61 may be promptly cancelled and then made uniform by the induction member 66.
Next, a description will be given of a drive mechanism of the fixing belt 61.
As shown in
Here,
As the material of the end caps 67, so called engineering plastics having a high mechanical strength or heat-resistant properties is used. For example, a phenol resin, polyimide resin, polyamide resin, polyamide-imide resin, PEEK resin, PES resin, PPS resin, LCP resin or the like is suitable.
Then, as shown in
As described above, the fixing belt 61 directly receives the drive force at the both ends of the fixing belt 61 to rotate, thereby rotating stably.
Here, a torque of approximately 0.1 to 0.5 N·m is generally exerted when the fixing belt 61 directly receives the drive force from the end caps 67 at the both ends thereof and then rotates. However, in the fixing belt 61 of the present exemplary embodiment, the base layer 611 is formed of, for example, a non-magnetic stainless steel having a high mechanical strength. Thus, buckling or the like does not easily occur on the fixing belt 61 even when a torsional torque of approximately 0.1 to 0.5 N·m is exerted on the entire fixing belt 61.
In addition, the fixing belt 61 is prevented from inclining or leaning to one direction by the flanges 67d of the end caps 67, but at this time, compressive force of approximately 1 to 5 N is exerted toward the axis direction from the ends (flanges 67d) on the fixing belt 61 in general. However, even in a case where the fixing belt 61 receives such compressive force, the occurrence of buckling or the like is prevented since the base layer 611 of the fixing belt 61 is formed of a non-magnetic stainless steel or the like.
As described above, the fixing belt 61 of the present exemplary embodiment receives the drive force directly at the both ends of the fixing belt 61 to rotate, thereby, rotating stably. In addition, the base layer 611 of the fixing belt 61 is formed of, for example, a non-magnetic stainless steel or the like having a high mechanical strength, hence providing the configuration in which buckling or the like caused by a torsion torque or compressive force does not easily occur in this case. Moreover, the softness and flexibility of the entire fixing belt 61 is obtained by forming the base layer 611 and the conductive heat-generating layer 612 respectively as thin layers, so that the fixing belt 61 is deformed so as to correspond with the nip portion N and recovers to the original shape.
With reference back to
The pressing roll 62 is formed of a multi-layer including: a solid aluminum core (cylindrical core metal) 621 having a diameter of 18 mm, for example; a heat-resistant elastic layer 622 that covers the outer circumferential surface of the core 621, and that is made of silicone sponge having a thickness of 5 mm, for example; and a release layer 623 that is formed of a heat-resistant resin such as PFA containing carbon or the like, or a heat-resistant rubber, having a thickness of 50 μm, for example, and that covers the heat-resistant elastic layer 622. Then, the pressing pad 63 is pressed under a load of 25 kgf for example, by pressing springs 68 (refer to
Next, a description will be given of the IH heater 80 that induces the heat generation of the fixing belt 61 by electromagnetic induction with an action of an AC magnetic field in the conductive heat-generating layer 612 of the fixing belt 61.
The support body 81 is formed into a shape in which the cross section thereof is curved along the shape of the surface of the fixing belt 61, and is formed so as to keep a gap set in advance (0.5 to 2 mm, for example) between an upper surface (supporting surface) 81a that supports the excitation coil 82 and the surface of the fixing belt 61. In addition, examples of the material that forms the support body 81 include a heat-resistant non-magnetic material such as: a heat-resistant glass; a heat-resistant resin including polycarbonate, polyethersulphone or PPS (polyphenylene sulfide); and the heat-resistant resin containing a glass fiber therein.
The excitation coil 82 is formed by winding a litz wire in a closed loop of an oval shape, elliptical shape or rectangular shape having an opening inside, the litz wire being obtained by bundling 90 pieces of mutually isolated copper wires each having a diameter of 0.17 mm, for example. Then, when an AC current having a frequency set in advance is supplied from the excitation circuit 88 to the excitation coil 82, an AC magnetic field on the litz wire wound in a closed loop shape as the center is generated around the excitation coil 82. In general, a frequency of 20 kHz to 100 kHz, which is generated by the aforementioned general-purpose power supply, is used for the frequency of the AC current supplied to the excitation coil 82 from the excitation circuit 88.
As the material of the magnetic core 84, a ferromagnetic material, formed of an oxide or alloy material with a high permeability, such as a soft ferrite, a ferrite resin, a non-crystalline alloy (amorphous alloy), permalloy or a magnetism-adjusted steel is used. The magnetic core 84 functions as a magnetic path unit. The magnetic core 84 induces, to the inside thereof, the magnetic field lines (magnetic flux) of the AC magnetic field generated at the excitation coil 82, and forms a path (magnetic path) of the magnetic field lines in which the magnetic field lines from the magnetic core 84 run across the fixing belt 61 to be directed to the temperature-sensitive magnetic member 64, then pass through the inside of the temperature-sensitive magnetic member 64, and return to the magnetic core 84. Specifically, a configuration in which the AC magnetic field generated at the excitation coil 82 passes through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64 is employed, and thereby, a closed magnetic path where the magnetic field lines internally wrap the fixing belt 61 and the excitation coil 82 is formed. Thereby, the magnetic field lines of the AC magnetic field generated at the excitation coil 82 are concentrated at a region of the fixing belt 61, which faces the magnetic core 84.
Here, the material of the magnetic core 84 may be one that has a small amount of loss due to the forming of the magnetic path. Specifically, the magnetic core 84 may be particularly used in a form that reduces the amount of eddy-current loss (shielding or dividing of the electric current path by having a slit or the like, or bundling of thin plates, or the like). In addition, the magnetic core 84 may be particularly formed of a material having a small hysteresis loss.
The length of the magnetic core 84 along the rotation direction of the fixing belt 61 is formed so as to be shorter than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the amount of leakage of the magnetic field lines toward the periphery of the IH heater 80 is reduced, resulting in improvement in the power factor. Moreover, the electromagnetic induction toward the metal materials forming the fixing unit is also suppressed and the heat-generating efficiency at the fixing belt 61 (conductive heat-generating layer 612) increases.
<Description of a State in which Fixing Belt Generates Heat>
Next, a description will be given of a state in which the fixing belt 61 generates heat by use of the AC magnetic field generated by the IH heater 80.
Firstly, as described above, the permeability change start temperature of the temperature-sensitive magnetic member 64 is set within a temperature range (140 to 240 degrees C., for example) where the temperature is not less than the fixation setting temperature for fixing color toner images and not greater than the heat-resistant temperature of the fixing belt 61. Then, when the temperature of the fixing belt 61 is not greater than the permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 near the fixing belt 61 corresponds to the temperature of the fixing belt 61 and then becomes equal to or lower than the permeability change start temperature. For this reason, the temperature-sensitive magnetic member 64 has a ferromagnetic property at this time, and thus, the magnetic field lines H of the AC magnetic field generated by the IH heater 80 form a magnetic path where the magnetic field lines H go through the fixing belt 61 and thereafter, pass through the inside of the temperature-sensitive magnetic member 64 along a spreading direction. Here, the “spreading direction” refers to a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.
Specifically, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through regions R1 and R2 where the magnetic field lines H run across the conductive heat-generating layer 612 of the fixing belt 61, the magnetic field lines H are induced to the inside of the temperature-sensitive magnetic member 64, which is a ferromagnetic member. For this reason, the magnetic field lines H running across the conductive heat-generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64. Accordingly, the magnetic flux density becomes high in the regions R1 and R2. In addition, in a case where the magnetic field lines H passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84, in a region R3 where the magnetic field lines H run across the conductive heat-generating layer 612 in the thickness direction, the magnetic field lines H are generated toward the magnetic core 84 in a concentrated manner from a portion, where the magnetic potential is low, of the temperature-sensitive magnetic member 64. For this reason, the magnetic field lines H running across the conductive heat-generating layer 612 of the fixing belt 61 in the thickness direction move from the temperature-sensitive magnetic member 64 toward the magnetic core 84 in a concentrated manner, so that the magnetic flux density in the region R3 becomes high as well.
In the conductive heat-generating layer 612 of the fixing belt 61 which the magnetic field lines H run across in the thickness direction, the eddy current I proportional to the amount of change in the number of the magnetic field lines H per unit area (magnetic flux density) is generated. Thereby, as shown in
As described above, in a case where the temperature of the fixing belt 61 is within the temperature range not greater than the permeability change start temperature, a large amount of heat is generated in the regions R1, R2 and R3 where the magnetic field lines H run across the conductive heat-generating layer 612, and thereby the fixing belt 61 is heated.
Incidentally, in the fixing unit 60a of the present exemplary embodiment, the temperature-sensitive magnetic member 64 is arranged at the inner circumferential surface side of the fixing belt 61 while arranged to be in contact with the fixing belt 61, thereby, providing the configuration in which the magnetic core 84 inducing the magnetic field lines H generated at the excitation coil 82 to the inside thereof, and the temperature-sensitive magnetic member 64 inducing the magnetic field lines H running across and going through the fixing belt 61 in the thickness direction are arranged to be close to each other. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop of a short magnetic path, so that the magnetic flux density and the degree of magnetic coupling in the magnetic path increase. Thereby, heat is more efficiently generated in the fixing belt 61 in a case where the temperature of the fixing belt 61 is within the temperature range not greater than the permeability change start temperature.
Next, a description will be given of a function for suppressing an increase in the temperature of a non-sheet passing portion of the fixing belt 61.
Firstly, a description will be given herein of a case where sheets P of a small size (small size sheets P1) are successively inserted into the fixing unit 60a.
As shown in
In this respect, as described above, in the fixing unit 60a of the present exemplary embodiment, the temperature-sensitive magnetic member 64 is formed of, for example, a Fe—Ni alloy or the like whose permeability change start temperature is set within a temperature range not less than the fixation setting temperature and not greater than the heat-resistant temperature of the elastic layer 613 or the surface release layer 614 of the fixing belt 61. Specifically, as shown in
Thus, when the small size sheets P1 are successively inserted into the fixing unit 60, the temperature of the non-sheet passing regions Fb of the fixing belt 61 exceeds the permeability change start temperature of the temperature-sensitive magnetic member 64. Accordingly, the temperature of the temperature-sensitive magnetic member 64 near the fixing belt 61 at the non-sheet passing regions Fb also exceeds the permeability change start temperature in response to the temperature of the fixing belt 61 as in the case of the fixing belt 61. For this reason, the relative permeability of the temperature-sensitive magnetic member 64 at the non-sheet passing regions Fb becomes close to 1, so that the temperature-sensitive magnetic member 64 at the non-sheet passing regions Fb loses ferromagnetic properties. Since the relative permeability of the temperature-sensitive magnetic member 64 decreases and becomes closer to 1, the magnetic field lines H at the non-sheet passing regions Fb are no longer induced to the inside of the temperature-sensitive magnetic member 64, and start going through the temperature-sensitive magnetic member 64. For this reason, in the fixing belt 61 at the non-sheet passing regions Fb, the magnetic field lines H spread after passing through the conductive heat-generating layer 612, hence leading to a decrease in the density of magnetic flux of the magnetic field lines H running across the conductive heat-generating layer 612. Thereby, the amount of an eddy current I generated at the conductive heat-generating layer 612 decreases, and then, the amount of heat (Joule heat W) generated at the fixing belt 61 decreases. As a result, an excessive increase in the temperature at the non-sheet passing regions Fb is suppressed, and the fixing belt 61 is prevented from being damaged.
As described above, the temperature-sensitive magnetic member 64 functions as a detector that detects the temperature of the fixing belt 61 and also functions as a temperature increase suppresser that suppresses an excessive increase in the temperature of the fixing belt 61 in accordance with the detected temperature of the fixing belt 61, at a time.
The magnetic field lines H passing through the temperature-sensitive magnetic member 64 arrive at the induction member 66 (refer to
At this time, the thickness, material and shape of the induction member 66 are selected in order that the induction member 66 may induce most of the magnetic field lines H from the excitation coil 82 and the magnetic field lines H may be prevented from leaking from the fixing unit 60a. Specifically, the induction member 66 is formed of a material having a sufficiently large thickness of the skin depth 5. Thereby, even when the eddy current I flows into the induction member 66, the amount of heat to be generated is extremely small. In the present exemplary embodiment, the induction member 66 is formed of Al (aluminum), with a thickness of 1 mm, of a substantially circular arc shape along the temperature-sensitive magnetic member 64. The induction member 66 is also arranged so as not to be in contact with the temperature-sensitive magnetic member 64 (average distance therebetween is 4 mm, for example). As another example of the material, Ag or Cu may be particularly used.
Incidentally, when the temperature of the fixing belt 61 at the non-sheet passing regions Fb becomes lower than the permeability change start temperature of the temperature-sensitive magnetic member 64, the temperature of the temperature-sensitive magnetic member 64 at the non-sheet passing regions Fb also becomes lower than the permeability change start temperature thereof. For this reason, the temperature-sensitive magnetic member 64 becomes ferromagnetic again, and the magnetic field lines H are induced to the inside of the temperature-sensitive magnetic member 64. Thus, a large amount of the eddy current I flows into the conductive heat-generating layer 612. For this reason, the fixing belt 61 is again heated.
Specifically, at the regions R1 and R2 where the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and then run across the conductive heat-generating layer 612 of the fixing belt 61, since the magnetic field lines H are not easily induced to the temperature-sensitive magnetic member 64, the magnetic field lines H radially spread. Accordingly, the density of the magnetic flux (the number of the magnetic field lines H per unit area) of the magnetic field lines H running across the conductive heat-generating layer 612 of the fixing belt 61 in the thickness direction decreases. In addition, at the region R3 where the magnetic field lines H run across the conductive heat-generating layer 612 in the thickness direction when returning to the magnetic core 84 again, the magnetic field lines H return to the magnetic core 84 from the wide region where the magnetic field lines H spread, so that the density of the magnetic flux of the magnetic field lines H running across the conductive heat-generating layer 612 of the fixing belt 61 in the thickness direction decreases.
For this reason, when the temperature of the fixing belt 61 is within the temperature range exceeding the permeability change start temperature, the density of the magnetic flux of the magnetic field lines H running across the conductive heat-generating layer 612 in the thickness direction at the regions R1, R2 and R3 decreases. Accordingly, the amount of the eddy current I generated in the conductive heat-generating layer 612 where the magnetic field lines H run across in the thickness direction decreases, and the Joule heat W generated at the fixing belt 61 decreases. Therefore, the temperature of the fixing belt 61 decreases.
As described above, when the temperature of the fixing belt 61 at the non-sheet passing regions Fb is within a temperature range not less than the permeability change start temperature, the magnetic field lines H are not easily induced to the inside of the temperature-sensitive magnetic member 64 at the non-sheet passing regions Fb. Thus, the magnetic field lines H of the AC magnetic field generated by the excitation coil 82 spread and run across the conductive heat-generating layer 612 of the fixing belt 61 in the thickness direction. Accordingly, the magnetic path of the AC magnetic field generated by the excitation coil 82 forms a long loop, so that the density of magnetic flux in the magnetic path in which the magnetic field lines H pass through the conductive heat-generating layer 612 of the fixing belt 61 decreases.
Thereby, at the non-sheet passing regions Fb where the temperature thereof increases, for example, when the small size sheets P1 are successively inserted into the fixing unit 60, the amount of the eddy current I generated at the conductive heat-generating layer 612 of the fixing belt 61 decreases, and the amount of heat (Joule heat W) generated at the non-sheet passing regions Fb of the fixing belt 61 decreases. As a result, an excessive increase in the temperature of the non-sheet passing regions Fb is suppressed.
In order for the temperature-sensitive magnetic member 64 to satisfy the aforementioned function to suppress an excessive increase in the temperature at the non-sheet passing regions Fb, the temperature of each region of the temperature-sensitive magnetic member 64 in the longitudinal direction needs to change in accordance with the temperature of each region of the fixing belt 61 in the longitudinal direction, which faces each region of the temperature-sensitive magnetic member 64 in the longitudinal direction, to satisfy the aforementioned function as a detector that detects the temperature of the fixing belt 61.
For this reason, as the configuration of the temperature-sensitive magnetic member 64, a configuration in which the temperature-sensitive magnetic member 64 is not easily subjected to induction heating by the magnetic field lines H is employed. Specifically, even when the temperature-sensitive magnetic member 64 is in a state of being ferromagnetic since the temperature of the fixing belt is not greater than the permeability change start temperature, some of the magnetic field lines H that run across the temperature-sensitive magnetic member 64 in the thickness direction still exist in the magnetic field lines H from the IH heater 80. Thus, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, so that a small amount of heat is generated in the temperature-sensitive magnetic member 64 as well. For this reason, for example, in a case where a huge amount of image formation is successively performed, the heat is accumulated in the temperature-sensitive magnetic member 64, and the temperature of the temperature-sensitive magnetic member 64 at the sheet passing region (refer to
With this respect, firstly, a material having properties (specific resistance and permeability) not easily subjected to induction heating by the magnetic field lines H is selected as the material of the temperature-sensitive magnetic member 64 for the purpose of reducing an eddy current loss or hysteresis loss in the temperature-sensitive magnetic member 64.
Secondly, the thickness of the temperature-sensitive magnetic member 64 is formed to be larger than the skin depth δ in the state where the temperature-sensitive magnetic member 64 is ferromagnetic, in order that the magnetic field lines H may not easily run across the temperature-sensitive magnetic member 64 in the thickness direction when the temperature of the temperature-sensitive magnetic member 64 is at least within the temperature range not greater than the permeability change start temperature.
Thirdly, multiple slits 64s each dividing the flow of the eddy current I generated by the magnetic field lines H are formed in the temperature-sensitive magnetic member 64 (refer to
Note that, the slits 64s are formed in the direction orthogonal to the direction of the flow of the eddy current I in the temperature-sensitive magnetic member 64 exemplified in
In addition, slits may be formed in the temperature-sensitive magnetic member 64 in a way that the temperature-sensitive magnetic member 64 is divided into a group of small pieces by the slits with an inclination angle of each slit being the maximum. The effects of the present invention may be obtained in this configuration as well.
With reference back to
[Description of Moving Mechanism of Pressing Roll]
Accordingly, in order to prevent the occurrence of the aforementioned case, a moving mechanism not shown in the figure is provided to the pressing roll 62, and an operation to separate the pressing roll 62 from the fixing belt 61 is performed during a period other than when fixation is performed. Specifically, when fixation is performed, the pressing roll 62 is brought into contact with and pressed against an outer circumferential surface of the fixing belt 61 and forms the nip portion N for inserting a recording medium P holding an unfixed toner image thereon between the pressing roll 62 and the fixing belt 61. On the other hand, when fixation is not performed, the pressing roll 62 moves so as to separate from the fixing belt 61.
As shown in
Note that, when fixation is performed, the pressing roll 62 may be brought into contact with the fixing belt 61 again by the moving mechanism, and return to the position to form the nip portion N as described in
Here, in the state where the pressing roll 62 is separated from the fixing belt 61 as shown in
In order to prevent the fixing belt 61 from being broken in the above described manner, it is conceivable to move and arrange the position of the temperature-sensitive magnetic member 64 to a lower position in
In this respect, an elastic member 74 is provided in the present exemplary embodiment, and the state in which the temperature-sensitive magnetic member 64 and the fixing belt 61 are in contact with each other is kept by pressing the temperature-sensitive magnetic member 64 against the fixing belt 61 with the pressing effect exerted by this elastic member 74, thereby, addressing this problem.
Hereinafter, a description will be given of the elastic member 74 and the effects thereof in more details.
As shown in
In this configuration, since the magnetic path shielding member 73 is formed of aluminum or the like and is elastic, the edge 78 is vertically movable with respect to the edge 77 as the supporting point. In addition, the elastic member 74 generates force in a Y1 direction, which is an upper direction when viewed in
Moreover, since the state in which the fixing belt 61, the temperature-sensitive magnetic member 64 and the induction member 66 are mutually in contact with one another is kept, the heat does not easily spread outside. Accordingly, the temperatures of the fixing belt 61, the temperature-sensitive magnetic member 64 and the induction member 66 do not easily change even when the fixing operation is not performed. For this reason, with this point as well, not only the fixing operation is started promptly, but also energy saving is achievable. Moreover, a stable operation of the fixing unit 60a is achieved, hence providing the image forming apparatus 1 (refer to
Note that, the elastic member 74 is not limited to any particular member, and a plate spring, coil spring or the like may be used as the elastic member 74. However, a coil spring may be particularly used since coil springs are easily assembled, and allow freedom in design. In addition, the attached position of the elastic member 74 is not limited to any particular position as long as the position allows the elastic member 74 to press the temperature-sensitive magnetic member 64 and the induction member 66 toward the fixing belt 61. Note that, it is at the downstream side in the rotational direction of the fixing belt 61 that the shape of the fixing belt 61 is likely to change when the pressing roll 62 is separated from the fixing belt 61 by the aforementioned moving mechanism. In addition, for preventing the fixing belt 61 from being broken by the aforementioned edge 75 on the downstream side of the temperature-sensitive magnetic member 64, the elastic member 74 may be particularly arranged at the edge 75 of the temperature-sensitive magnetic member 64 or a position adjacent to the edge 75 on the downstream side thereof in the rotational direction of the fixing belt 61.
In addition, in the aforementioned example, the edge 77, which is one edge of the magnetic path shielding member 73, is secured. However, the present exemplary embodiment is not limited to a case where the edge 77 is completely secured by adhesion, welding, screw fastening or the like, but includes a case where the edge 77 is secured by fitting or the like with some margin. In this case, the assembly is likely to be easier.
In the example shown in
Next, a description will be given of the temperature sensor 100 in detail.
The temperature sensor 100 exemplified in
As a thermistor used as the temperature detector 101, the following various thermistors are usable: a negative temperature coefficient (NTC) thermistor whose resistance decreases according to a temperature increase; a positive temperature coefficient (PTC) thermistor whose resistance increases according to a temperature increase; and a critical temperature resistor (CTR) thermistor whose resistance decreases according to a temperature increase but whose sensitivity increases within a specific temperature range. However, the NTC thermistor may be particularly used since the NTC thermistor has a proportional relationship between changes in temperature and resistance, and is suitable for detecting temperature. Examples of the NTC thermistor include a sintered body obtained by mixing and sintering oxides such as oxides of nickel, manganese, cobalt, and iron.
In the present exemplary embodiment, the support portion 102 is attached to the fixing holder 79. The support portion 102 is made of a flexible sheet-like elastic body. The temperature detector 101 of the temperature sensor 100 is in contact with an inner circumferential surface of the fixing belt 61 by the support portion 102, which presses the temperature detector 101, and this contact state is maintained by the support portion 102. In this manner, the temperature of the fixing belt 61 is measured. The support portion 102 may be made of a heat-resistant resin film, for example. In addition, two lead wires (not shown in the figure) connected to the temperature detector 101 are embedded in the support portion 102. The two lead wires are connected to each other via the temperature detector 101. The temperature of the fixing belt 61 is made to be measurable by causing an electric current to flow through the lead wires, and by monitoring the resistance of the temperature detector 101.
Here, in order to accurately measure the temperature of the fixing belt 61, it is necessary to maintain a state where the temperature detector 101 of the temperature sensor 100 and the inner circumferential surface of the fixing belt 61 are not easily separated from each other. In other words, it is necessary to maintain the state where the temperature detector 101 of the temperature sensor 100 and the inner circumferential surface of the fixing belt 61 are in contact with each other.
For this reason, the temperature sensor 100 shown in
In the fixing unit 60a of the present exemplary embodiment, the state where the fixing belt 61, the temperature-sensitive magnetic member 64 and the induction member 66 are mutually in contact with each other is maintained by the elastic member 74 as described above, so that the temperature detector 101 of the temperature sensor 100 and the inner circumferential surface of the fixing belt 61 are not relatively easy to be separated from each other. However, in the present exemplary embodiment, in order to further make the temperature detector 101 and the inner circumferential surface of the fixing belt 61 difficult to be separated from each other, and to maintain the contact state therebetween, the position where the temperature sensor 100 is arranged is selected.
Firstly, the arrangement position of the temperature sensor 100 may be adjacent to the one edge of the temperature-sensitive magnetic member 64 at a side where the sheet P exits, which is the upstream side in the rotation direction of the fixing belt 61. This portion corresponds to a region near the one edge 77 of the magnetic path shielding member 73 in
Moreover, this edge 77 is secured in the manner described above. On the other hand, at a region near the elastic member 74, which is the region at the downstream side in the rotation direction of the fixing belt 61, that is, the sheet entering side, components located around the elastic member 74 move by action of the elastic member 74 in a vertical direction viewed in
In other words, the temperature sensor 100 is to be arranged at a position where the contact state between the temperature detector 101 and the inner circumferential surface of the fixing belt 61 is easily maintained in every state where the fixing belt 61 is displaced in accordance with the moving of the pressing roll 62. It is the position where the amount of displacement of the fixing belt 61 is likely to become within a movable range of the support portion 102 of the temperature sensor 100. Moreover, it is the position where the contact state between the temperature detector 101 of the temperature sensor 100 and the fixing belt 61 is easily maintained by a pressing force within a range set in advance.
In
Note that, the fixing unit to which the present exemplary embodiment is applicable is not limited to the fixing unit 60a shown in
As compared with the fixing unit 60a shown in
The pressing roll 62 also includes the moving mechanism in this fixing unit 60b. Specifically, the pressing roll 62 performs operations to press the fixing belt 61 when fixation is performed and to separate from the fixing belt 61 during a period other than the time when the fixation is performed.
Here,
In
As seen from
In addition, in a state where the pressing roll 62 is caused to press the fixing belt 61, the temperature sensor 100 may be arranged at a position where the fixing belt 61 is displaced in a direction that the fixing belt 61 is concavely compressed. In this case, since the temperature detector 101 of the temperature sensor 100 and the inner circumferential surface of the fixing belt 61 are closer to each other, they are not easily separated, and the contact state therebetween is easily maintained. Although it is not shown in the figure, in the state where the pressing roll 62 is caused to press the fixing belt 61, the portions where the fixing belt 61 is displaced in a direction to be concavely compressed are two portions [4] and [5].
For the reasons described above, the temperature sensor 100 is to be attached to a position where the shape of the fixing belt 61 forms a concave shape in the rotation surface of the fixing belt 61 as compared to the circular shape before and after the movement of the pressing roll 62.
Specifically, the portion that satisfies this requirement is the portion [5]. Accordingly, the temperature sensor 100 is to be arranged at this portion [5] or a position adjacent to this portion in the rotation surface of the fixing belt 61. The position of the portion [5] herein is the position where the temperature sensor 100 is actually arranged in
Here, the horizontal axis indicates the positions in the axis direction of the fixing belt 61 and distances from the center part of the fixing belt 61 are indicated with a unit of mm when the center part thereof is set as zero (0). The vertical axis indicates the amount of displacement in the rotational axis direction of the fixing belt 61 with a unit of μm. Note that, the amount of displacement greater than zero (0) indicates that the particular point is displaced outward, that is, the particular point is displaced in a convex direction, and the amount of displacement smaller than zero (0) indicates that the point is displaced inward, that is, the point is displaced in a concave direction.
As seen from
Next, a description will be given of a temperature control of the fixing belt 61.
The electromagnetic induction heating controller 120 provided in the controller 31 includes: a CPU 160 that is a control circuit; an excessive temperature detection circuit 162 that detects a change in the temperature of the fixing belt 61; OR circuits 164 and 165 each of which is a logic device; and an AND circuit 170.
The excitation circuit 88 of the IH heater 80 includes: a CPU 158 that is a control circuit; a relay 153 that is used for inputting (connecting) or blocking an electric power from an external commercial power supply 180; and a photocoupler 156 that transmits and receives signals to and from the electromagnetic induction heating controller 120. The excitation circuit 88 of the IH heater 80 further includes: an AND circuit 154 that is a logic device; a high frequency switching circuit 152 that is a high frequency generating circuit; output ports 150 each of which outputs an electric power to the excitation coil 82; and input ports 151 each of which receives an electric power from the external commercial power supply 180.
To being with, the CPU 160 of the electromagnetic induction heating controller 120 includes a temperature control circuit that controls the temperature of the fixing belt 61. Specifically, the CPU 160 outputs various types of control signals on the basis of temperature detection signals from temperature detectors (thermistors) 101a and 101b each being as an example of a temperature detection member that detects the temperature of the fixing belt 61, the control signals controlling the temperature of the fixing belt 61.
Specifically, in accordance with presence or absence of an error signal from the excitation circuit 88, and the surface temperature of the fixing belt 61 or the like, the CPU 160 outputs, to the AND circuit 170, a permission signal that permits supply of a high frequency electric current to the excitation coil 82 from the high frequency switching circuit 152 provided on the excitation circuit 88. On the basis of a control signal from the excessive temperature detection circuit 162 and the permission signal from the CPU 160, the AND circuit 170 outputs a signal (1H ON/OFF signal) that controls ON/OFF of the IH heater 80 to the excitation circuit 88.
The CPU 160 also outputs an electric power setting signal to the excitation circuit 88 on the basis of temperature detection signals from the temperature detectors 101a and 101b (primarily from the temperature detector 101a). The CPU 160 also outputs an abnormal signal indicating an abnormal state to the OR circuit 164 in a case where the surface temperature of the fixing belt 61 increases and exceeds the defined value with reference to the current operation state of the fixing unit 60c.
The CPU 160 also outputs, to the OR circuit 165, a signal (relay ON/OFF signal) that controls ON/OFF of the relay 153 provided in the excitation circuit 88.
The excessive temperature detection circuit 162 of the electromagnetic induction heating controller 120 detects a change in the surface temperature of the fixing belt 61 from the surface temperature of the fixing belt 61 detected by the temperature detector 101b arranged at a position at an end side of the fixing belt 61. When the amount of the change in the surface temperature of the fixing belt 61 is within a range set in advance, the excessive temperature detection circuit 162 outputs a normal signal to the CPU 160, the AND circuit 170 and the OR circuit 164, the normal signal indicating that the surface temperature of the fixing belt 61 is in a normal state. On the other hand, when the amount of the change in the surface temperature of the fixing belt 61 exceeds the range set in advance, the excessive temperature detection circuit 162 outputs an abnormal signal to the CPU 160, the AND circuit 170 and the OR circuit 164, the abnormal signal indicating that the surface temperature of the fixing belt 61 is in an abnormal state.
Next, the AND circuit 170 is configured so as to output the IH ON/OFF signal to the excitation circuit 88 in a case where the permission signal from the CPU 160 and the normal signal from the excessive temperature detection circuit 162 are supplied thereto.
In addition, the OR circuit 164 generates a drive signal on the basis of the abnormal signal from the CPU 160 and the abnormal signal from the excessive temperature detection circuit 162, the drive signal driving the relay 153 of the excitation circuit 88. The OR circuit 164 causes the relay 153 to open and close by controlling a semiconductor switch device 166 provided in the electromagnetic induction heating controller 120. A DC power supply line 181 (5V, for example) and a thermo switch 110 configured of a thermostat, a temperature fuse and the like are connected to the relay 153. Specifically, the OR circuit 164 outputs, via the OR circuit 165, a signal that blocks the semiconductor switch device 166 when receiving at least any one of the abnormal signal from the CPU 160 and the abnormal signal from the excessive temperature detection circuit 162. In this case, the electric current that flows from the DC power source line 181 to the excitation coil 153a arranged on the relay 153 is blocked, and the relay 153 is blocked. Thereby, the power supply from the external commercial power supply 180 to the excitation circuit 88 stops. At this time, simultaneously, the CPU 160 of the electromagnetic induction heating controller 120 directly causes the supply of a high frequency electric current to the excitation coil 82 to stop by controlling the high frequency switching circuit 152 of the excitation circuit 88 without involving the CPU 158.
In a case where the temperature of the fixing belt 61 increases to an abnormal high temperature, and then, the thermo switch 110 as an example of a blocking member is disconnected, the electric current that flows from the DC power supply line 181 through the excitation coil 153a arranged on the relay 153 is blocked, and the relay 153 is blocked as well.
The photocoupler 156 provided on the excitation circuit 88 transmits and receives signals from and to the electromagnetic induction heating controller 120. Specifically, a power setting signal is supplied to the photocoupler 156 from the CPU 160 of the electromagnetic induction heating controller 120 via a signal line. Moreover, the IH ON/OFF signal is supplied to the photocoupler 156 from the AND circuit 170 connected to the CPU 160. Meanwhile, the photocoupler 156 outputs an error signal from the CPU 158 of the excitation circuit 88 to the CPU 160 of the electromagnetic induction heating controller 120 via a signal line.
The photocoupler 156 then outputs the supplied power setting signal to the CPU 158 of the excitation circuit 88. The photocoupler 156 also outputs the supplied IH ON/OFF signal to the CPU 158 and the AND circuit 154.
The CPU 158 provided on the excitation circuit 88 controls driving of the high frequency switching circuit 152.
Specifically, the CPU 158 drives and controls the high frequency switching circuit 152 on the basis of the power setting signal supplied from the CPU 160 of the electromagnetic induction heating controller 120. The CPU 158 determines various errors occurring in the IH heater 80, then generates an error signal, and outputs the error signal to the CPU 160 of the electromagnetic induction heating controller 120.
In a case where no error or the like occurs in the IH heater 80, the CPU 158 outputs an IH ON/OFF signal to the AND circuit 154 on the basis of the IH ON/OFF signal supplied from the photocoupler 156. In a case where the IH ON/OFF signal from the CPU 158 of the excitation circuit 88 and the IH ON/OFF signal from the photocoupler 156 are supplied at the same time, the AND circuit 154 outputs the IH ON/OFF signal to the high frequency switching circuit 152.
The high frequency switching circuit 152 provided on the excitation circuit 88 applies an electric power set by the CPU 158 to the excitation coil 82 via the output ports 150, in a case where the IH ON/OFF signal from the AND circuit 154 is supplied thereto.
Meanwhile, the input ports 151 to which an electric power is inputted from the external commercial power supply 180 are supplied with an AC voltage via the relay 153 and a noise filter (not shown in the figure). The AC voltage to be supplied via the input ports 151 is supplied to each component of the excitation circuit 88.
Note that, any one of the input ports 151 is provided with a fuse (not shown in the figure) and blocks supply of an electric power at the time of an abnormal state. In addition, a rectification circuit and a constant-voltage circuit are provided on the excitation circuit 88 although these components are not shown in the figure. The rectification circuit rectifies the voltage of the external commercial power supply 180. The constant-voltage circuit adjusts the output voltage of this rectification circuit to be at a constant level suitable for the operation of the CPU 158 and then outputs the adjusted output voltage.
Next, a description will be given of an arrangement configuration of the temperature detectors 101a and 101b used for controlling the temperature of the fixing belt 61.
As described above, the fixing belt 61 rotationally moves in the circumferential direction thereof while maintaining the cross sectional shape at the both ends in a circular shape by the end caps 67 (refer to
For this reason, in the present exemplary embodiment, the temperature detectors 101a and 101b each detecting the temperature of the fixing belt 61 are arranged at the downstream region following the peeling nip region 63b where the fixing belt 61 passes through, which is an upstream of a region where the fixing belt 61 is heated again, in the circumferential direction of the fixing belt 61. At this region, the tensile force toward the temperature-sensitive magnetic member 64 is applied to the fixing belt 61. The temperature detectors 101a and 101b are arranged so as to press the fixing belt 61 outwardly (toward the opposite side of the temperature-sensitive magnetic member 64) from the inner circumferential surface of the fixing belt 61. Thereby, the temperature detectors 101a and 101b are set so as to increase the adhesiveness with the fixing belt 61 by the tensile force toward the temperature-sensitive magnetic member 64, which is applied to the fixing belt 61, and the pressing force to press the fixing belt 61 from the temperature-sensitive magnetic member 64 side, which is applied to the temperature detectors 101a and 101b. When the adhesiveness between the fixing belt 61 and the temperature detectors 101a and 101b increases, accuracy in the detection of temperature of the fixing belt 61 by the temperature detectors 101a and 101b improves.
Specifically, the temperature detectors 101a and 101b are secured onto the frame 65 by support units 103a and 103b, respectively, and are pressed by support portions (biasing portions) 102a and 102b against the inner circumferential side of the fixing belt 61, respectively.
Next, a description will be given of an arrangement configuration of the thermo switch 110.
As described above, the tensile force Ft toward the temperature-sensitive magnetic member 64 is applied to the fixing belt 61 at the region R, which is the downstream region following the peeling nip region 63b where the fixing belt 61 passes through, and which is the upstream of the region where the fixing belt 61 is heated again. For this reason, the temperature-sensitive magnetic member 64 located at the region R is the component to which the fixing belt 61 passes through a position most closely among the components arranged at the inner side of the fixing belt 61, except the nip portion N. Accordingly, in a case where the temperature of the fixing belt 61 increases to an abnormally high temperature that causes the thermo switch 110 to be disconnected, and the fixing belt 61 shrinks, the fixing belt 61 is brought into contact with the temperature-sensitive magnetic member 64 located at the region R at an early stage. In particular, the region where the temperature-sensitive magnetic member 64 is arranged is the region where the fixing belt 61 is heated, so that, as compared with other regions, a large temperature increase occurs at this region. Accordingly, when the fixing belt 61 shrinks, there is a high possibility that the fixing belt 61 is initially brought into contact with the temperature-sensitive magnetic member 64 located at the region R.
In this respect, in the present exemplary embodiment, the thermo switch 110, which is disconnected when the temperature of the fixing belt 61 increases to an abnormally high temperature, is arranged at the region, which is the downstream region following the peeling nip region 63b where the fixing belt 61 passes through, and which is the upstream of the region where the fixing belt 61 is heated again, in the circumferential direction of the fixing belt 61. Moreover, at this time, the surface of the thermo switch 110 is set so as to further protrude toward the fixing belt 61 than the surface position 64a of the temperature-sensitive magnetic member 64 in order that the thermo switch 110 may be surely brought into contact with the shrunk fixing belt 61.
As shown in
As described above, in the case where the temperature of the fixing belt 61 increases to an abnormally high temperature that causes the thermo switch 110 to be disconnected, and the fixing belt 61 shrinks, the fixing belt 61 is brought into contact with the temperature-sensitive magnetic member 64 located at the region R at an early stage, in the circumferential direction of the fixing belt 61. In this case, at the region M1 where the temperature detectors 101a and 101b are arranged, the temperature detectors 101a and 101b are arranged so as to press the fixing belt 61 outwardly (toward the opposite side of the temperature-sensitive magnetic member 64) from the inner circumferential surface of the fixing belt 61. Accordingly, if the thermo switch 110 is arranged at the same side of the region as that of the arrangement region M1 of the temperature detectors 101a and 101b in the longitudinal direction of the fixing belt 61, the temperature detectors 101a and 101b are interposed between the shrunk fixing belt 61 and the temperature-sensitive magnetic member 64 in the region R in the circumferential direction of the fixing belt 61. For this reason, even if the surface of the thermo switch 110 is set so as to further protrude toward the fixing belt 61 than the surface position 64a of the temperature-sensitive magnetic member 64, there is a possibility that the fixing belt 61 is not brought into contact with the surface of the thermo switch 110 since the temperature detectors 101a and 101b are interposed therebetween. In particular, in a configuration in which two temperature detectors are arranged, one of which primarily detects the surface temperature of the fixing belt 61 such as the temperature detector 101a, and the other one of which primarily detects an abnormal state of the surface temperature of the fixing belt 61 such as the temperature detector 101b, the gap between the shrunk fixing belt 61 and the temperature-sensitive magnetic member 64 is likely to be formed over a broad region in the longitudinal direction of the fixing belt 61, the broad region including the positions where the temperature detectors 101a and 101b are arranged. For this reason, at the region M1 extending from the center of the fixing belt 61, where the temperature detectors 101a and 101b are arranged, there is a possibility that the shrunk fixing belt 61 and the thermo switch 110 are not brought into contact with each other, and the responsiveness of the thermo switch 110 decreases.
In this respect, in the present exemplary embodiment, the thermo switch 110 is arranged at the region M2, which is at the opposite side of the arrangement region M1 of the temperature detectors 101a and 101b, with respect to the center of the fixing belt 61 in the longitudinal direction of the fixing belt 61. Thereby, in a case where the temperature of the fixing belt 61 increases to an abnormally high temperature that causes the thermo switch 110 to be disconnected, and the fixing belt 61 shrinks, the gap formed between the shrunk fixing belt 61 and the temperature-sensitive magnetic member 64 because of the temperature detectors 101a and 101b interposed therebetween is not likely to extend to the position where the thermo switch 110 is arranged. In addition, even if the gap formed between the fixing belt 61 and the temperature-sensitive magnetic member 64 because of the temperature detectors 101a and 101b interposed therebetween influences the position where the thermo switch 110 is arranged, the amount of the gap is subtle. Thus, when the thermo switch 110 is arranged at the region M2, the certainty and immediacy for the shrunk fixing belt 61 and the thermo switch 110 to be brought into contact with each other when the fixing belt 61 shrinks, and the responsiveness of the thermo switch 110 improves. Thereby, in a case where the temperature of the fixing belt 61 increases to an abnormally high temperature, the thermo switch 110 is immediately disconnected, and the flow of the electric current, as shown in
As described above, when the thermo switch 110 is arranged in the region M2, even in a case where the fixing belt 61 shrinks, the certainty and immediacy for the shrunk fixing belt 61 and the temperature-sensitive magnetic member 64 to be brought into contact with each other is increased. Accordingly, the responsiveness of the thermo switch 110 improves. Thereby, in a case where the temperature of the fixing belt 61 increases to the abnormally high temperature, the thermo switch 110 is immediately disconnected. By this configuration, the certainty for the safety mechanism to activate in response to the abnormal increase in the temperature of the fixing belt 61 is more enhanced.
As described above, in the fixing unit 60c included in the image forming apparatus 1 of the present exemplary embodiment, the temperature-sensitive magnetic member 64 is arranged near the inner circumferential surface of the fixing belt 61. Thereby, an excessive increase in the temperature of the non-sheet passing region is suppressed.
Moreover, in the longitudinal direction of the fixing belt, both of the temperature detectors 101a and 101b are arranged in the region M1 extending to one edge from the center of the fixing belt 61, and the thermo switch 110 is arranged in the region M2, which is located at the opposite side of the region M1 where the temperature detectors 101a and 101b are arranged, with respect to the center of the fixing belt 61. Accordingly, an abnormal increase in the temperature of the fixing belt 61 is promptly detected.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2009-042065 | Feb 2009 | JP | national |
2009-080574 | Mar 2009 | JP | national |