This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application Nos. 2015-023215, filed on Feb. 9, 2015, and 2015-242716, filed on Dec. 11, 2015, in the Japanese Patent Office, the entire disclosure of each of which is hereby incorporated by reference herein.
1. Technical Field
Exemplary aspects of the present disclosure relate to a fixing device and an image forming apparatus, and more particularly, to a fixing device for fixing a toner image on a recording medium and an image forming apparatus incorporating the fixing device.
2. Description of the Background
Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having two or more of copying, printing, scanning, facsimile, plotter, and other functions, typically form an image on a recording medium according to image data.
Thus, for example, a charger uniformly charges a surface of a photoconductor; an optical writer emits a light beam onto the charged surface of the photoconductor to form an electrostatic latent image on the photoconductor according to the image data; a developing device supplies toner to the electrostatic latent image formed on the photoconductor to render the electrostatic latent image visible as a toner image; the toner image is directly transferred from the photoconductor onto a recording medium or is indirectly transferred from the photoconductor onto a recording medium via an intermediate transfer belt; finally, a fixing device applies heat and pressure to the recording medium bearing the toner image to fix the toner image on the recording medium, thus forming the image on the recording medium.
Such fixing device may include a fixing rotator, such as a fixing roller, a fixing belt, and a fixing film, heated by a heater and a pressure rotator, such as a pressure roller and a pressure belt, pressed against the fixing rotator to form a fixing nip therebetween through which a recording medium bearing a toner image is conveyed. As the recording medium bearing the toner image is conveyed through the fixing nip, the fixing rotator and the pressure rotator apply heat and pressure to the recording medium, melting and fixing the toner image on the recording medium.
This specification describes below an improved fixing device. In one exemplary embodiment, the fixing device includes a flexible endless belt rotatable in a predetermined direction of rotation and a pressure rotator disposed opposite the belt. A nip formation pad presses against the pressure rotator via the belt to form a fixing nip between the belt and the pressure rotator, through which a recording medium bearing a toner image is conveyed. A fixing heater is disposed opposite at least a center span of a conveyance span of the belt in an axial direction thereof where the recording medium is conveyed to heat the belt. A first lateral end heater is mounted on the nip formation pad and disposed opposite a first lateral end span of an inner circumferential surface of the belt in the axial direction thereof to heat the belt. A second lateral end heater is mounted on the nip formation pad and disposed opposite a second lateral end span of the inner circumferential surface of the belt in the axial direction thereof to heat the belt. The second lateral end heater is electrically connected in series to the first lateral end heater.
This specification further describes an improved image forming apparatus. In one exemplary embodiment, the image forming apparatus includes an image bearer that bears a toner image and a fixing device disposed downstream from the image bearer in a recording medium conveyance direction to fix the toner image on a recording medium. The fixing device includes a flexible endless belt rotatable in a predetermined direction of rotation and a pressure rotator disposed opposite the belt. A nip formation pad presses against the pressure rotator via the belt to form a fixing nip between the belt and the pressure rotator, through which the recording medium bearing the toner image is conveyed. A fixing heater is disposed opposite at least a center span of a conveyance span of the belt in an axial direction thereof where the recording medium is conveyed to heat the belt. A first lateral end heater is mounted on the nip formation pad and disposed opposite a first lateral end span of an inner circumferential surface of the belt in the axial direction thereof to heat the belt. A second lateral end heater is mounted on the nip formation pad and disposed opposite a second lateral end span of the inner circumferential surface of the belt in the axial direction thereof to heat the belt. The second lateral end heater is electrically connected in series to the first lateral end heater.
A more complete appreciation of the disclosure and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, in particular to
It is to be noted that, in the drawings for explaining exemplary embodiments of this disclosure, identical reference numerals are assigned, as long as discrimination is possible, to components such as members and component parts having an identical function or shape, thus omitting description thereof once it is provided.
The image forming apparatus 100 may be a copier, a facsimile machine, a printer, a multifunction peripheral or a multifunction printer (MFP) having at least one of copying, printing, scanning, facsimile, and plotter functions, or the like. According to this exemplary embodiment, the image forming apparatus 100 is a color printer that forms color and monochrome toner images on a recording medium by electrophotography. Alternatively, the image forming apparatus 100 may be a monochrome printer that forms a monochrome toner image on a recording medium.
A description is provided of a construction and an operation of the image forming apparatus 100.
The image forming apparatus 100 is a color printer employing a tandem system in which a plurality of image forming devices for forming toner images in a plurality of colors, respectively, is aligned in a rotation direction of an intermediate transfer belt.
The image forming apparatus 100 includes four photoconductive drums 20Y, 20C, 20M, and 20K serving as image bearers that bear yellow, cyan, magenta, and black toner images in separation colors, respectively, that is, yellow, cyan, magenta, and black. The yellow, cyan, magenta, and black toner images formed on the photoconductive drums 20Y, 20C, 20M, and 20K as visible images, respectively, are primarily transferred successively onto an intermediate transfer belt 11 serving as an intermediate transferor disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K as the intermediate transfer belt 11 rotates in a rotation direction A1 such that the yellow, cyan, magenta, and black toner images are superimposed on a same position on the intermediate transfer belt 11 in a primary transfer process. Thereafter, the yellow, cyan, magenta, and black toner images superimposed on the intermediate transfer belt 11 are secondarily transferred onto a sheet S serving as a recording medium collectively in a secondary transfer process. Each of the photoconductive drums 20Y, 20C, 20M, and 20K is surrounded by image forming components that form the yellow, cyan, magenta, and black toner images on the photoconductive drums 20Y, 20C, 20M, and 20K as they rotate clockwise in
Taking the photoconductive drum 20K that forms the black toner image, the following describes a construction of components that form the black toner image. The photoconductive drum 20K is surrounded by a charger 30K, a developing device 40K, a primary transfer roller 12K, and a cleaner 50K in this order in the rotation direction D20 of the photoconductive drum 20K. The photoconductive drums 20Y, 20C, and 20M are also surrounded by chargers 30Y, 30C, and 30M, developing devices 40Y, 40C, and 40M, primary transfer rollers 12Y, 12C, and 12M, and cleaners 50Y, 50C, and 50M in this order in the rotation direction D20 of the photoconductive drums 20Y, 20C, and 20M, respectively. The charger 30K uniformly changes an outer circumferential surface of the photoconductive drum 20K. An optical writing device 8 optically writes an electrostatic latent image on the charged outer circumferential surface of the photoconductive drum 20K according to image data sent from an external device such as a client computer. The developing device 40K visualizes the electrostatic latent image as a black toner image.
As the intermediate transfer belt 11 rotates in the rotation direction A1, the yellow, cyan, magenta, and black toner images formed on the photoconductive drums 20Y, 20C, 20M, and 20K, respectively, are primarily transferred successively onto the intermediate transfer belt 11, thus being superimposed on the same position on the intermediate transfer belt 11 and formed into a color toner image. In the primary transfer process, the primary transfer rollers 12Y, 12C, 12M, and 12K disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K via the intermediate transfer belt 11, respectively, apply a primary transfer bias to the photoconductive drums 20Y, 20C, 20M, and 20K successively from the upstream photoconductive drum 20Y to the downstream photoconductive drum 20K in the rotation direction A1 of the intermediate transfer belt 11. The photoconductive drums 20Y, 20C, 20M, and 20K are aligned in this order in the rotation direction A1 of the intermediate transfer belt 11. The photoconductive drums 20Y, 20C, 20M, and 20K are located in four image forming stations that form the yellow, cyan, magenta, and black toner images, respectively.
The image forming apparatus 100 includes the four image forming stations that form the yellow, cyan, magenta, and black toner images, respectively, an intermediate transfer belt unit 10, a secondary transfer roller 5, an intermediate transfer belt cleaner 13, and the optical writing device 8. The intermediate transfer belt unit 10 is situated above and disposed opposite the photoconductive drums 20Y, 20C, 20M, and 20K. The intermediate transfer belt unit 10 incorporates the intermediate transfer belt 11 and the primary transfer rollers 12Y, 12C, 12M, and 12K. The secondary transfer roller 5 serves as a secondary transferor disposed opposite the intermediate transfer belt 11 and driven and rotated in accordance with rotation of the intermediate transfer belt 11. The intermediate transfer belt cleaner 13 is disposed opposite the intermediate transfer belt 11 to clean the intermediate transfer belt 11. The optical writing device 8 is situated below and disposed opposite the four image forming stations.
The optical writing device 8 includes a semiconductor laser serving as a light source, a coupling lens, an fθ lens, a troidal lens, a deflection mirror, and a rotatable polygon mirror serving as a deflector. The optical writing device 8 emits light beams Lb corresponding to the yellow, cyan, magenta, and black toner images to be formed on the photoconductive drums 20Y, 20C, 20M, and 20K thereto, forming electrostatic latent images on the photoconductive drums 20Y, 20C, 20M, and 20K, respectively.
The image forming apparatus 100 further includes a sheet feeder 61 and a registration roller pair 4. The sheet feeder 61, disposed in a lower portion of the image forming apparatus 100, incorporates a paper tray that loads a plurality of sheets S to be conveyed to a secondary transfer nip formed between the intermediate transfer belt 11 and the secondary transfer roller 5. The registration roller pair 4 serving as a conveyor conveys the sheet S conveyed from the sheet feeder 61 to the secondary transfer nip formed between the intermediate transfer belt 11 and the secondary transfer roller 5 at a predetermined time when the yellow, cyan, magenta, and black toner images superimposed on the intermediate transfer belt 11 reach the secondary transfer nip. The image forming apparatus 100 further includes a sensor for detecting that a leading edge of the sheet S reaches the registration roller pair 4.
The secondary transfer roller 5 secondarily transfers the color toner image formed on the intermediate transfer belt 11 onto the sheet S as the sheet S is conveyed through the secondary transfer nip. The sheet S bearing the color toner image is conveyed to a fixing device 150 where the color toner image is fixed on the sheet S under heat and pressure. An output roller pair 7 ejects the sheet S bearing the fixed color toner image onto an output tray disposed atop the image forming apparatus 100. In an upper portion of the image forming apparatus 100 and below the output tray are toner bottles 9Y, 9C, 9M, and 9K containing fresh yellow, cyan, magenta, and black toners, respectively.
The intermediate transfer belt unit 10 includes a driving roller 72 and a driven roller 73 over which the intermediate transfer belt 11 is looped, in addition to the intermediate transfer belt 11 and the primary transfer rollers 12Y, 12C, 12M, and 12K. Since the driven roller 73 also serves as a tension applicator that applies tension to the intermediate transfer belt 11, a biasing member (e.g., a spring) biases the driven roller 73 against the intermediate transfer belt 11. The intermediate transfer belt unit 10, the primary transfer rollers 12Y, 12C, 12M, and 12K, the secondary transfer roller 5, and the intermediate transfer belt cleaner 13 constitute a transfer device 71. The sheet feeder 61 includes a feed roller 3 that contacts an upper side of an uppermost sheet S of the plurality of sheets S loaded on the paper tray of the sheet feeder 61. As the feed roller 3 is driven and rotated counterclockwise in
The intermediate transfer belt cleaner 13 of the transfer device 71 includes a cleaning brush and a cleaning blade disposed opposite the intermediate transfer belt 11 to come into contact with the intermediate transfer belt 11. The cleaning brush and the cleaning blade scrape a foreign substance such as residual toner particles off the intermediate transfer belt 11, removing the foreign substance from the intermediate transfer belt 11 and thereby cleaning the intermediate transfer belt 11. The intermediate transfer belt cleaner 13 further includes a waste toner conveyer that conveys the residual toner particles removed from the intermediate transfer belt 11.
With reference to
A detailed description is now given of a construction of the nip formation assembly 86.
The nip formation assembly 86 includes a nip formation pad 88, a lateral end heater 112, and a stay 90. The nip formation pad 88, disposed inside the loop formed by the fixing belt 80 and disposed opposite the pressure roller 84, presses against the pressure roller 84 via the fixing belt 80 to form the fixing nip N between the fixing belt 80 and the pressure roller 84. The lateral end heater 112 serving as a lateral end heater or a lateral end heat source is mounted on each lateral end of the nip formation pad 88 in a longitudinal direction thereof parallel to an axial direction of the fixing belt 80. The stay 90 supports the nip formation pad 88 against pressure from the pressure roller 84.
The stay 90 has a box shape with an opening opposite the fixing nip N. Two halogen heaters 82a and 82b serving as a fixing heater or a fixing heat source are disposed inside the box of the stay 90. The halogen heaters 82a and 82b emit light that irradiates the inner circumferential surface of the fixing belt 80 directly through the opening of the stay 90, heating the fixing belt 80 with radiation heat. A platy reflector 94 is mounted on an interior surface of the stay 90 to reflect light radiated from the halogen heaters 82a and 82b toward the fixing belt 80 so as to improve heating efficiency of the halogen heaters 82a and 82b to heat the fixing belt 80. The reflector 94 prevents light from the halogen heaters 82a and 82b from heating the stay 90, suppressing waste of energy. Alternatively, instead of the reflector 94, the interior surface of the stay 90 may be treated with insulation or mirror finish to reflect light radiated from the halogen heaters 82a and 82b toward the fixing belt 80.
A detailed description is now given of a construction of the pressure roller 84.
A detailed description is now given of a construction of the fixing belt 80.
The fixing belt 80 is an endless belt or film having a layer thickness in a range of from 30 micrometers to 50 micrometers and made of metal such as nickel and SUS stainless steel or resin such as polyimide. The fixing belt 80 is constructed of a base layer and a release layer. The release layer constituting an outer surface layer is made of PFA, PTFE, or the like to facilitate separation of toner of a toner image on the sheet S from the fixing belt 80, thus preventing the toner of the toner image from adhering to the fixing belt 80. Optionally, an elastic layer may be sandwiched between the base layer and the release layer and made of silicone rubber or the like. If the fixing belt 80 does not incorporate the elastic layer, the fixing belt 80 has a decreased thermal capacity that improves fixing property of being heated quickly to a desired fixing temperature at which the toner image is fixed on the sheet S. However, as the pressure roller 84 and the fixing belt 80 sandwich and press the unfixed toner image on the sheet S passing through the fixing nip N, slight surface asperities of the fixing belt 80 may be transferred onto the toner image on the sheet S, resulting in variation in gloss of the solid toner image on the sheet S.
To address this circumstance, the elastic layer made of silicone rubber has a thickness not smaller than 100 micrometers. As the elastic layer deforms, the elastic layer absorbs slight surface asperities of the fixing belt 80, suppressing variation in gloss of the toner image on the sheet S. As shown in
According to this exemplary embodiment, as shown in
A detailed description is now given of a configuration of the stay 90.
The stay 90 supports the nip formation pad 88 against pressure from the pressure roller 84 to prevent bending of the nip formation pad 88 and produce the even length Nw of the fixing nip N in the sheet conveyance direction DS throughout the entire width of the fixing belt 80 in the axial direction thereof. According to this exemplary embodiment, the pressure roller 84 is pressed against the fixing belt 80 to form the fixing nip N. Alternatively, the nip formation assembly 86 may be pressed against the pressure roller 84 to from the fixing nip N. The stay 90 has a mechanical strength great enough to support the nip formation pad 88 to prevent bending of the nip formation pad 88. The stay 90 is made of metal such as stainless steel and iron, metallic oxide such as ceramic, or the like. The fixing belt 80 and the components disposed inside the loop formed by the fixing belt 80, that is, the halogen heaters 82a and 82b, the nip formation pad 88, the lateral end heater 112, the stay 90, and the reflector 94, may constitute a belt unit 80U separably coupled with the pressure roller 84.
A description is provided of a configuration of a first comparative fixing device incorporating a center heater equivalent to the halogen heater 82a and a lateral end heater equivalent to the halogen heater 82b depicted in
As a small sheet S is conveyed through the fixing nip N, the center heater having a center dense light distribution is powered on. As a medium sheet S is conveyed through the fixing nip N, the lateral end heater having a lateral end dense light distribution is powered on together with the center heater. The center heater and the lateral end heater are powered on and off properly to heat sheets S of various sizes.
Taking the sizes of the sheets S and the frequency with which the sheets S are conveyed, sheets S up to the A3 size sheet are used frequently. The A3 size sheet is conveyed through the fixing nip N in portrait orientation. An A4 size sheet and a letter (LT) size sheet that are used with an increased frequency are generally conveyed in landscape orientation to enhance productivity. To address this circumstance, the center heater and the lateral end heater produce a heating span of about 300 mm in the axial direction of the fixing belt 80 that is great enough to heat 99 percent or more of the sizes of sheets S. On the other hand, the center heater and the lateral end heater are requested to heat large sheets S greater than the A3 size sheet in the axial direction of the fixing belt 80 such as the A3 extension size sheet and the 13-inch sheet although the large sheets S are used infrequently.
If a plurality of halogen heaters is used as the center heater and the lateral end heater, respectively, the plurality of halogen heaters used to heat the small sheet S is situated inside the loop formed by the fixing belt 80 or a fixing roller having a diameter of about 30 mm. Accordingly, the number of the halogen heaters is limited. To address this circumstance, the lateral end heater having the lateral end dense light distribution may be elongated to span a width of the large sheet S greater than a width of the A3 size sheet in the axial direction of the fixing belt 80. As described above, the center heater and the lateral end heater heat the heating span of about 300 mm of the fixing belt 80 in the axial direction thereof frequently. However, if the elongated lateral end heater is employed, the elongated lateral end heater may heat an elongated heating span of about 330 mm of the fixing belt 80 in the axial direction thereof, wasting energy used to heat a differential between the heating span of about 300 mm and the elongated heating span of about 330 mm. When the A3 size sheet in portrait orientation or the A4 size sheet in landscape orientation is conveyed through the fixing nip N, each lateral end of the elongated heating span of the fixing belt 80 in the axial direction thereof that corresponds to the differential between the heating span of about 300 mm and the elongated heating span of about 330 mm may overheat. In order to cool the overheated lateral end of the fixing belt 80, productivity defined by a conveyance speed of the sheets S may be degraded or a fan may be installed. If a reflection plate is interposed between the lateral end heater and the fixing belt 80, each lateral end of the lateral end heater in the axial direction of the fixing belt 80 may overheat. To address this circumstance, a second comparative fixing device is proposed.
The second comparative fixing device includes a thin, flexible endless belt to be heated quickly to a fixing temperature at which a toner image is fixed on a sheet S and a nip formation unit located inside a loop formed by the endless belt. The nip formation unit presses against a pressure roller via the endless belt to form a fixing nip between the endless belt and the pressure roller. A plurality of halogen heaters having different light distributions, respectively, is situated inside the loop formed by the endless belt. A plurality of lateral end heaters is disposed opposite both lateral end spans of the endless belt in an axial direction thereof, respectively, and upstream from the fixing nip in a rotation direction of the endless belt so as to heat an increased heating span of the endless belt corresponding to the width of the large sheet S in the axial direction of the endless belt. The lateral end heaters contact an inner circumferential surface or an outer circumferential surface of the endless belt. The lateral end heaters heat the increased heating span of the endless belt corresponding to the width of the large sheet S in the axial direction of the endless belt with a simple construction not incorporating an extra halogen heater directed to the large sheet S.
The lateral end heaters are disposed opposite both lateral end spans of the endless belt in the axial direction thereof, respectively. Accordingly, the lateral end heaters are powered on and off simultaneously, complicating a control circuit that controls the lateral end heaters. Even if one of the lateral end heaters suffers from failure, another one of the lateral end heaters is energized and is susceptible to electric failure.
A width of the A3 size sheet in portrait orientation and a width of the A4 size sheet in landscape orientation are smaller than a width of the A3 extension size sheet in portrait orientation (e.g., 329 mm) and a width of the 13-inch sheet in portrait orientation (e.g., 330 mm) by a differential in a range of from 32 mm to 33 mm, respectively. Accordingly, if the fixing device 150 is configured to heat each lateral end span of the fixing belt 80 in the axial direction thereof, that is, if the fixing device 150 is configured to heat a half of the differential in range of from 32 mm to 33 mm, that is, a span in a range of from 16.0 mm to 16.5 mm, the maximum width of sheets S available in the fixing device 150 increases from the width W1 of the A3 size sheet to the width W2 of the A3 extension size sheet or the like as shown in
As the large sheet S (e.g., the A3 extension size sheet and the 13-inch sheet) is conveyed through the fixing nip N, the halogen heaters 82a and 82b and the lateral end heaters 112a and 112b are energized. Conversely, as the small sheet S (e.g., a sheet not greater than the A3 size sheet) is conveyed through the fixing nip N, the halogen heaters 82a and 82b are energized or the halogen heater 82a is energized. Hence, the lateral end heaters 112a and 112b are not energized. If the halogen heater 82b is configured to have an increased heating span to heat the large sheet S such as the A3 extension size sheet, the halogen heater 82b may heat the lateral end span of the fixing belt 80 unnecessarily while the large sheet S is not conveyed through the fixing nip N, wasting energy. To address this circumstance, the fixing device 150 according to this exemplary embodiment incorporates a simple mechanism in addition to the halogen heaters 82a and 82b, that is, the lateral end heaters 112a and 112b being disposed opposite both lateral end spans G in the axial direction of the fixing belt 80 or in proximity to both lateral ends of the fixing belt 80 in the axial direction thereof, respectively.
The lateral end heaters 112a and 112b may have a positive temperature coefficient (PTC) property. If the lateral end heaters 112a and 112b have the PTC property, a resistance value increases at a preset temperature or higher and the lateral end heaters 112a and 112b do not generate heat at the preset temperature or higher. Hence, the lateral end heaters 112a and 112b do not burn or damage the fixing belt 80, achieving the safe fixing device 150. Additionally, the lateral end heaters 112a and 112b situated inside the loop formed by the fixing belt 80 emit light that irradiates the inner circumferential surface of the fixing belt 80 to heat both lateral end spans G of the fixing belt 80 in the axial direction thereof without degrading rotation of the fixing belt 80.
As shown in
A description is provided of a construction of the lateral end heaters 112a and 112b.
As described above, the resistive heat generator 52 is mounted on a first face of the lateral end heater 112a so that the first face of the lateral end heater 112a that mounts the resistive heat generator 52 generates heat mainly while a second face of the lateral end heater 112a that does not mount the resistive heat generator 52 barely receives heat from the first face. According to this exemplary embodiment, the first face of the lateral end heater 112a that mounts the resistive heat generator 52 contacts the recess 88a depicted in
The fixing belt side face 112c of the respective lateral end heaters 112a and 112b that contacts the inner circumferential surface of the fixing belt 80 is leveled with the nip formation face 88c of the nip formation pad 88 in the pressurization direction F to define an identical plane. Accordingly, the pressure roller 84 is pressed against the lateral end heaters 112a and 112b via the fixing belt 80 sufficiently. Consequently, the fixing belt 80 rotates in a state in which the fixing belt 80 adheres to the lateral end heaters 112a and 112b, improving conduction of heat from the lateral end heaters 112a and 112b to the fixing belt 80 and thereby retaining improved heating efficiency of the lateral end heaters 112a and 112b. Since the lateral end heaters 112a and 112b are situated within the fixing nip N in the axial direction of the fixing belt 80 to heat the fixing belt 80, the lateral end heaters 112a and 112b do not heat a portion of the fixing belt 80 that is outboard from the fixing nip N in the axial direction of the fixing belt 80, preventing residual toner failed to be fixed on the sheet S and therefore remaining on the fixing belt 80 from being melted again and adhered to the fixing belt 80. The pressure roller 84 also serves as a biasing member that presses the fixing belt 80 against the lateral end heaters 112a and 112b to adhere the fixing belt 80 to the lateral end heaters 112a and 112b so as to enhance conduction of heat from the lateral end heaters 112a and 112b to the fixing belt 80. Accordingly, a mechanism that presses the lateral end heaters 112a and 112b against the fixing belt 80 is not needed, simplifying the fixing device 150. In other words, pressure used to form the fixing nip N is also used to adhere the fixing belt 80 to the lateral end heaters 112a and 112b, improving conduction of heat from the lateral end heaters 112a and 112b to the fixing belt 80 without degrading rotation of the fixing belt 80.
As shown in
Since the lateral end heaters 112a and 112b are mounted and fixedly secured on the nip formation pad 88 as a separate component, the fixing belt side face 112c of the respective lateral end heaters 112a and 112b that contacts the inner circumferential surface of the fixing belt 80 may deviate from the nip formation face 88c of the nip formation pad 88 in height during assembly of the fixing device 150. To address this circumstance, the elastic members 38 support the lateral end heaters 112a and 112b to absorb a manufacturing error, thus leveling the fixing belt side face 112c of the respective lateral end heaters 112a and 112b with the nip formation face 88c of the nip formation pad 88 when the fixing nip N is formed.
According to this exemplary embodiment, the lateral end heaters 112a and 112b are coupled with the nip formation pad 88 to constitute the nip formation assembly 86. However, the lateral end heaters 112a and 112b may not be coupled with the nip formation pad 88 as shown in
According to the exemplary embodiments described above, as shown in
The lateral end heaters 112a and 112b are disposed at both lateral ends of the fixing belt 80 in the axial direction thereof, respectively. Alternatively, a plurality of lateral end heaters 112a may be disposed at one lateral end of the fixing belt 80 in the axial direction thereof and a plurality of lateral end heaters 112b may be disposed at another lateral end of the fixing belt 80 in the axial direction thereof to correspond to sheets S of various sizes, for example.
Each of the lateral end heaters 112a and 112b may be disposed outboard from the halogen heater 82b in the axial direction of the fixing belt 80 in the axial direction thereof to correspond to sheets S of various sizes further and heat the fixing belt 80 precisely.
The lateral end heaters 112a and 112b having the PTC property may take an extended period of time to achieve a predetermined target temperature compared to the halogen heaters 82a and 82b. For example, if the lateral end heaters 112a and 112b and the halogen heaters 82a and 82b are energized simultaneously, the center span of the fixing belt 80 in the axial direction thereof is heated quickly, wasting energy. Further, as the sheets S conveyed over the fixing belt 80 draw heat from the fixing belt 80, the lateral end heaters 112a and 112b, due to their PTC property, take the extended period of time to retrieve the predetermined target temperature compared to the halogen heaters 82a and 82b.
To address this circumstance, the fixing device 150 decreases productivity to correspond to a heating cycle of the lateral end heaters 112a and 112b, thus controlling heating of the fixing belt 80 to reduce variation in temperature of the fixing belt 80 in the axial direction thereof, that is, between the center span and each lateral end span of the fixing belt 80 in the axial direction thereof. For example, while the lateral end heaters 112a and 112b that heat both lateral end spans G of the fixing belt 80 in the axial direction thereof or the vicinity of both lateral ends of the fixing belt 80, respectively, where the A3 extension size sheet is conveyed are energized, actuation of the halogen heaters 82a and 82b that heat an inboard span inboard from both lateral end spans G of the fixing belt 80 in the axial direction thereof where sheets smaller than the A3 extension size sheet are conveyed is controlled in accordance with temperature increase of both lateral end spans G of the fixing belt 80 in the axial direction thereof.
Accordingly, the fixing device 150 prevents waste of energy caused by the halogen heaters 82a and 82b that heat the inboard span of the fixing belt 80 in the axial direction thereof, where the sheets smaller than the large sheet S are conveyed, quickly and unnecessarily while the lateral end heaters 112a and 112b generate a decreased amount of heat. A conveyance speed at which the A3 extension size sheet heated by the lateral end heaters 112a and 112b is conveyed is smaller than a conveyance speed at which the sheets other than the A3 extension size sheet are conveyed. Thus, the fixing device 150 decreases productivity when the infrequently used, large sheet S (e.g., the A3 extension size sheet) is conveyed, simplifying the lateral end heaters 112a and 112b that heat both lateral end spans G of the fixing belt 80 in the axial direction thereof, respectively, and reducing manufacturing costs. Consequently, the fixing belt 80 is heated effectively. According to the exemplary embodiments described above, the fixing device 150 includes the two halogen heaters 82a and 82b serving as a fixing heater, respectively. Alternatively, the fixing device 150 may include three or more halogen heaters to correspond to various sizes of small sheets S.
A description is provided of a construction of a nip formation assembly 86S (e.g., a nip formation unit) as a variation of the nip formation assembly 86 depicted in
The nip formation assembly 86S achieves advantages similar to those of the nip formation assembly 86 described above. Alternatively, instead of the reflector 94S, an exterior surface of the stand 90e may be treated with insulation or mirror finish to reflect light radiated from the halogen heaters 82a and 82b toward the fixing belt 80. In this case, the halogen heaters 82a and 82b heat the fixing belt 80 with a slightly decreased heating efficiency compared to a heating efficiency with which the halogen heaters 82a and 82b heat the fixing belt 80 together with the reflector 94S.
A detailed description is now given of a construction of the fixing belt 80 made of metal.
The fixing belt 80 shown in
A description is provided of an electric connection between the halogen heaters 82a and 82b and the lateral end heaters 112a and 112b.
The lateral end heaters 112a and 112b are energized as the large sheet S greater than the A3 size sheet is conveyed through the fixing nip N. The halogen heater 82b directed to heat each lateral end span of the fixing belt 80 in the axial direction thereof is energized simultaneously. As shown in
As shown in
As shown in
On the other hand, according to the second exemplary embodiment, the lateral end heaters 112a and 112b are not energized separately from energization of the halogen heater 82b. Accordingly, if a heating performance of the lateral end heaters 112a and 112b is lower than that of the halogen heater 82b, a temperature of each lateral end span of the fixing belt 80 in the axial direction thereof that is heated by each of the lateral end heaters 112a and 112b is lower than a temperature of each lateral end span of the fixing belt 80 in the axial direction thereof that is heated by the halogen heater 82b. Consequently, the controller 99 may not eliminate a differential between the temperature of the lateral end span of the fixing belt 80 that is heated by the halogen heater 82b and the temperature of the lateral end span of the fixing belt 80 that is heated by the lateral end heaters 112a and 112b.
To address this circumstance, according to the second exemplary embodiment, the controller 99 selectively energizes the halogen heater 82b and the lateral end heaters 112a and 112b such that the heating performance of the lateral end heaters 112a and 112b is higher than the heating performance of the halogen heater 82b.
According to the first exemplary embodiment, the lateral end heaters 112a and 112b are powered on and off separately from the halogen heater 82b and therefore the above control is not needed. Hence, the heating performance of the lateral end heaters 112a and 112b is allowed to be higher or lower than the heating performance of the halogen heater 82b. According to the first exemplary embodiment, flexibility in selective energization of the lateral end heaters 112a and 112b is improved compared to the second exemplary embodiment.
As described above, according to the first exemplary embodiment, even if the heating performance of the lateral end heaters 112a and 112b is lower than the heating performance of the halogen heater 82b, the controller 99 energizes the lateral end heaters 112a and 112b separately from the halogen heater 82b. Accordingly, the controller 99 controls the lateral end heaters 112a and 112b and the halogen heater 82b to cause the lateral end heaters 112a and 112b to heat both lateral end spans of the fixing belt 80 to a temperature identical to a temperature of both lateral end spans of the fixing belt 80 heated by the halogen heater 82b, thus improving flexibility in selective energization of the lateral end heaters 112a and 112b and the halogen heater 82b. According to the second exemplary embodiment, the thermostat 126 or the like serving as the safety device is disposed in proximity to the halogen heater 82b to detect failure of the temperature sensor 125 and prevent failure of the lateral end heaters 112a and 112b simultaneously, thus simplifying the safety device.
The image forming apparatuses, such a copier and a multifunction peripheral, incorporating the fixing device 150 or 150S provide a series of products by varying a linear velocity, a fixing temperature, fixing pressure, and the like in accordance with productivity defined by copies per minute (CPM) and pages per minute (PPM). Accordingly, the electric circuit 91 according to the first exemplary embodiment shown in
With the fixing device 150 or 150S having the electric circuit 93 shown in
The present disclosure is not limited to the details of the exemplary embodiments described above and various modifications and improvements are possible. The advantages achieved by the fixing device 150 or 150S are not limited to those described above.
A description is provided of advantages of the fixing devices 150 and 150S.
As shown in
As shown in
As shown in
Accordingly, the first lateral end heater and the second lateral end heater are electrically controlled more simply compared to a configuration in which the first lateral end heater is powered on and off separately from the second lateral end heater. If one of the first lateral end heater and the second lateral end heater suffers from failure, the controller 99 depicted in
According to the exemplary embodiments described above, the fixing belt 80 serves as an endless belt. Alternatively, a fixing film, a fixing sleeve, or the like may be used as an endless belt. Further, the pressure roller 84 serves as a pressure rotator. Alternatively, a pressure belt or the like may be used as a pressure rotator.
The present disclosure has been described above with reference to specific exemplary embodiments. Note that the present disclosure is not limited to the details of the embodiments described above, but various modifications and enhancements are possible without departing from the spirit and scope of the disclosure. It is therefore to be understood that the present disclosure may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative exemplary embodiments may be combined with each other and/or substituted for each other within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2015-023215 | Feb 2015 | JP | national |
2015-242716 | Dec 2015 | JP | national |