The present document incorporates by reference the entire contents of Japanese priority document, 2006-191110 filed in Japan on Jul. 12, 2006, 2006-191111 filed in Japan on Jul. 12, 2006 and 2006-193194 filed in Japan on Jul. 13, 2006.
1. Field of the Invention
The present invention relates to a fixing device and an image forming apparatus that includes the fixing device.
2. Description of the Related Art
A typical fixing device that fixes an unfixed toner image on a recording medium by applying pressure and heat thereto includes a heating unit and a pressurizing unit. The heating unit includes an elastic layer and a heat source and the pressurizing unit includes an endless member and a pressurizing member. The recoding medium with an unfixed toner image thereon is conveyed to a nip portion between the heating unit and the pressurizing unit so that the unfixed toner image is fixed to the recoding medium. Various types of such fixing devices that employ the belt-nip method have been proposed. In the belt-nip method, a nip portion is formed in a way that a pressurizing member is pressed against a heating roller that is rotatable and that includes an elastic layer with the surface elastically deformable. The pressurizing member locally deforms a portion of the heating roller on a side from where a recording medium exits the nip portion. However, such deformation tends to change the surface speed of the fixing roller, causing shift of an image on the recording medium. In addition, a hard member is pressed against the elastic layer of the heating roller to locally cause deformation of the elastic layer so that a nip portion having a small curvature is formed. Hence, a large load is applied to the recording medium, for example, an amount of damage on the recoding medium or curling of the recoding medium increases.
To deal with such inconvenience, Japanese Patent Application Laid-open No. 2004-045780 discloses a pressurizing unit including an entering pad on a side from which a recording medium enters a nip portion, an exit pressurizing roller on a side from which the recording medium exits the nip portion, and a center pad between the entering pad and the exit pressurizing roller. The entering pad, the center pad, and the exit pressurizing roller are pressurized individually. The center portion of the pressurizing unit has a lower surface so as to have a V-shaped portion.
Furthermore, Japanese Patent Application Laid-open No. H08-166734 discloses a technology for preventing an image on a recording medium from shifting. Near the exit of a nip portion, a pressurizing roller around which a pressurizing belt extends is pressed against a fixing roller with the surface on which an elastic layer is provided. Accordingly, the elastic layer deforms and the deformation helps a recording medium to be released from fixing roller. An auxiliary roller that includes an elastic layer is provided to an upstream portion in a direction of conveyance of the recording medium. The auxiliary roller is pressed against the fixing roller to prevent the recording medium from being conveyed at a speed higher than that of the surface speed of the fixing roller, thus preventing an image from shifting on the recording medium. The shifting of the image can be effectively prevented when the total of the pressure from the auxiliary roller and the pressure from a tensile force of the pressurizing belt is larger than that from the pressurizing roller.
In addition, Japanese Patent Application Laid-open No. H11-212389 discloses a heating-pressurizing fixing device that includes a heating roller, a pressurizing belt that is pressed against the heating roller, and a pressurizing roller that pressurizes the pressurizing belt. The heating-pressurizing fixing device fixes an unfixed toner image on a recording medium by heat and pressure while causing the recording medium to pass through a nip portion that is formed between and by the heating roller and the pressurizing belt. The heating-pressurizing fixing device further includes a pressurizing member that has a round edge.
Moreover, Japanese Patent Application Laid-open No. S63-036283 discloses a thermal fixing roller that includes a core around which silicon rubber is formed. The silicon rubber has hardness equal to 35 degrees (JIS A) or smaller, a permanent deformation equal to 10% or smaller, a thickness of 1.5 mm to 4 mm. Japanese Patent Application Laid-open No. 2002-207388 discloses an image forming unit that includes a pressurizing belt, a pressurizing-belt supporting member, and a pressuring unit. The pressurizing belt presses a recording medium against a heating-fixing roller. The pressurizing-belt supporting member includes a plurality of supporting members around which the pressurizing belt extends. The pressing unit presses the recording medium between the heating-fixing roller and the outer surface of the pressurizing belt. As the pressing unit, at least a pair of pressing members is provided such that one of the pressing members is positioned on the inner surface of the heating-fixing roller and the other pressing member is positioned on the inner surface of the pressurizing belt.
Furthermore, Japanese Patent Application Laid-open No. H09-251252 discloses a pressurizing member that has a shape in which the thickness of the pressurizing member in the vertical direction gradually decreases from each of the two edges to the center thereof (hereinafter, “inverted-crown shape”). The pressurizing member includes an elastic layer that has the two edge portions whose foam densities are different from that of the center portion of the elastic layer such that the hardness of the edge portions is higher than that of the center potion.
Moreover, Japanese Patent Application Laid-open No. H03-233586 discloses a fixing device that includes a plurality of rollers, an endless belt that is wound around the heating member and the rollers, a heating member, and a pressurizing roller. The heating member has a shape in which the thickness of the heating member in the vertical direction gradually increases from each of the two edges to the center thereof (hereinafter, “crown shape”), and the pressurizing roller has the inverted-crown shape and is pressed against the heating member.
In addition, Japanese Patent Application Laid-open No. H2001-296691 discloses a heating roller that has a diameter equal to 28 mm or smaller. The heating roller includes a rubber layer that has a thickness of 0.5 mm to 10 mm, a hardness of 8 (JIS-A) or smaller. Japanese Patent Application Laid-open No. 2002-25713 discloses a roller that includes an elastic layer that has a hardness of 15 degrees to 55 degrees (Asker-C) and a permanent deformation (compression) of 0.5% to 5%.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
A fixing device according to one aspect of the present invention includes a heating unit, a pressurizing unit that includes a pressurizing member and a supporting member supporting the pressurizing member. The fixing device fixes an unfixed toner image on a recording medium by applying a heat with the heating unit and a pressure with the pressurizing unit to the unfixed toner image on the recording medium located in a nip portion between the heating unit and the pressurizing unit. The pressurizing member includes an elastic member that has a uniform elastic modulus of K=EA/t, where E is a Young's modulus, A is an area of the nip portion, and t is a thickness of the elastic member in a direction of application of load. The supporting member has an entering portion on an entering side from where the recording medium enters the nip portion, an exit portion on an exit side from where the recording medium exits the nip portion, and a center portion between the entering portion and the exit portion, a thickness of the center portion in the direction of application of load being larger than thicknesses of the entering portion and the exit portion in the direction of application of load so that the supporting unit has a convex portion.
An image forming apparatus according to another aspect of the present invention includes a plurality of developing units for forming toner images of colors different from each other; a photoreceptor that has a surface to which the toner images are transferred; an intermediate transfer unit for transferring a transferred toner images on the photoreceptor thereto; a transfer unit that transfers the transferred toner image on the intermediate transfer unit to a recording medium; and a fixing unit including a heating unit, a pressurizing unit that includes a pressurizing member and a supporting member supporting the pressurizing member. The fixing device fixes an unfixed toner image on a recording medium by applying a heat with the heating unit and a pressure with the pressurizing unit to the unfixed toner image on the recording medium located in a nip portion between the heating unit and the pressurizing unit. The pressurizing member includes an elastic member that has a uniform elastic modulus of K=EA/t, where E is a Young's modulus, A is an area of the nip portion, and t is a thickness of the elastic member in a direction of application of load. The supporting member has an entering portion on an entering side from where the recording medium enters the nip portion, an exit portion on an exit side from where the recording medium exits the nip portion, and a center portion between the entering portion and the exit portion, a thickness of the center portion in the direction of application of load being larger than thicknesses of the entering portion and the exit portion in the direction of application of load so that the supporting unit has a convex portion.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings.
Operations of the image forming apparatus for forming an image are explained below with reference to
The electrostatic latent image on the surface of the photoreceptor 110 is developed by the developing unit 114 with toner so that a toner image is formed on the surface of the photoreceptor 110. With the rotation of the photoreceptor 110, the toner image is conveyed to the transfer unit 115 that is arranged so as to be opposed to the photoreceptor 110.
Meanwhile the paper sheet P stored in the sheet tray 117 is fed to a nip portion between the photoreceptor 110 and the transfer unit 115. The transfer unit 115 transfers the toner image from the surface of the photoreceptor 110 to the paper sheet P. The paper sheet P with the toner image thereon is conveyed to the fixing device 116 and the fixing device 116 fixes the toner image. In this manner, a desired image is obtained.
After the transfer of the toner image to the paper sheet S, the cleaner 118 cleans residual toner residing on the surface of the photoreceptor 110. The removing unit 119 removes the residual static electricity residing on the surface of the photoreceptor 110. In this manner, one cycle of the operations for forming an image is completed.
As a lubricant of the lubricant-supplying member 27, one containing silicon oil or fluorine oil is generally used. A fixed image 33 is obtained after the paper sheet P passes through a nip portion formed between the heating-fixing roller 1 and the endless member 23. As the surface-covering layer 2, for example, a PFA layer is used to prevent the unfixed toner 31 to be adhered to the heating-fixing roller 1. As the elastic layer 3, for instance, silicon rubber or fluororubber is generally used. When silicon rubber is used, the elastic layer 3 may be coated with, for example, a fluorine layer or the like to improve swelling resistance. The endless member 23 is made of PFA and polyimide. As the pressurizing member 21, a pressurizing pad with the flat surface to which a pressure is applied is used. The pressurizing member 21 includes an elastic member formed of silicon rubber or fluorine rubber. As the paper sheet P, any type of recording medium such as a cut sheet can be used.
A curved line 81 shown in
In the evaluation tests, a full-color image was formed and fixed on a generally-used cut paper sheet with a basis weight of 55 g/cm2. As a result of the evaluation tests, it was found that the pressurizing pads of the pressurizing members having the respective shapes shown in
The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger increases the amount of uneven gloss of an image, and that a permanent deformation equal to 4% or smaller is desirable. Based on the idea that a large clearance between the surface of the heating-fixing roller and the sheet surface improves the sheet releasability, the outer surface of the heating-fixing roller is also a parameter for defining the clearance. The results also indicated that an outer diameter equal to φ27 mm or larger lowers the sheet releasability. Hence, it is desirable that the heating-fixing roller have an outer diameter equal to φ27 mm or smaller.
The test results also indicated that the thickness of the elastic layer of the heating-fixing roller is a parameter for defining the clearance. It was found that a thickness of the elastic layer equal to 0.8 mm or smaller lowers the sheet releasability because a small thickness of the elastic layer leads to a small amount of deformation of the elastic layer so that the paper sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer have a thickness equal to 0.8 mm or more.
The test results also indicated that the hardness of the elastic layer of the heating-fixing roller is a parameter for defining the clearance. It was found that the hardness of the elastic layer equal to 8 Hs (JIS-A) or larger lowers the sheet releasability. The sheet releasability is lowered because a large hardness of the elastic layer leads to a small amount of the deformation of the elastic layer so that the sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer have a hardness of 8 Hs (JIS-A) or smaller.
A large permanent deformation of the pressuring member may cause a temporal change of the nip shape so that the fixing characteristics of toner to the sheet and the sheet releasability are unstable. The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger lowers the sheet releasability after the heating-fixing roller was heated and rotated for 100 hours or more. For this reason, it is desirable that the pressurizing member have a permanent deformation of 4% or smaller.
A driven roller 7a has no heat source and is driven to rotate. Each of the heating rollers 7 has a drive source to drive the endless heating member 5. Alternatively, the driven roller 7a can have a drive source. The use of the endless heating member 5 instead of the heating-fixing roller 1 allows adjustment of the nip width and the deformation of the endless heating member 5 on a side from which the paper sheet S exits from a nip portion with little change of the size of the fixing device 126. Each of the pressurizing member 21 and the supporting member 22 has a round portion. In this structure, the width of the pressurizing member 21 needs to be equal to or smaller than the width of the heating member 8.
As described, the elastic member of the pressurizing member 21 has the uniform elastic modulus of K=EA/t, where E is a Young's modulus, A is an area of a nip portion, and t is a thickness of the elastic member in the load application direction. In addition, the supporting member 22 has the center portion having a thickness in the load application direction larger than those of the entering portion and the exit portion, and thus, the supporting member 22 has a convex portion. The convex portion locally deforms the elastic layer 3 of the heating-fixing roller 1, so that the sheet can be in an appropriate state at the nip exit. This reduces the amount of the shift of an image on a recording medium and a load applied to the recording medium, and the sheet releasability improves effectively.
In addition, the width of the elastic member is made appropriate so that the elastic layer 3 of the heating-fixing roller 1 deforms. Accordingly, the sheet can be in an appropriate state at the nip exit. This reduces the amount of the shift of an image on a recording medium and a load applied to the recording medium, and the sheet releasability improves effectively. As described, the convex portion of the supporting member 22 can be a step-shaped portion, a round portion, or an inverted V-shaped portion. Instead of the above convex portion, two spaces can be provided between the pressurizing member 21 and the supporting member 22 at the entering side and the exit side. The above spaces realize the same effects as those realized by each of the fixing devices 116 shown in
The use of the heating roller 7 realizes the entire image forming apparatus at a low cost and the same effects as those realized by each of the fixing devices 116 of the first to fourth examples shown in
According to the second embodiment, the use of the heating belt realizes high-speed fixing.
The use of the fixing devices according to the first and the second embodiments in an image forming apparatus makes the overall structure of the image forming apparatus simple. In addition, the fixing devices improve the releasability of the recording medium from the heating unit without application of a heavy load to the recording medium, thereby improving the quality of an image formed on the recording medium.
As a result of the evaluation tests, it was found that no cold offset occurred in the pressurizing members 21 each having the edge portions B with a hardness and a thickness that are larger than those of the central portion A. The nip widths of the central portion A and the edge portions B were measured in the following manner, using an OHP film CG3700 manufactured by Sumitomo 3M Ltd. When the OHP film was passing through a nip portion, the power was turned off and the OHP film kept in the nip portion for twelve seconds. The pressure application to the OHP film was then stopped, and the width of the mark of the nip portion that was formed by heat on the OHP film was measured. Whether cold offset occurs was confirmed by use of a white fabric of hanicot #440 and manufactured by Sakata Inks Corp, in the following manner. After the unfixed toner image on the paper sheet P was fixed, the paper sheet P is rubbed with the white fabric and whether unfixed toner is attached to the fabric was confirmed. In the table shown in
The table shown
Although the table shown in
The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger increases the amount of uneven gloss of an image, and that a permanent deformation equal to 4% or smaller is desirable. Based on the idea that a large clearance between the surface of the heating-fixing roller 1 and the sheet surface improves the sheet releasability, the outer surface of the heating-fixing roller 1 is also a parameter for defining the clearance. An outer diameter equal to φ28 mm or larger lowers the sheet releasability. Hence, it is desirable that the heating-fixing roller 1 have an outer diameter equal to φ28 mm or smaller.
The test results also indicated that the thickness of the elastic layer 3 of the heating-fixing roller 1 is a parameter for defining the clearance. It was found that a thickness of the elastic layer equal to 0.8 mm or smaller lowers the sheet releasability because a small thickness of the elastic layer 3 leads to a small amount of deformation of the elastic layer so that the paper sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer 3 have a thickness equal to 0.8 mm or more.
The test results also indicated that the hardness of the elastic layer 3 of the heating-fixing roller 1 is a parameter for defining the clearance. It was found that the hardness of the elastic layer equal to 8 Hs (JIS-A) or larger lowers the sheet releasability. The sheet releasability is lowered because a large hardness of the elastic layer leads to a small amount of the deformation of the elastic layer so that the sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer 3 have a hardness of 8 Hs (JIS-A) or smaller.
A large permanent deformation of the pressuring member 21 may cause a temporal change of the nip shape so that the fixing characteristics of toner to the sheet and the sheet releasability are unstable. The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger lowers the sheet releasability after the heating-fixing roller was heated and rotated for 100 hours or more. For this reason, it is desirable that the pressurizing member have a permanent deformation of 4% or smaller.
As to the pressurizing members 21 shown in
Furthermore, an elastic member that has a small thermal expansion coefficient can be used as the edge portions B so that the edge portions B serves as an insulating layer and stoppers that prevents the central portion A from stretching in the thrust direction. The application of the coating agent C to the surface of the pressurizing member 21 makes larger the thicknesses of the edge portions B than that of the central portion A, and thus, the uniform nip width can be assured. The hardness of the edge portions B that is larger than the hardness of the central portion A realizes an appropriate amount of elastic deformation of the pressurizing member 21. It is preferable that the pressurizing member 21 deform appropriately to assure a uniform nip width, by, for example, making appropriate hardness and the thicknesses of the central portion A and the edge portions B and the permanent deformations of the central portion A and the edge portions B. The use of a pressurizing belt instead of the pressurizing member can realize high-speed printing.
The surface of the pressurizing member 21 is flat, and the supporting member 22 has a round portion along the sheet direction. An elastic member of the pressurizing member 21 that has a flat surface and a supporting member 22 whose center portion is a convex portion realizes an elastic coefficient of the elastic-member center portion higher than elastic coefficients of the elastic-member entering portion and the elastic-member exit portion. The coefficient is K=EA/t, where E is a Young's modulus, A is an area of the nip portion, and t is a thickness of the elastic member in the direction of application of load. The lubricant-supplying member 27 supplies a lubricant for further reducing friction between the endless member 23 and the pressurizing member 21. As a lubricant of the lubricant-supplying member 27, one containing silicon oil or fluorine oil is generally used. The fixed image 33 is obtained after the paper sheet P passes through a nip portion formed between the heating-fixing roller 1 and the endless member 23. As the surface-covering layer 2, for example, a PFA layer is used to prevent the unfixed toner 31 to be adhered to the heating-fixing roller 1. As the elastic layer 3, for instance, silicon rubber or fluororubber is generally used. When silicon rubber is used, the elastic layer 3 may be coated with, for example, a fluorine layer or the like to improve swelling resistance. The endless member 23 is made of PFA and polyimide. As the pressurizing member 21, a pressurizing pad with the flat surface to which a pressure is applied is used. The pressurizing member 21 includes an elastic member formed of silicon rubber or fluorine rubber. As the paper sheet P, any type of recording medium such as a cut sheet can be used.
The pressure distribution obtained when the pressurizing member 21 is pressed against the heating-fixing roller 1 in each of the types shown in
Examples of deformation of the elastic layer 3 of the heating-fixing roller 1 of the fixing device 156 in the sheet direction are same as those shown in
In the evaluation tests, a full-color image was formed and fixed on a generally-used cut paper sheet with a basis weight of 55 g/cm2. As a result of the evaluation tests, it was found that the pressurizing pads of the pressurizing members having the respective shapes shown in
The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger increases the amount of uneven gloss of an image, and that a permanent deformation equal to 4% or smaller is desirable. Based on the idea that a large clearance between the surface of the heating-fixing roller and the sheet surface improves the sheet releasability, the outer surface of the heating-fixing roller is also a parameter for defining the clearance. The results also indicated that an outer diameter equal to φ27 mm or larger lowers the sheet releasability. Hence, it is desirable that the heating-fixing roller 1 have an outer diameter equal to φ27 mm or smaller.
The test results also indicated that the thickness of the elastic layer 3 of the heating-fixing roller 1 is a parameter for defining the clearance. It was found that a thickness of the elastic layer 3 equal to 0.8 mm or smaller lowers the sheet releasability because a small thickness of the elastic layer leads to a small amount of deformation of the elastic layer so that the paper sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer 3 have a thickness equal to 0.8 mm or more.
The test results also indicated that the hardness of the elastic layer 3 of the heating-fixing roller 1 is a parameter for defining the clearance. It was found that the hardness of the elastic layer 3 equal to 8 Hs (JIS-A) or larger lowers the sheet releasability. The sheet releasability is lowered because a large hardness of the elastic layer 3 leads to a small amount of the deformation of the elastic layer so that the sheet cannot be in an appropriate state at the nip exit. For this reason, it is desirable that the elastic layer 3 have a hardness of 8 Hs (JIS-A) or smaller.
A large permanent deformation of the pressuring member 21 may cause a temporal change of the nip shape so that the fixing characteristics of toner to the sheet and the sheet releasability are unstable. The results of the evaluation tests indicated that a permanent deformation equal to 5% or larger lowers the sheet releasability after the heating-fixing roller was heated and rotated for 100 hours or more. For this reason, it is desirable that the pressurizing member have a permanent deformation of 4% or smaller.
The driven roller 7a has no heat source and is driven to rotate. Each of the heating rollers 7 has a drive source to drive the endless heating member 5. Alternatively, the driven roller 7a can have a drive source. The use of the endless heating member 5 instead of the heating-fixing roller 1 allows adjustment of the nip width and the deformation of the endless heating member 5 on a side from which the paper sheet S exits from a nip portion with little change of the size of the fixing device 126. Each of the pressurizing member 21 and the supporting member 22 has a round portion. In this structure, the width of the pressurizing member 21 needs to be equal to or smaller than the width of the heating member 8.
The elastic member of the pressurizing member 21 according to the fifth and sixth embodiments has the elastic-layer center portion having an elastic modulus that is higher than elastic moduli of an elastic-layer entering portion and an elastic-layer entering portion. The elastic modulus is K=EA/t, where E is a Young's modulus, A is an area of a nip portion, and t is a thickness of the elastic member in the load application direction. In addition, the supporting member 22 has the center portion having a thickness in the load application direction larger than those of the entering portion and the exit portion, and thus, the supporting member 22 has a convex portion. Accordingly, the elastic layer of the heating-fixing roller locally deforms so that the sheet can be in an appropriate state at the nip exit. This reduces the amount of the shift of an image on a recording medium and a load applied to the recording medium, and the sheet releasability improves effectively.
In addition, the width of the elastic member according to the fifth and sixth embodiments is made appropriate so that the elastic layer of the heating-fixing roller deforms. Accordingly, the sheet can be in an appropriate state at the nip exit. This reduces the amount of the shift of an image on a recording medium and a load applied to the recording medium, and the sheet releasability improves effectively. As described, the convex portion of the supporting member 22 can be a step-shaped portion, a round portion, or an inverted V-shaped portion. The use of the heating roller realizes the entire image forming apparatus at a low cost.
The heating-fixing roller according to the fifth and sixth embodiments can have a diameter equal to φ27 mm or smaller, and an elastic layer with a hardness equal to 8 Hs (JIS-A) or smaller and a thickness equal to 0.8 mm or larger.
The elastic layer of the heating-fixing roller according to the fifth and sixth embodiments can have a permanent deformation equal to 4% or smaller.
The use of the heating belt according to the fifth and sixth embodiments realizes high-speed fixing.
The use of the fixing devices according to the fifth and sixth embodiments in an image forming apparatus makes the overall structure of the image forming apparatus simple. In addition, the fixing devices improve the releasability of the recording medium from the heating unit without application of a heavy load to the recording medium, thereby improving the quality of an image formed on the recording medium.
As described above, according to an aspect of the present invention, an amount of the shift of an image on a recording medium is reduced, a load applied to the recording medium is reduced, and sheet releasability improves effectively.
Furthermore, according to another aspect of the present invention, the sheet releasability and the image quality improves depending on a method of forming an image in the above manner.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-191110 | Jul 2006 | JP | national |
2006-191111 | Jul 2006 | JP | national |
2006-193194 | Jul 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5543905 | Oda et al. | Aug 1996 | A |
6597888 | Abe et al. | Jul 2003 | B1 |
6818591 | Arai et al. | Nov 2004 | B2 |
7480478 | Aze et al. | Jan 2009 | B2 |
20030035660 | Sugino et al. | Feb 2003 | A1 |
20050014645 | Shimbo et al. | Jan 2005 | A1 |
20050141932 | Sugiyama | Jun 2005 | A1 |
20060063671 | Kutami et al. | Mar 2006 | A1 |
20070140752 | Yamamoto et al. | Jun 2007 | A1 |
20070172278 | Yamamoto | Jul 2007 | A1 |
20070223976 | Yagi et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
1220117 | Jun 1999 | CN |
03-233586 | Oct 1991 | JP |
07-248696 | Sep 1995 | JP |
08-166734 | Jun 1996 | JP |
08-262903 | Oct 1996 | JP |
09-251252 | Sep 1997 | JP |
63-036283 | Feb 1998 | JP |
11-212389 | Aug 1999 | JP |
2001-296691 | Oct 2001 | JP |
2002-025713 | Jan 2002 | JP |
2002-207388 | Jul 2002 | JP |
2004-045780 | Feb 2004 | JP |
2005-164721 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080013993 A1 | Jan 2008 | US |