The present invention relates to a fixing device configured to fix an image onto a printing medium and an image forming apparatus having the fixing device.
An image forming apparatus forms an image on a printing medium and includes a printer, a copier, a facsimile machine, a multi-function device combining functions of the aforementioned devices, and the like.
An image forming apparatus using electrophotography emits light onto a photosensitive body charged with a predetermined electric potential and then forms an electrostatic latent image on a surface of the photosensitive body, to thereby form a visible image by supplying toner onto the electrostatic latent image. The visible image formed on the photosensitive body may be directly transferred to a printing medium or transferred to the printing medium via an intermediate transfer body, and the visible image transferred to the printing medium may be fixed onto the printing medium while being passed through a fixing device.
In general, a belt-type fixing device is equipped with a heat source, a heating member made of a belt, and a pressing member contacting tightly to the heating member to form a fixing nip. When the printing medium to which a toner image is transferred is fed between the heating member and the pressing member, the toner image is fixed onto the printing medium by heat radiating from the heating member and pressure applying to the fixing nip.
A shape of the belt is deformed in the vicinity of the fixing nip by the pressure applied by the pressing member and thus stress due to such a shape deformation of the belt is concentrated on both ends of the belt outside the fixing nip. Also, while the belt is rotating, stress is concentrated on the both ends of the belt due to shake or distortion of a belt rotation shaft. Furthermore, while the belt is rotating, the both ends of the belt may easily undergo abrasion compared to other portions of the belt due to friction between the belt and a structure and the like, which rotatably support the both ends of the belt.
As such, due to stress concentration on the both ends of the belt and friction between the belt and the supporting structure and the like, the both ends of the belt may be more easily damaged than other portions thereof.
One aspect of the present invention is to disclose a fixing device having an improved durability and an image forming apparatus having the fixing device.
Another aspect of the present invention is to provide a fixing device having an improved gloss of an image output on a printing medium and an image forming apparatus having the fixing device.
Still another aspect of the present invention is to disclose an improved fixing device configured to stably separate a printing medium therefrom while the printing medium is passed therethrough, and an image forming apparatus having the improved fixing device.
A fixing device according to the spirit of the present invention, which is configured to apply heat and pressure to a printing medium, includes a fixing belt arranged to be rotatable, a heat source configured to heat the fixing belt, a rotating member arranged to be in engagement with an outer circumferential surface of the fixing belt, a nip forming member configured to pressurize the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating member, and sliding members arranged on both ends of the fixing belt and rotated together with the fixing belt in contact with an inner surface of the fixing belt, wherein a rotation center of each of the sliding members is arranged on an upstream side compared to a rotation center of the rotating member along a feeding direction of the printing medium being fed into the fixing nip, and a shortest distance between a tangential line, which is in parallel with the fixing nip, of an outer circumferential surface of each of the sliding members and the rotation center of the rotating member is equal to or greater than a shortest distance between the fixing nip and the rotation center of the rotating member, in the vicinity of the fixing nip.
The nip forming member may include a guide member configured to guide the fixing belt in contact with the inner surface of the fixing belt, and a support member arranged on an upper portion of the guide member to support the guide member.
The nip forming member may include a guide member configured to guide the fixing belt, at least one support member arranged on an upper portion of the guide member to support the guide member, and a friction reducing plate arranged between the fixing belt and the guide member to reduce friction between the fixing belt and the guide member.
At least a portion of the support member may be accommodated on an inner side of the guide member.
A thermal insulation member arranged to cover at least a portion of the nip forming member, thereby preventing heat generated from the heat source from directly radiating to the nip forming member may be further included.
The heat source may be a halogen lamp arranged at an inner side of the fixing belt.
The heat source may be a ceramic heater coupled to a lower surface of the nip forming member.
The heat source may be a planar heating element provided on the fixing belt.
A flange member arranged on the both ends of the fixing belt to support the sliding members in an axial direction of each of the sliding members may be further included.
The flange member may include a rotation supporter configured to rotatably support the sliding members in contact with an inner circumferential surface of each of the sliding members, and a release preventer provided on both sides of the rotation supporter to prevent the sliding members from being released in the axial direction.
A ratio between a circumference of an outer surface of each of the sliding members and a circumference of the inner surface of the fixing belt may be equal to or greater than 0.15 and equal to or less than 0.98.
An image forming apparatus according to the spirit of the present invention includes a printing device configured to form an image on a printing medium, and a fixing device configured to fix the image onto the printing medium, wherein the fixing device includes a fixing belt arranged to deliver heat in contact with a surface of the printing medium, a heat source configured to generate heat for heating the fixing belt, a rotating roller arranged to press-contact to an outer circumferential surface of the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating roller, a guide member configured to guide the fixing belt, at least one support member arranged on an upper portion of the guide member to support the guide member, and sliding members arranged on both ends of the fixing belt and rotated together with the fixing belt in contact with an inner surface of the fixing belt, wherein a ratio between a circumference of an outer surface of each of the sliding members and a circumference of the inner surface of the fixing belt is equal to or greater than 0.15 and equal to or less than 0.98.
The fixing belt may be divided into a first portion in contact with the sliding members and a second portion in non-contact with the sliding members while the fixing belt is rotating, the fixing nip may be formed between the first portion and the second portion, and a radius of curvature of the first portion may be greater than a radius of curvature of at least a section of the second portion.
A curvature of a section, which is connected to the fixing nip, of the fixing belt may be greater than a curvature of at least a section of the second portion.
A shortest distance between a rotation center of each of the sliding members and an outer circumferential surface of the rotating roller may be equal to or greater than a radius of each of the sliding members.
All regions on an outer circumferential surface of each of the sliding members may be arranged at positions equal to or higher than a position of the fixing nip.
A rotation center of each of the sliding members may be arranged at an upstream side compared to a rotation center of the rotating member along a feeding direction of the printing medium being fed into the fixing nip.
A friction reducing plate arranged between the fixing belt and the guide member to reduce friction between the fixing belt and the guide member may be further included.
An image forming apparatus in accordance with one embodiment of the present invention includes a printing device configured to form an image on a printing medium, and a fixing device configured to fix the image onto the printing medium, wherein the fixing device includes a fixing belt arranged to deliver heat in contact with a surface of the printing medium, a rotating roller arranged to press-contact to an outer circumferential surface of the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating roller, and a nip forming member configured to pressurize an inner circumferential surface of the fixing belt, wherein a protrusion configured to pressurize the inner circumferential surface of the fixing belt toward the rotating roller is provided on a lower surface of the nip forming member.
The protrusion may be positioned inside the fixing nip.
The protrusion may be provided to be adjacent to an outlet side of the fixing nip.
A step portion formed in an upwardly concave shape may be provided on the lower surface of the nip forming member.
The step portion may be formed outside the fixing nip.
The step portion may be positioned to be adjacent to an outlet of the fixing nip.
The nip forming member may include a guide member configured to guide the fixing belt in contact with an inner surface of the fixing belt, a support member arranged on an upper portion of the guide member to support the guide member, and a friction reducing plate arranged between the fixing belt and the guide member to reduce friction between the fixing belt and the guide member.
The protrusion may be formed on a lower surface of the friction reducing plate.
A step portion formed in an upwardly concave shape may be provided on a lower surface of the friction reducing plate.
The protrusion may be positioned at an outlet side of the fixing nip, and the step portion may be positioned outside an outlet of the fixing nip.
The nip forming member may include a guide member configured to guide the fixing belt in contact with the fixing belt, and a support member arranged on an upper portion of the guide member to support the guide member.
The protrusion may be formed on a lower surface of the guide member.
The protrusion may be formed at an outlet side of the fixing nip.
A step portion formed in an upwardly concave shape may be provided on the lower surface of the guide member.
The step portion may be positioned outside an outlet of the fixing nip.
A fixing device in accordance with another embodiment of the present invention, which is configured to apply heat and pressure to a printing medium, includes a fixing belt arranged to be rotatable, a rotating member arranged to be in engagement with an outer circumferential surface of the fixing belt, and a nip forming member configured to pressurize the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating member, wherein a protrusion is formed on a lower surface of the nip forming member so as to maximize pressure applied to the printing medium at an outlet side of the fixing nip.
A step portion formed in an upwardly concave shape may be provided on the lower surface of the nip forming member positioned outside an outlet of the fixing nip.
The nip forming member may include a guide member configured to guide the fixing belt, and a friction reducing plate arranged between the fixing belt and the guide member to reduce friction between the fixing belt and the guide member.
The protrusion and the step portion may be provided on a lower surface of the friction reducing plate.
The nip forming member may include a guide member configured to guide the fixing belt in contact with an inner surface of the fixing belt, and the protrusion and the step portion may be provided on a lower surface of the guide member.
A fixing device in accordance with still another embodiment of the present invention, which is configured to apply heat and pressure to a printing medium, includes a fixing belt arranged to be rotatable, a heat source configured to heat the fixing belt, a rotating member arranged to be in engagement with an outer circumferential surface of the fixing belt, a nip forming member configured to pressurize the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating member, and a baffle arranged at a downstream side of the fixing nip, wherein a vertical distance between one end of the baffle adjacent to the fixing belt and the fixing nip is equal to or greater than 3 mm and equal to or less than 10 mm.
The one end of the baffle may be arranged closer to the fixing belt than the rotating member on the basis of an imaginary line extending from the fixing nip.
The other end of the baffle may be arranged closer to the rotating member than the fixing belt on the basis of the imaginary line extending from the fixing nip.
The baffle may be provided in a shape extending from the one end of the baffle toward the rotating member.
A shortest distance between the one end of the baffle and the fixing belt may be equal to or greater than 0.5 mm and equal to or less than 3 mm.
Sliding members arranged on both ends of the fixing belt and configured to be rotated together with the fixing belt in contact with an inner surface of the fixing belt may be further included.
An image forming apparatus in accordance with yet another embodiment of the present invention includes a printing device configured to form an image on a printing medium, and a fixing device configured to fix the image onto the printing medium, wherein the fixing device includes a fixing belt arranged to deliver heat in contact with a surface of the printing medium, a heat source configured to generate heat for heating the fixing belt, a rotating roller arranged to press-contact to an outer circumferential surface of the fixing belt, thereby forming a fixing nip between the fixing belt and the rotating roller, a nip forming member configured to pressurize the fixing belt, thereby forming the fixing nip between the fixing belt and the rotating roller, and a separation member arranged adjacent to the fixing belt and configured to guide a leading edge of the printing medium so as to separate from the fixing belt the leading edge of the printing medium being passed through the fixing nip, wherein one end of the separation member is arranged closer to the fixing belt than the rotating member on the basis of an imaginary line extending from the fixing nip, and the other end of the separation member is arranged closer to the rotating member than the fixing belt on the basis of the imaginary line extending from the fixing nip.
The separation member may be provided to have a shape bending in a reverse direction to a rotation direction of the fixing belt.
A pair of guide ribs configured to guide the printing medium being passed through the separation device may be further included, wherein the other end of the separation device may be arranged between the pair of guide ribs.
Fastening units configured to fasten the separation device to a main body frame may be provided on both ends of the separation device.
An image forming apparatus in accordance with still yet another embodiment of the present invention includes a printing device configured to form an image on a printing medium, a fixing device configured to fix the image onto the printing medium and having a fixing belt and a rotating roller configured to form a fixing nip between the fixing belt and the rotating roller, and a separation device arranged at a downstream side of the fixing nip, wherein the separation device is provided to have a shape bending from one end thereof arranged adjacent to the fixing device in a reverse direction to a rotation direction of the fixing belt.
In accordance with the present invention, stress concentration on the both ends of the fixing belt may be prevented so as to extend the useful life of the fixing belt.
Also, gloss and gloss uniformity of an image to be output on the printing medium may be improved by positioning a peak pressure point at a rear half of a nip where a toner transferred to the printing medium has been most molten.
Further, a wrap-jam phenomenon in which the printing medium is wound around the fixing belt or a pressing roller instead of being separated therefrom while the printing medium is passed through a fixing nip may be prevented.
Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
As shown in
The main body 10 forms an external appearance of the image forming apparatus 1, and supports a variety of components to be installed therein. The main body 10 includes a cover (not shown) provided to open and close a portion thereof, and a main body frame (not shown) for internally supporting or fastening the variety of components.
The printing medium feeding device 20 feeds the printing device 30 with a printing medium S. The printing medium feeding device 20 is equipped with a tray 22 for storing the printing medium S therein, and a pick-up roller 24 for picking up the printing media stored in the tray 22 one by one. The printing medium picked up by the pick-up roller 24 is fed toward the printing device 30 through a transport roller 26.
The printing device 30 may include an optical scanning device 40, a developing device 50, and a transfer device 60.
The optical scanning device 40 includes an optical system (not shown) to emit light corresponding to image information of yellow Y, magenta M, cyan C, and black K colors to the developing device 50 in response to a print signal.
The developing device 50 forms a toner image according to the image information input from an external device including a computer and the like. The image forming apparatus 1 according to the present embodiment is a color image forming apparatus, and thus the developing device 50 is comprised of four developing devices 50Y, 50M, 50C, and 50K, each of which has toner of a color, for example, yellow Y, magenta M, cyan C, or black K color, different from each other.
Each of the developing devices 50Y, 50M, 50C, and 50K may be equipped with a photosensitive body 52 on which an electrostatic latent image is formed on a surface thereof by the optical scanning device 40, a charging roller 54 for charging the photosensitive body 52, a developing roller 56 for supplying the toner image to the electrostatic latent image formed on the photosensitive body 52, and a supply roller 58 for supplying the toner to the developing roller 56.
The transfer device 60 transfers the toner image formed on the photosensitive body 52 to the printing medium. The transfer device 60 may include a transfer belt 62 for circularly running in contact with each of the photosensitive bodies 52, a transfer belt driving roller 64 for driving the transfer belt 62, a tension roller 66 for maintaining tension of the transfer belt 62, and four transfer rollers 68 for transferring the toner image developed on the photosensitive body 52 to the printing medium.
The printing medium is attached to the transfer belt 62 to be transported at the same speed as a running speed of the transfer belt 62. At this point, a voltage having polarity opposite to that of the toner attached to each photosensitive body 52 is applied to each transfer roller 68, such that the toner image on each photosensitive body 52 is transferred onto the printing medium.
The fixing device 100 fixes the toner image that is transferred by the transfer device 60 onto the printing medium. Detailed description of the fixing device 100 will be described later.
Meanwhile, the printing medium discharge device 70 discharges the printing medium outside the main body 10. The printing medium discharge device 70 includes a discharge roller 72, and a pinch roller 74 disposed opposite to the discharge roller 72.
Hereinafter, a width direction of the printing medium S, a width direction of a rotating member 110, and a width direction of a fixing belt 120 are defined to mean the same direction X.
As shown in
The printing medium S to which the toner image has been transferred is passed between the rotating member 110 and the fixing belt 120, and then, at this point, the toner image is fixed onto the printing medium by heat and pressure.
The rotating member 110 is arranged to be in engagement with an outer circumferential surface of the fixing belt 120 to form a fixing nip N between the fixing belt 120 and the rotating member 110. The rotating member 110 may be comprised of a fixing roller 112 receiving power from a driving source (not shown) to be rotated.
The fixing roller 112 has a shaft 114 made of a metallic material including aluminum, steel, and the like, and an elastic layer 116 to be elastically deformable to form the fixing nip N between the fixing belt 120 and the elastic layer 116. The elastic layer 116 is generally formed of a silicone rubber. It is preferable that the elastic layer 116 have a hardness equal to or greater than 50 and equal to or less than 80 based on the ASKER-C hardness so as to apply a high fixing pressure to the printing medium S in the fixing nip N, and also have a thickness equal to or greater than 3 millimeter (mm) and equal to or less than 6 mm. A release layer (not shown) may be provided on a surface of the elastic layer 116 to prevent the printing medium from sticking to the fixing roller 112.
The fixing belt 120 rotates in engagement with the fixing roller 112 to form the fixing nip N together with the fixing roller 112, and is heated by the heat source 130 to deliver heat to the printing medium S being passed through the fixing nip N. The fixing belt 120 may be comprised of a single layer made of metal, a heat-resistant polymer, and the like, or may be configured by adding an elastic layer and a protective layer to a base layer formed of metal or a heat-resistant polymer. An inner surface of the fixing belt 120 may be tinted with a black color or coated so as to facilitate heat absorption.
The heat source 130 is arranged to directly radiant-heat at least a portion of an inner circumferential surface of the fixing belt 120. In order to improve a fixing performance, at least two or more heat sources 130 may be arranged. A halogen lamp may be used as the heat source 130.
The nip forming member 140 pressurizes the inner circumferential surface of the fixing belt 120 to form the fixing nip N between the fixing belt 120 and the rotating member 110. The nip forming member 140 may be formed of a material having excellent strength including stainless steel, carbon steel, and the like.
The nip forming member 140 includes a guide member 142 for guiding the fixing belt 120 in contact with the inner surface thereof, and a support member 144 arranged on an upper portion of the guide member 142 to pressurize and support the guide member 142.
Since a bending deformation occurs significantly if the support member 144 has a low rigidity, the fixing nip N may be not evenly pressurized. Therefore, in order to reduce the bending deformation, the support member 144 includes a first support member 144a having an arcuate cross-section and a second support member 144b having a reverse arcuate cross-section, and the first support member 144a and the second support member 144b are coupled to each other so as to allow an inside of the first support member 144a to accommodate at least a portion of the second support member 144b. The first support member 144a and the second support member 144b may be formed of a structure having a high cross-sectional area moment of inertia such as an I beam shape, an H beam shape, and the like, besides the arcuate or reverse arcuate cross-section shape.
The guide member 142 is in contact with the inner surface of the fixing belt 120 to form the fixing nip N, and guides the fixing belt 120 so as to enable the fixing belt 120 to run smoothly in the vicinity of the fixing nip N.
The guide member 142 is provided in a reverse arcuate cross-section shape to accommodate the support member 144 therein. The thermal insulation member 150, which will be described later, is coupled to both lateral sides of the guide member 142.
The thermal insulation member 150 prevents heat generated from the heat source 130 from directly radiating to the nip forming member 140. For this purpose, the thermal insulation member 150 is formed of an arcuate shape to cover the nip forming member 140, and both ends of the thermal insulation member 150 are respectively coupled to the both lateral sides of the guide member 142.
A reflective layer for reflecting heat from the heat source 130 may be provided on a surface of the thermal insulation member 150 facing the fixing belt 120. The reflective layer may be formed by coating the thermal insulation member 150 with a reflective material including silver and the like. By forming the reflective layer on the thermal insulation member 150 as described above, heat radiating to the thermal insulation member 150 may be reflected toward the fixing belt 120 to promote heating thereof.
The sliding members 160a and 160b are respectively arranged on inner surfaces of both ends of the fixing belt 120 toward an outer side of the fixing nip N to support rotation of the fixing belt 120.
The sliding members 160a and 160b have a ring shape and are respectively in contact with the inner surface of the fixing belt 120 to rotate together therewith. Therefore, as the sliding members 160a and 160b rotate together with the fixing belt 120, an abrasion phenomenon of the fixing belt 120, which is made of a softer material than that of the sliding members 160a and 160b, due to friction is prevented.
A rotation center C1 of each of the sliding members 160a and 160b is arranged at an upstream side compared to a rotation center C2 of the rotating member 110 along a feeding direction P of the printing medium being fed into the fixing nip N. As shown in
All regions on outer circumferential surfaces of the sliding members 160a and 160b are arranged at positions equal to or higher than a position of the fixing nip N. As shown in
As shown in
As shown in
Also, in order to prevent the fixing belt 120 from being easily destroyed by the fatigue due to the stress concentration, a ratio between a circumference of the outer circumferential surface of each of the sliding members 160a and 160b and a circumference of the inner surface of the fixing belt may preferably be equal to or greater than 0.15 and equal to or less than 0.98.
The flange members 170a and 170b for rotatably supporting and preventing the sliding members 160a and 160b from being released in an axial direction X are respectively arranged at the both ends of the fixing belt 120. The flange members 170a and 170b are supported by frames 10a and 10b inside the main body 10.
The flange members 170a and 170b include rotation supporters 172 having a cylindrical shape for rotatably supporting the sliding members 160a and 160b in contact with inner circumferential surfaces thereof, and release preventers 174a and 174b provided on both sides of each of the rotation supporters 172 to prevent the sliding members 160a and 160b from being released in the axial direction X.
The sliding members 160a and 160b are rotatably supported by the flange members 170a and 170b and the fixing belt 120 rotates and runs at all times in contact with the sliding members 160a and 160b, so that a phenomenon of shake or distortion of the fixing belt 120 is prevented while the fixing belt 120 is rotating and running.
As shown in
The fixing nip N extends from the first portion 122 substantially in a tangential direction thereof without unevenness. The unevenness does not occur at a portion of the fixing belt 120 where the first portion 122 and the fixing nip N are connected to each other, such that stress is not concentrated on this portion.
The printing medium S should be naturally separated from the fixing belt 120 or the rotating member 110 while being passed through and then escaped from the fixing nip N, so that a separating force equal to or greater than a predetermined magnitude should be applied between the fixing belt 120 and the toner layer on the printing medium S. The separating force between the fixing belt 120 and the toner layer is related to a curvature of the fixing belt 120 corresponding to a region where the printing medium S is escaped from the fixing nip N. If the curvature of the fixing belt 120 corresponding to the region where the printing medium S is escaped from the fixing nip N is increased, the separating force between the fixing belt 120 and the toner layer is increased, whereas, if the curvature of the fixing belt 120 corresponding to the region where the printing medium S is escaped from the fixing nip N is decreased, the separating force between the fixing belt 120 and the toner layer is decreased. Therefore, by increasing the curvature of the fixing belt 120 corresponding to the region where the printing medium S is escaped from the fixing nip N, the printing medium S may be naturally separated from the fixing belt 120 or the rotating member 110.
In order to allow the printing medium S to be escaped from the fixing nip N at a boundary between the fixing nip N and the second portion 124 and to be naturally separated from the fixing belt 120 or the rotating member 110, a portion of the second portion 124 connected to the fixing nip N may have a curvature 1/R3 greater than a curvature 1/R2 of the other portion of the second portion 124.
Hereinafter, other embodiments of the fixing device will be described. The same configurations as the fixing device according to the one embodiment of the present invention described above will be given the same reference numerals.
As shown in
The friction reducing plate 146 is arranged between the fixing belt 120 and the guide member 142 to reduce friction between the fixing belt 120 and the guide member 142 while the fixing belt 120 is rotating and running
The friction reducing plate 146 is formed in a reverse arcuate shape to cover the guide member 142, and both ends of the friction reducing plate 146 are coupled to the both lateral sides of the guide member 142.
As shown in
As shown in
Although not shown in the drawings, an induction heating heater as well as the halogen heater, the ceramic heater, and the planar heating element described above may be used as the heat source.
With reference to
The protrusion 147 may be formed by downwardly protruding a portion of a lower surface of the friction reducing plate 146. In the case that the friction reducing plate 146 is not provided, the protrusion 147 may be provided on the lower surface of the guide member 142 that guides the fixing belt 120 in contact with the inner surface thereof. Hereinafter, the embodiment with the protrusion 147 provided on the lower surface of the friction reducing plate 146 will be described.
If a portion locating at a side where the printing medium S is fed into is referred to as a front half F1 of the fixing nip N, and a portion locating at a side where the printing medium S is escaped from the fixing nip N is referred to as a rear half F2 of the fixing nip N based on a center point F of the fixing nip N, the protrusion 147 may be formed on the rear half F2 of the fixing nip N.
For example, the protrusion 147 may be formed at a position locating at a distance that is approximately 80% of a total length of the fixing nip N from an inlet side thereof. The protrusion 147 may be formed to be adjacent to a tailing end of the rear half F2 of the fixing nip N so as to pressurize the printing medium S just before the printing medium S is escaped from the fixing nip N.
The printing medium S being passed through between the lower surface of the friction reducing plate 146 and the rotating member 110 may be pressurized by the protrusion 147 just before being escaped from the fixing nip N. The toner of a high temperature, which is sufficiently melted while passing through the fixing nip N, may be pressurized by the protrusion 147 to be fixed onto the printing medium S.
Before being escaped from the fixing nip N, the printing medium S may be subject to a maximum pressure at a lowest point of the protrusion 147. In this way, the toner transferred onto the printing medium S may be subject to the maximum pressure under a most melted state to be fixed onto the printing medium S.
Although the embodiment of which the protrusion 147 has been formed as one on the lower surface of the friction reducing plate 146 is shown in
In the related art, when being passed through the fixing device 100 in which the protrusion 147 is not formed, the printing medium S is subject to a maximum pressure at the center point F of the fixing nip N. When a peak pressure point exists at the center point F of the fixing nip N, the maximum pressure is applied under a state that the toner is not sufficiently softened such that a surface of an image, which is to be formed by the toner being fixed onto the printing medium S, may be not sleek to cause degradation of gloss or gloss uniformity of the image to be formed onto the printing medium S.
In the present invention, the protrusion 147 is formed on the rear half F2 of the fixing nip N such that the maximum pressure may be applied by the protrusion 147 in a state in which the toner is sufficiently melted. The printing medium S is pressurized in the state in which the toner is sufficiently melted such that a surface of an image output onto the printing medium S may be sleekly formed to improve gloss or gloss uniformity of the output image in comparison with the related art.
Temperature of the toner is gradually increased between N1 and N2. Heat is delivered by the heat source to the printing medium S being passed through the fixing nip N, and then the temperature of the toner in the form of powder, which has been transferred onto the printing medium S, is gradually increased by the delivered heat as the printing medium S is being transported from N1 to N2. The toner is continuously supplied with the heat while being passed through the fixing nip N, so that the toner may have a highest temperature just before being escaped from the fixing nip N during a section thereof.
A complex modulus I1 of the toner may be gradually reduced from N1 to N2. The complex modulus means a magnitude of elastic energy accumulated in an object or a material, and thus it is a coefficient which is gradually reduced as changing from a solid state to a liquid state. If the toner in a state of powder is supplied with heat while being transported from N1 to N2, a state change of the toner occurs from a solid state having a constant shape to a liquid gel state having a non-constant shape such that a complex modulus of the toner is reduced.
Therefore, the temperature of the toner is increased as being transported from the inlet N1 of the fixing nip N to the outlet N2 thereof and the complex modulus of the toner is reduced such that the toner becomes a state similar to the liquid gel state having a non-constant shape.
In
G1 is a graph in connection with a conventional fixing device which is not equipped with the protrusion 147. G2 is a graph in connection with the fixing device 100 of the present invention, which is equipped with the protrusion 147 at the rear half of the fixing nip N.
In the conventional fixing device, a printing medium being passed through a fixing nip is subject to a maximum pressure at a center point of the fixing nip. However, in the fixing device 100 according to the present invention, the printing medium S being passed through the fixing nip N may be subject to a greater pressure at the rear half of the fixing nip N than the center point thereof.
If a peak point of pressure applied to a printing medium in the conventional fixing device is referred to as A1, and a peak point of pressure applied to the printing medium S in the fixing device 100 according to the present invention is referred to as A2, A2 may be positioned adjacent to N2 on the rear half of the fixing nip N in comparison with A1. For example, in the fixing device 100 according to the present invention, the peak point A2 of pressure applied to the printing medium S being passed through the fixing nip N may be positioned at a point where a lowest point of the protrusion 147 exists.
In this way, the maximum pressure is applied to the printing medium S by the protrusion 147 provided on the rear half of the fixing nip N when the toner transferred onto the printing medium S is supplied with heat while being passed through the fixing nip N to become a liquid gel state of a high temperature, such that the toner may be fixed onto the printing medium S. In such a case, a surface of the toner image fixed onto the printing medium S may be sleekly formed to improve gloss and gloss uniformity in comparison with the related art.
For example, numerals such as 1, 2, 3, and etc. on an x-axis represent a first printing medium, a second printing medium, a third printing medium, and etc., respectively. Lines shown in
As can be seen from the drawings, the greater the gloss, the better the gloss of the output image by the toner. The gloss of the printing medium S resulting from the fixing device 100 according to the present invention may be higher than that of the printing medium resulting from the conventional fixing device.
For example, as shown in
As such, the protrusion 147 is formed on the rear half of the fixing nip N to apply the maximum pressure to the printing medium S in a state in which the toner has been melted sufficiently, such that the gloss of the output image of the printing medium S may be increased to enhance quality of the output image
For example, numerals such as 1, 2, 3, and etc. on an x-axis represent a first printing medium, a second printing medium, a third printing medium, and etc., respectively. Lines shown in
The smaller the gloss uniformity, the sleeker the surface of the output image resulting in forming the gloss evenly. The gloss uniformity of the output image of the printing medium S resulting from the fixing device 100 equipped with the protrusion 147 according to the present invention may be better than that of the output image of the printing medium resulting from the conventional fixing device.
For example, as shown in
As such, the protrusion 147 is formed on the rear half of the fixing nip N to apply the maximum pressure to the printing medium S in a state in which the toner has been melted sufficiently, such that the gloss uniformity of the output image of the printing medium S may be decreased to enhance quality of the output image.
With reference to
The description of the protrusion 147 disclosed in
The step portion 149 may be formed on the lower surface of the nip forming member 140, which is positioned outside the rear half of the fixing nip N. The lower surface of the friction reducing plate 146 may be formed to be stepped upwardly, or may be provided in an upwardly concave shape. In the case that the friction reducing plate 146 is not provided separately, an upwardly stepped shape or an upwardly concave shape may be formed on the guide member 142.
Pressure applied by the fixing belt 120 to the printing medium S may be abruptly reduced at the step portion 149. The fixing belt 120 may be formed to have a downward curve by the protrusion 147, and then, may be naturally bended by an outer lateral surface of the nip forming member 140 after passing through the protrusion 147.
With a structure such as an envelope of which two sheets are superposed in a vertical direction and rear halves thereof are connected to each other by means of an adhesive, the printing medium S is subject to a high pressure by the protrusion 147. While the printing medium S is transported along with the fixing belt 120 having a predetermined curvature, an offset due to a movement difference between an upper surface and a lower surface of the printing medium S occurs by pressure applied from the protrusion 147. When the offset between the upper surface and the lower surface of the printing medium S occurs, creases may occur on the printing medium.
In order to prevent creases due to an offset from occurring on the printing medium, a difference in movement distance between the upper surface and the lower surface of the printing medium S may be overcome at the step portion 149 where pressure applied to the printing medium S is low after the printing medium S has been passed through the protrusion 147.
In this way, when a printing medium such as an envelope made of a two-layer sheet and having one ends adhered to each other is used, an offset due to a difference in movement distance between an upper surface of the two-layer sheet and a lower surface thereof may be compensated by a high pressure by the protrusion 147 to allow the printing medium to be transported smoothly.
As shown in
The baffle 180 includes a main body 182 provided in a shape bending in a reverse direction to a rotation direction of the fixing belt 120, and fastening members 184a and 184b spaced apart from each other to be provided on both ends of the main body 182 in a width direction X of the rotating member 110. The fastening members 184a and 184b are coupled to the main body frame (not shown) to fasten the baffle 180 thereto. One end 182a of the main body 182 is arranged relatively closer to the fixing belt 120 than the other end 182b of the main body 182.
The one end 182a of the main body 182 is arranged closer to the fixing belt 120 than the rotating member 110 on the basis of an imaginary line Ln extending from the fixing nip N, and the other end 182b of the main body 182 is arranged closer to the rotating member 110 than the fixing belt 120 on the basis of the imaginary line Ln extending from the fixing nip N.
In a general belt-type fixing device, there may be a concern about occurrence of a wrap-jam phenomenon in which a printing medium being passed through a fixing nip is rotated together with a fixing belt in a state of attachment thereto instead of separation therefrom to be wound around the fixing belt due to an adhesive property of a toner being melted by heat from a heat source.
As described above, in this embodiment of the present invention, the one end 182a of the main body 182 of the baffle 180 is arranged closer to the fixing belt 120 than the rotating member 110 and the other end 182b of the main body 182 of the baffle 180 is arranged closer to the rotating member 110 than the fixing belt 120 on the basis of the imaginary line Ln extending from the fixing nip N, and the main body 182 of the baffle 180 is provided in the shape bending from the one end 182a to the other end 182b in a reverse direction to a rotation direction of the fixing belt 120, such that the printing medium S being passed through the fixing nip N is stably separated from the fixing belt 120 by the baffle 180 to prevent the wrap-jam phenomenon.
While being passed through the fixing nip N to be escaped therefrom, the printing medium S should be naturally separated from the fixing belt 120 or the rotating member 110, and to this end, a separating force equal to or greater than a predetermined magnitude should be applied between the fixing belt 120 and the toner layer T on the printing medium S. The separating force Ts between the fixing belt 120 and the toner layer T is relatively high in the vicinity of a position where the printing medium S is escaped from the fixing nip N, and in particular, as shown in
In order to prevent the fixing belt 120 from being damaged by the baffle 180 while the fixing belt 120 is rotating, the one end 182a of the baffle 180 should be spaced apart at a distance from the surface of the fixing belt 120. A shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 should be determined by sufficiently considering properties (a shape, a circumferential length, and a material) of the fixing belt 120, temperature of heating the fixing belt 120 by the heat source 130, and the like. For example, if the fixing belt 120 has an easily expandable property and also is used in a heated environment at a high temperature, the shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 should be set to a relatively long distance. On the contrary, if the fixing belt 120 has a greater resistance property to expansion and is used in a heated environment at a low temperature, the shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 may be set to a relatively short distance.
In this embodiment of the present invention, the baffle 180 is arranged to set the shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 to 0.5 mm to 3 mm. If the shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 is less than 0.5 mm, a phenomenon in which the fixing belt 120 expands to be damaged by the baffle 180 may occur. Otherwise, if the shortest distance ds between the fixing belt 120 and the one end 182a of the baffle 180 is greater than 3 mm, the damage due to the expansion of the fixing belt 120 may be stably prevented but a printing medium separation function of the baffle 180 may be degraded.
As shown in
The other end 182b of the baffle 180 is arranged between the pair of guide ribs 190. The printing medium S having been passed through the fixing nip N is stably separated from the fixing belt 120 by the one end 182a of the baffle 180, and then is guided between the pair of guide ribs 190 by the other end 182b of the baffle 180.
Heretofore, one configuration in which the baffle 180 is included in the fixing device 100 has been described, but the baffle 180 may be configured as a separation device 180 which is provided in isolation from the fixing device 100.
As described above, the present invention has been described in an illustrative manner The terms used herein are intended to describe the present invention and it should not be construed to limit the present invention. Many modifications and variations of the present invention in accordance with the description may be possible. Accordingly, the present invention may be freely implemented within the scope of the claims unless otherwise notes are added.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0132498 | Nov 2013 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2014/006176 | 7/9/2014 | WO | 00 |