This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2013-184893, filed on Sep. 6, 2013, in the Japanese Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
1. Technical Field
Exemplary aspects of the present invention relate to a fixing device, a belt device, and an image forming apparatus, and more particularly, to a fixing device for fixing an image on a recording medium, a belt device incorporated in the fixing device, and an image forming apparatus incorporating the fixing device.
2. Description of the Background
Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having two or more of copying, printing, scanning, facsimile, plotter, and other functions, typically form an image on a recording medium according to image data. Thus, for example, a charger uniformly charges a surface of a photoconductor; an optical writer emits a light beam onto the charged surface of the photoconductor to form an electrostatic latent image on the photoconductor according to the image data; a development device supplies toner to the electrostatic latent image formed on the photoconductor to render the electrostatic latent image visible as a toner image; the toner image is directly transferred from the photoconductor onto a recording medium or is indirectly transferred from the photoconductor onto a recording medium via an intermediate transfer belt; finally, a fixing device applies heat and pressure to the recording medium bearing the toner image to fix the toner image on the recording medium, thus forming the image on the recording medium.
Such fixing device may include a fixing rotator, such as a fixing sleeve, a fixing belt, and a fixing film, heated by a heater and a pressure rotator, such as a pressure roller and a pressure belt, pressed against the fixing rotator to form a fixing nip therebetween. As a recording medium bearing a toner image is conveyed through the fixing nip, the fixing rotator and the pressure rotator apply heat and pressure to the recording medium, melting and fixing the toner image on the recording medium.
This specification describes below an improved fixing device. In one exemplary embodiment, the fixing device includes a fixing rotator rotatable in a predetermined direction of rotation and a pressure rotator pressed against the fixing rotator to form a fixing nip therebetween through which a recording medium bearing a toner image is conveyed. A first support rotatably supports the fixing rotator at a first lateral end of the fixing rotator in an axial direction thereof. A second support rotatably supports the fixing rotator at a second lateral end of the fixing rotator in the axial direction thereof. A first stopper is mounted on the first support. A second stopper is mounted on the second support. A first skew restraint projects from an outer circumferential surface of the fixing rotator radially at the first lateral end of the fixing rotator in the axial direction thereof. A second skew restraint projects from the outer circumferential surface of the fixing rotator radially at the second lateral end of the fixing rotator in the axial direction thereof. The second skew restraint comes into contact with the second stopper as the fixing rotator moves in the axial direction thereof toward the first support.
This specification further describes an improved belt device. In one exemplary embodiment, the belt device includes an endless belt rotatable in a predetermined direction of rotation. A first support rotatably supports the endless belt at a first lateral end of the endless belt in an axial direction thereof. A second support rotatably supports the endless belt at a second lateral end of the endless belt in the axial direction thereof. A first stopper is mounted on the first support. A second stopper is mounted on the second support. A first skew restraint projects from an outer circumferential surface of the endless belt radially at the first lateral end of the endless belt in the axial direction thereof. A second skew restraint projects from the outer circumferential surface of the endless belt radially at the second lateral end of the endless belt in the axial direction thereof. The second skew restraint comes into contact with the second stopper as the endless belt moves in the axial direction thereof toward the first support.
This specification further describes an improved image forming apparatus. In one exemplary embodiment, the image forming apparatus includes an image forming device to form a toner image and a fixing device, disposed downstream from the image forming device in a recording medium conveyance direction, to fix the toner image on a recording medium. The fixing device includes a fixing rotator rotatable in a predetermined direction of rotation and a pressure rotator pressed against the fixing rotator to form a fixing nip therebetween through which the recording medium bearing the toner image is conveyed. A first support rotatably supports the fixing rotator at a first lateral end of the fixing rotator in an axial direction thereof. A second support rotatably supports the fixing rotator at a second lateral end of the fixing rotator in the axial direction thereof. A first stopper is mounted on the first support. A second stopper is mounted on the second support. A first skew restraint projects from an outer circumferential surface of the fixing rotator radially at the first lateral end of the fixing rotator in the axial direction thereof. A second skew restraint projects from the outer circumferential surface of the fixing rotator radially at the second lateral end of the fixing rotator in the axial direction thereof. The second skew restraint comes into contact with the second stopper as the fixing rotator moves in the axial direction thereof toward the first support.
A more complete appreciation of the invention and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, in particular to
With reference to
The image forming apparatus 1 is a monochrome printer for forming a monochrome toner image on a recording medium by electrophotography. Alternatively, the image forming apparatus 1 may be a color printer for forming a color toner image on a recording medium. The image forming apparatus 1 includes a sheet feeder 4, a registration roller pair 5, an image forming device 2, and a fixing device 3 arranged in this order in sheet conveyance directions B and C.
A detailed description is now given of a construction of the image forming device 2.
The image forming device 2 includes a photoconductive drum 8 serving as an image carrier. The photoconductive drum 8 is surrounded by a charging roller 18 serving as a charger, a mirror 20, a development device 22, a transfer charger 10 serving as a transfer device, and a cleaner 24 (e.g., a cleaning unit), which are arranged in this order in a rotation direction A of the photoconductive drum 8.
The mirror 20, constituting a component of an exposure device, reflects a light beam Lb emitted by the exposure device onto an exposure position 26 on an outer circumferential surface of the photoconductive drum 8 interposed between the charging roller 18 and the development device 22 in the rotation direction A of the photoconductive drum 8, thus forming an electrostatic latent image on the photoconductive drum 8.
The development device 22 contains toner and includes a development roller 22a that supplies toner to the outer circumferential surface of the photoconductive drum 8. According to this exemplary embodiment, the development device 22 contains black toner to form a black toner image. Alternatively, the development device 22 may contain toner in other colors, for example, yellow, cyan, magenta, or the like.
The cleaner 24 includes a cleaning blade 24a that removes residual toner failed to be transferred onto a sheet Pa and therefore remaining on the photoconductive drum 8 therefrom.
A detailed description is now given of a construction of the fixing device 3.
The fixing device 3 includes a fixing sleeve 31 serving as a tubular fixing rotator made of heat resistant resin, a pressure roller 32 serving as a pressure rotator, and a heater that heats the fixing sleeve 31. The pressure roller 32 is pressed against the fixing sleeve 31 to form a fixing nip N therebetween.
A detailed description is now given of a construction of the sheet feeder 4.
The sheet feeder 4 includes a paper tray 14 that loads a plurality of sheets Pa serving as recording media and a feed roller 16 that picks up and feeds an uppermost sheet Pa of the plurality of sheets Pa loaded in the paper tray 14. A conveyance roller pair conveys the uppermost sheet Pa conveyed from the feed roller 16 to the registration roller pair 5.
A detailed description is now given of a configuration of the registration roller pair 5.
As a leading edge of the uppermost sheet Pa comes into contact with a roller nip of the registration roller pair 5, the registration roller pair 5 halts the sheet Pa temporarily. After the registration roller pair 5 corrects skew of the sheet Pa, the registration roller pair 5 resumes rotation and feeds the sheet Pa in the sheet conveyance direction B to a transfer nip T formed between the photoconductive drum 8 and the transfer charger 10 in synchronism with rotation of the photoconductive drum 8. For example, at a time when a leading edge of the toner image formed on the photoconductive drum 8 corresponds to a predetermined position of the leading edge of the sheet Pa, the sheet Pa enters the transfer nip T.
A description is provided of an image forming operation of the image forming apparatus 1 to form a toner image on a sheet Pa.
As the photoconductive drum 8 starts rotating in the rotation direction A, the charging roller 18 uniformly charges the outer circumferential surface of the photoconductive drum 8. The exposure device emits a laser beam Lb modulated in accordance with image data sent from an external device such as a client computer onto the charged outer circumferential surface of the photoconductive drum 8 at the exposure position 26 thereon. The laser beam Lb scans the photoconductive drum 8 in a main scanning direction parallel to an axial direction of the photoconductive drum 8, thus forming an electrostatic latent image to be visualized into a toner image on the outer circumferential surface of the photoconductive drum 8.
The electrostatic latent image formed on the photoconductive drum 8 moves to a development position disposed opposite the development roller 22a of the development device 22 in accordance with rotation of the photoconductive drum 8. At the development position, the development roller 22a supplies toner to the electrostatic latent image on the photoconductive drum 8, visualizing the electrostatic latent image into a toner image. The transfer charger 10 applied with a transfer bias transfers the toner image from the photoconductive drum 8 onto a sheet Pa at a predetermined time when the sheet Pa enters the transfer nip T.
The sheet Pa bearing the toner image is conveyed in the sheet conveyance direction B to the fixing device 3. As the sheet Pa is conveyed through the fixing nip N formed between the fixing sleeve 31 and the pressure roller 32, the fixing sleeve 31 and the pressure roller 32 apply heat and pressure to the sheet Pa, fixing the toner image on the sheet Pa. The sheet Pa bearing the fixed toner image is conveyed in the sheet conveyance direction C to an output tray that stacks the sheet Pa.
As residual toner failed to be transferred onto the sheet Pa at the transfer nip T and therefore remaining on the photoconductive drum 8 moves under the cleaner 24 in accordance with rotation of the photoconductive drum 8, the cleaning blade 24a of the cleaner 24 scrapes the residual toner off the photoconductive drum 8, thus cleaning the photoconductive drum 8. Thereafter, a discharger (e.g., a discharging lamp) removes residual potential from the photoconductive drum 8, rendering the photoconductive drum 8 to be ready for a next image forming operation.
With reference to
A detailed description is now given of a construction of the fixing sleeve 31.
The fixing sleeve 31 is constructed of a base layer 311, an elastic layer 312 coating the base layer 311, and a release layer 313 coating the elastic layer 312. The base layer 311, made of heat resistant resin, for example, polyimide resin, has an outer diameter of about 30 mm and a thickness of about 50 micrometers. The elastic layer 312, made of a heat resistant elastic material, for example, silicone rubber, has a thickness in a range of from about 50 micrometers to about 70 micrometers. The release layer 313, having a thickness in a range of from about 5 micrometers to about 50 micrometers, is made of fluoroplastic such as tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) and polytetrafluoroethylene (PTFE) to enhance durability of the fixing sleeve 31 and facilitate separation of toner of the toner image on the sheet Pa from the fixing sleeve 31. Compared to the outer diameter of the fixing sleeve 31, the thickness of each of the base layer 311, the elastic layer 312, and the release layer 313 is substantially small. However, in
Inside the loop formed by the fixing sleeve 31 are a support 33 that supports the fixing sleeve 31 and also serves as a guide that guides the fixing sleeve 31 by contacting an inner circumferential surface of the fixing sleeve 31, a nip formation pad 34 pressing against the pressure roller 32 via the fixing sleeve 31 to form the fixing nip N, and a thermal heater 35 shifted from the fixing nip N in a circumferential direction of the fixing sleeve 31 by about 45 degrees. The thermal heater 35 is a substantially planar heater that heats the fixing sleeve 31. Each of the nip formation pad 34 and the thermal heater 35 has an arcuate outer face in contact with the inner circumferential surface of the fixing sleeve 31. That is, the arcuate outer face of each of the nip formation pad 34 and the thermal heater 35 is curved along the inner circumferential surface of the fixing sleeve 31. The support 33 is formed in substantially a tube constructed of an arch curved along the inner circumferential surface of the fixing sleeve 31, a horizontal plate disposed opposite the nip formation pad 34, and a vertical plate disposed opposite the thermal heater 35. The support 33 is made of heat resistant resin, metal such as stainless steel, or the like.
The support 33, the nip formation pad 34, and the thermal heater 35 are mounted on an exterior of the fixing sleeve 31, for example, a flange described below, to rotatably support the fixing sleeve 31 by contacting the inner circumferential surface of the fixing sleeve 31. The outer face of each of the support 33, the nip formation pad 34, and the thermal heater 35 that contacts the inner circumferential surface of the fixing sleeve 31 may be coated with abrasion resistant fluoroplastic having a decreased friction coefficient such as PFA and PTFE.
Alternatively, instead of the nip formation pad 34, the thermal heater 35 may press against the pressure roller 32 via the fixing sleeve 31 to form the fixing nip N. In this case, the support 33 may be constructed of a U-like arch and a horizontal plate disposed opposite the thermal heater 35 at the fixing nip N. The thermal heater 35 serving as a planar heater is a thermal head or a ceramic heater constructed of a planar base and a resistance heat generator mounted on the base to heat the fixing sleeve 31.
A detailed description is now given of a construction of the pressure roller 32.
The pressure roller 32, having an outer diameter of about 30 mm, is constructed of a core metal 321 and an elastic layer 322 coating the core metal 321. The core metal 321, made of iron, has a thickness of about 2 mm. The elastic layer 322, made of silicone rubber, has a thickness of about 5 mm. A fluoroplastic layer having a thickness of about 40 micrometers may coat the elastic layer 322 to facilitate separation of the sheet Pa from the pressure roller 32.
A resilient pressurization assembly presses the pressure roller 32 against the nip formation pad 34 via the fixing sleeve 31. For example, as the elastic layer 322 of the pressure roller 32 is pressed against the fixing sleeve 31, a part of the elastic layer 322 disposed opposite the nip formation pad 34 deforms throughout an axial span of the pressure roller 32 in an axial direction thereof, forming the fixing nip N having a predetermined length in the rotation direction D of the pressure roller 32. While the pressure roller 32 is pressed against the fixing sleeve 31, a driver drives and rotates the pressure roller 32 counterclockwise in
A rotatable pressurization roller 36 situated outside the loop formed by the fixing sleeve 31 is disposed opposite the thermal heater 35 via the fixing sleeve 31. A resilient pressurization assembly presses a shaft of the pressurization roller 36 against the fixing sleeve 31, thus pressing the fixing sleeve 31 against the thermal heater 35. At least a portion of the pressurization roller 36 in proximity to an outer circumferential surface thereof has elasticity so that a part of the pressurization roller 36 pressed against the fixing sleeve 31 is pressed and deformed to allow the pressurization roller 36 to rotate in accordance with rotation of the fixing sleeve 31 by friction therebetween.
The thermal heater 35 mounts a thermistor 37 serving as a temperature detector that detects the temperature of the thermal heater 35. The fixing sleeve 31 and the components disposed inside the loop formed by the fixing sleeve 31, that is, the thermal heater 35, the thermistor 37, the support 33, and the nip formation pad 34, may constitute a belt unit 31U separably coupled with the pressure roller 32. Upstream from the thermal heater 35 in the rotation direction E of the fixing sleeve 31 is a thermistor 38 disposed outside the loop formed by the fixing sleeve 31. The thermistor 38, disposed opposite an outer circumferential surface of the fixing sleeve 31, serves as a temperature detector that detects the temperature of the outer circumferential surface of the fixing sleeve 31.
The fixing device 3 further includes a power supply 40 that supplies power to the thermal heater 35 and a controller 42 operatively connected to the power supply 40 and the thermistors 37 and 38 to control the power supply 40 based on the temperature of the thermal heater 35 detected by the thermistor 37 and the temperature of the fixing sleeve 31 detected by the thermistor 38. Alternatively, the controller 42 may be situated inside the image forming apparatus 1 at a position outside the fixing device 3.
A detailed description is now given of a configuration of the controller 42.
The controller 42 (e.g., a processor) is a micro computer including a central processing unit (CPU), a read-only memory (ROM), a random-access memory (RAM), and an input-output (I/O) interface. The controller 42 controls the power supply 40 to adjust an amount of power supplied to the thermal heater 35 so that the temperature of the outer circumferential surface of the fixing sleeve 31 detected by the thermistor 38 maintains a predetermined fixing temperature at which the toner image is fixed on the sheet Pa properly. Thus, the controller 42 controls the temperature of the thermal heater 35 based on the temperature of the thermal heater 35 detected by the thermistor 37.
A sheet Pa bearing an unfixed toner image illustrated by the solid circles in
With reference to
The controller 42 actuates the heating portions 351 of the thermal heater 35 in the heating span 35a independently from the heating portions 351 in the heating span 35b based on position data of the toner image to be formed on the sheet Pa to allow the heating portions 351 corresponding to a blank area on the sheet Pa to heat the fixing sleeve 31 to a temperature lower than a temperature to which the heating portions 351 corresponding to an image area on the sheet Pa heat the fixing sleeve 31, thus heating the fixing sleeve 31 unevenly in the axial direction thereof.
With reference to
The blank area b is greater than the image area a. The image area a, as it bears the toner image, needs fixing of the toner image on the sheet Pa. Conversely, the blank area b, as it does not bear the toner image, does not need fixing of the toner image on the sheet Pa.
As an image processor sends image data having the first image formation pattern shown in
For example, when the image area a on the sheet Pa is conveyed through the fixing nip N, the controller 42 controls the power supply 40 to supply power to the thermal heater 35 in an increased amount great enough to allow the heating portions 351 to heat the fixing sleeve 31 to the fixing temperature throughout the entire span in the axial direction thereof. Conversely, when the blank area b on the sheet Pa is conveyed through the fixing nip N, the controller 42 controls the power supply 40 to supply power to the thermal heater 35 in a decreased amount great enough to allow the heating portions 351 to heat the fixing sleeve 31 to a temperature lower than the fixing temperature. When the image area a in proximity to the trailing edge of the sheet Pa is conveyed through the fixing nip N, the controller 42 controls the power supply 40 to supply power to the thermal heater 35 in the increased amount great enough to allow the heating portions 351 to heat the fixing sleeve 31 to the fixing temperature throughout the entire span in the axial direction thereof.
The controller 42 controls the power supply 40 to supply power to the thermal heater 35 such that the thermal heater 35 preliminarily heats a preliminary heating region on the fixing sleeve 31 corresponding to a preliminary heating area p indicated by shading in
For example, the controller 42 controls the power supply 40 to supply power to the heating portions 351 in the heating span 35a depicted in
The controller 42 may prohibit the power supply 40 from supplying power to the heating portions 351 disposed opposite the blank regions on the fixing sleeve 31 corresponding to the blank area b and the blank area adjacent to the image area h in the axial direction of the fixing sleeve 31. However, if the temperature of the fixing sleeve 31 is lowered excessively, the fixing sleeve 31 has not been heated to the fixing temperature when the subsequent image area a, c, g, or h on the sheet Pa comes into contact with the fixing sleeve 31. To address this circumstance, the controller 42 controls the thermal heater 35 to retain the fixing sleeve 31 at a second target temperature that is lower than a first target temperature equivalent to the fixing temperature and higher than an ambient temperature by a predetermined temperature or more. Thus, although the power supply 40 supplies power to the heating portions 351 disposed opposite the blank region on the fixing sleeve 31 corresponding to the blank area b or d on the sheet Pa, the power supply 40 supplies a reduced amount of power to the heating portions 351, saving energy.
A description is provided of movement of the thin fixing sleeve 31.
A fixing sleeve including a metal layer, even if it is skewed in an axial direction thereof as it rotates and therefore a lateral end of the fixing sleeve in the axial direction thereof comes into contact with a support that rotatably supports the fixing sleeve, the fixing sleeve is immune from buckling due to rigidity of the metal layer, attaining stable movement or rotation of the fixing sleeve. Conversely, a thin fixing belt made of polyimide resin is stretched taut across a plurality rollers to prevent buckling of a center of the fixing belt in an axial direction thereof. However, if the entire fixing belt is skewed in the axial direction thereof, one lateral end of the fixing belt in the axial direction thereof may come into contact with a support that supports the fixing belt, resulting in buckling or breakage of the fixing belt.
To address this circumstance, a skew restraint (e.g., a flange) made of silicone rubber is situated inside the fixing belt at each lateral end of the fixing belt in the axial direction thereof such that the flange abuts a lateral end of each of the plurality of rollers across which the fixing belt is stretched. Thus, the flange prevents skew of the fixing belt. However, as shown in
With reference to
A pair of flanges 45 serving as a pair of supports is mounted on a predetermined position of a pair of side plates 44, that is, a first support and a second support, of the fixing device 3, respectively. The flanges 45 rotatably support the fixing sleeve 31 at both lateral ends 31a and 31b in the axial direction of the fixing sleeve 31, respectively. Stoppers 43, that is, a first stopper and a second stopper, are attached to the flanges 45, respectively, such that the skew restraints 39 mounted on the fixing sleeve 31 at both lateral ends 31a and 31b thereof are situated outboard from the stoppers 43 in the axial direction of the fixing sleeve 31. As the fixing sleeve 31 is skewed in the axial direction thereof and the skew restraint 39 comes into contact with the stopper 43, the stopper 43 prohibits the skew restraint 39 from moving farther in the axial direction of the fixing sleeve 31, thus preventing farther skew of the fixing sleeve 31 in the axial direction thereof.
A detailed description is now given of a construction of each flange 45.
Each flange 45 includes a flange portion 451 and a tube 452. The flange portion 451 includes a flange face 451a disposed opposite a lateral edge face 31e of the fixing sleeve 31 and an outboard face 39b, that is, a lateral edge face, of the skew restraint 39. As the fixing sleeve 31 moves in the axial direction thereof, the lateral edge face 31e of the fixing sleeve 31 and the outboard face 39b of the skew restraint 39 come into contact with the flange face 451a of the flange portion 451 of the flange 45. The flange portion 451 is fastened to the side plate 44 with a fastener 48 such as a bolt and a nut. Each tube 452 projects from the flange face 451a of the flange portion 451 inboard toward a center of the fixing sleeve 31 in the axial direction thereof. The tubes 452 are inserted into the fixing sleeve 31 at both lateral ends 31a and 31b thereof, respectively. An outer circumferential surface of the tube 452 that may come into contact with the inner circumferential surface of the fixing sleeve 31 is treated with a coating 452a made of abrasion resistant fluoroplastic having a decreased friction coefficient such as PFA and PTFE.
The tube 452 is contoured into a circle or an ellipse in cross-section at a portion other than portions disposed opposite the nip formation pad 34 and the thermal heater 35 depicted in
The flanges 45 also support both lateral ends of the nip formation pad 34 and the thermal heater 35 in a longitudinal direction thereof, respectively. Power supply wiring of the thermal heater 35 and signal wiring of the thermistor 37 are electrically connected to the power supply 40 and the controller 42 through slots produced in one of the flanges 45 and one of the side plates 44.
As shown in
As shown in
As shown in
The tube 452 that comes into contact with the inner circumferential surface of the fixing sleeve 31 guides the fixing sleeve 31, thus regulating rotation orbit of the fixing sleeve 31. Accordingly, when the fixing sleeve 31 is skewed in the axial direction thereof toward one of the flanges 45, the sloped inboard face 39a of the skew restraint 39 situated in proximity to another one of the flanges 45 comes into contact with the stopper portion 43c of the stopper 43 precisely. For example, if the fixing sleeve 31 moves in the axial direction thereof toward one of the flanges 45 in proximity to one lateral end 31a of the fixing sleeve 31, the skew restraint 39 mounted on another lateral end 31b of the fixing sleeve 31 comes into contact with the stopper 43 as the fixing sleeve 31 moving in the axial direction thereof pulls the skew restraint 39 toward the stopper 43, prohibiting farther movement of the fixing sleeve 31. Consequently, the lateral end 31a of the fixing sleeve 31 is immune from buckling and further skew.
Thereafter, even if the fixing sleeve 31 moves in the axial direction thereof farther, the lateral edge face 31e of the lateral end 31a of the fixing sleeve 31 and the outboard face 39b of the skew restraint 39 come into contact with the flange face 451a of the flange 45. Thus, the flange 45 halts the fixing sleeve 31 and the skew restraint 39, preventing farther movement of the fixing sleeve 31. In this case also, the skew restraint 39 mounted on the lateral end 31b of the fixing sleeve 31 abuts the stopper portion 43c of the stopper 43 as the fixing sleeve 31 moving in the axial direction thereof pulls the skew restraint 39 toward the stopper 43, prohibiting farther movement of the fixing sleeve 31. Consequently, the lateral end 31a of the fixing sleeve 31 is immune from buckling. The stopper 43 is secured to the flange 45 through the mount plate 46. Accordingly, dimensional variation of the stopper 43 and the flange 45 is reduced during assembly of the fixing device 3. Consequently, the skew restraint 39 is positioned relative to the stopper 43 precisely.
As shown in
With the construction of the fixing device 3 described above, even when the fixing sleeve 31 rotates at high speed, the fixing sleeve 31 is immune from damage or breakage caused by skew of the fixing sleeve 31, resulting in stable operation of the fixing device 3 incorporated in the image forming apparatus 1. Even if the fixing device 3 is installed in the high speed image forming apparatus 1, the fixing device 3 performs precise fixing operation constantly, saving energy.
With reference to
As shown in
As shown in
As shown in
As shown in
As described above with reference to
In this case also, as one lateral end 31a of the fixing sleeve 31 moves in the axial direction thereof toward one of the side plates 44, the brim 71c of the skew restraint 71 mounted on another lateral end 31b of the fixing sleeve 31 abuts the stopper portion 73c of the stopper 73 as the fixing sleeve 31 moving in the axial direction thereof pulls the skew restraint 71 toward the stopper portion 73c of the stopper 73, prohibiting farther movement of the fixing sleeve 31. Consequently, the lateral end 31a of the fixing sleeve 31 is immune from buckling and farther movement or skew in the axial direction of the fixing sleeve 31. The support for supporting the fixing sleeve 31 by contacting the inner circumferential surface of the fixing sleeve 31 guides the fixing sleeve 31, thus regulating rotation orbit of the fixing sleeve 31. Accordingly, when the fixing sleeve 31 is skewed in the axial direction thereof toward one of the side plates 44, the brim 71c of the skew restraint 71 in proximity to another one of the side plates 44 comes into contact with the stopper portion 73c of the stopper 73 precisely.
Thereafter, even if the fixing sleeve 31 moves in the axial direction thereof farther, the folding 71d of the skew restraint 71 mounted on one lateral end 31a of the fixing sleeve 31 comes into contact with the receiver face 73e of the stopper 73. Thus, the receiver face 73e of the stopper 73 halts the fixing sleeve 31, preventing farther movement of the fixing sleeve 31. In this case also, the skew restraint 71 mounted on another lateral end 31b of the fixing sleeve 31 abuts the stopper portion 73c of the stopper 73 as the fixing sleeve 31 moving in the axial direction thereof pulls the skew restraint 71 toward the stopper 73, prohibiting farther movement of the fixing sleeve 31. Consequently, the lateral end 31a of the fixing sleeve 31 is immune from buckling.
The stopper 73 is secured to the side plate 44. Accordingly, the skew restraints 71 are positioned relative to the stoppers 73 precisely at both lateral ends 31a and 31b of the fixing sleeve 31, respectively. The adhesive tube 71a of the skew restraint 71 is adhered to the inner circumferential surface of the fixing sleeve 31 at each of the lateral ends 31a and 31b of the fixing sleeve 31. However, since the skew restraint 71 is slidable readily, even if it comes into contact with the stopper 73 or a support inside the loop formed by the fixing sleeve 31, that is, the support 33 depicted in
Since the skew restraint 71 is a ring coated with a thin, elastic resin film, the skew restraint 71 attains flexibility to conform to deformation of the fixing sleeve 31 caused by rotation. The skew restraint 71 may be made of an elastic material having an increased friction coefficient such as rubber to conform to deformation of the fixing sleeve 31 caused by rotation. However, as the skew restraint 71 comes into contact with the stopper 73 or the support inside the fixing sleeve 31 (e.g., the support 33 depicted in
Accordingly, while the frictional skew restraint 71 prohibits rotation of the fixing sleeve 31 at the lateral end 31a or 31b thereof, the pressure roller 32 drives and rotates the fixing sleeve 31 at the center in the axial direction thereof. Consequently, the fixing sleeve 31 may be twisted and broken. To address this circumstance, according to this exemplary embodiment, the slidable skew restraint 71, even if it comes into contact with the stopper 73, suppresses friction therebetween, preventing the fixing sleeve 31 from being twisted and broken.
Since the skew restraint 71 is adhered to the inner circumferential surface of the fixing sleeve 31, the fixing sleeve 31 is manufactured simply. For example, the skew restraint 39 depicted in
With the construction of the fixing device 3 described above, even when the fixing sleeve 31 rotates at high speed, the fixing sleeve 31 is immune from skew and resultant breakage, attaining stable fixing operation performed by the fixing device 3 installed in the image forming apparatus 1. That is, even if the fixing device 3 is installed in the high speed image forming apparatus 1, the fixing device 3 performs precise fixing operation constantly, saving energy.
As shown in
With reference to
A support tube 49 having an outer diameter slightly smaller than an inner diameter of the fixing sleeve 31 is disposed opposite the inner circumferential surface of the fixing sleeve 31, thus serving as a support that supports the fixing sleeve 31 and a guide that guides the fixing sleeve 31 by contacting the inner circumferential surface of the fixing sleeve 31 as the fixing sleeve 31 rotates in the rotation direction E. The support tube 49 has a thickness of about 1 mm and is made of metal such as aluminum. Both lateral ends of the support tube 49 in a longitudinal direction thereof parallel to the axial direction of the fixing sleeve 31 are mounted on the side plates 44 depicted in
The thermal heater 35 serving as a heater that heats the fixing sleeve 31 contacts the outer circumferential surface of the fixing sleeve 31. The thermistor 37 serving as a temperature detector that detects the temperature of the thermal heater 35 is attached to an outer surface of the thermal heater 35. The thermal heater 35 and the power supply 40 constitute an exterior heater that heats the fixing sleeve 31. The fixing device 30 does not incorporate the pressurization roller 36 shown in
The fixing device 30 having the construction described above incorporates one of the skew restraints 39 and 71 depicted in
According to the exemplary embodiments described above, the thermal heater 35 contacts the inner circumferential surface of the fixing sleeve 31 as shown in
With reference to
The image forming apparatus 100 includes the fixing device 3.
As shown in
The transfer belt 57 is an endless belt made of resin such as polyimide (PI), polyvinylidene difluoride (PVDF), ethylene tetrafluoroethylene (ETFE), and polycarbonate (PC). The transfer belt 57 is stretched taut across and supported by a plurality of rollers and rotatable counterclockwise in
A description is provided of image forming processes of the image forming apparatus 100 to form a color toner image on a sheet Pa.
The four photoconductive drums 51 of the four process cartridges 50Y, 50C, 50M, and 50K, respectively, rotate clockwise in
As the electrostatic latent image formed on the photoconductive drum 51 reaches a development position disposed opposite the development device, the development device supplies toner in the corresponding color to the electrostatic latent image, visualizing the electrostatic latent image into a toner image in the corresponding color. Thereafter, the toner image formed on the photoconductive drum 51 reaches a transfer position disposed opposite the transfer belt 57.
A feed roller 62 picks up and feeds an uppermost sheet Pa of a plurality of sheets Pa loaded on a paper tray 61 to a registration roller pair 64 through a conveyance path. The registration roller pair 64 is situated upstream from the process cartridge 50Y that forms the yellow toner image in a sheet conveyance direction. The registration roller pair 64 conveys the sheet Pa to the transfer belt 57 at a predetermined time. The sheet Pa is attracted to the transfer belt 57 and conveyed by the transfer belt 57 rotating in the rotation direction G. As the sheet Pa moves under the four photoconductive drums 51, the yellow, cyan, magenta, and black toner images formed on the photoconductive drums 51 are transferred onto the sheet Pa successively in this order such that the yellow, cyan, magenta, and black toner images are superimposed on the same position on the sheet Pa. Thus, a color toner image is formed on the sheet Pa.
For example, the transfer bias rollers 54 disposed opposite the photoconductive drums 51 via the transfer belt 57 transfer the yellow, cyan, magenta, and black toner images from the photoconductive drums 51 onto the sheet Pa, respectively. As each of the transfer bias rollers 54 is applied with a transfer voltage having a polarity opposite a polarity of toner of the toner image on the photoconductive drum 51, the transfer bias roller 54 transfers the toner image onto the sheet Pa.
Thereafter, the sheet Pa bearing the color toner image is separated from the transfer belt 57 and conveyed to the fixing device 3. In the fixing device 3, as the sheet Pa is conveyed through the fixing nip N formed between the fixing sleeve 31 and the pressure roller 32, the fixing sleeve 31 and the pressure roller 32 apply heat and pressure to the sheet Pa, fixing the color toner image on the sheet Pa. After being discharged from the fixing device 3, the sheet Pa is discharged onto an outside of the image forming apparatus 100 by an output roller pair 69. On the other hand, after the sheet Pa separates from the transfer belt 57, a belt cleaner 59 cleans an outer circumferential surface of the transfer belt 57 moving under the belt cleaner 59. Thus, a series of image forming processes performed by the image forming apparatus 100 is completed. It is to be noted that the image forming apparatus 100 may incorporate the fixing device 30 depicted in
The fixing devices 3 and 30 incorporate the skew restraint 39 or 71 mounted on each of the lateral ends 31a and 31b of the fixing sleeve 31 and the stopper 43 or 73 mounted on each of the side plates 44, preventing skew or movement of the fixing sleeve 31 in the axial direction thereof. Even if the fixing devices 3 and 30 are installed in the high speed image forming apparatuses 1 and 100, the fixing devices 3 and 30 prevent skew and resultant breakage of the fixing sleeve 31 and therefore perform precise fixing operation constantly, saving energy.
The image forming apparatus 100 shown in
According to the exemplary embodiments described above, the controller 42 is incorporated in the fixing devices 3 and 30. Alternatively, the controller 42 may be incorporated in the image forming apparatuses 1 and 100.
A description is provided of advantages of the fixing devices 3 and 30 described above.
As shown in
Accordingly, even when the fixing rotator rotates at high speed, each lateral end of the fixing rotator is immune from skew and resultant buckling and breakage, attaining stable rotation of the fixing rotator. Thus, the fixing devices 3 and 30 are installable in the high speed image forming apparatuses 1 and 100 that convey the recording medium at high speed, saving energy.
According to the exemplary embodiments described above, the fixing sleeve 31 serves as a fixing rotator. Alternatively, a fixing film, a fixing belt, or the like may be used as a fixing rotator. Further, the pressure roller 32 serves as a pressure rotator. Alternatively, a pressure belt or the like may be used as a pressure rotator.
The present invention has been described above with reference to specific exemplary embodiments. Note that the present invention is not limited to the details of the embodiments described above, but various modifications and enhancements are possible without departing from the spirit and scope of the invention. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative exemplary embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-184893 | Sep 2013 | JP | national |