The invention relates to a fixing device for fixing a wear or protection element on a bucket of an earth moving machine.
The invention also relates to a fixing method for fixing a wear or protection element in a mounted position on a bucket of an earth moving machine by means of a fixing device according to the invention.
The invention also relates to a wear or protection system for a bucket of an earth moving machine.
There is a plurality of earth moving machines, such as, for example, excavators or loaders for construction jobs, mining, etc. They generally have a shovel or bucket in which the material is collected. The shovel or bucket is subjected to significant stresses and major wear, particularly in the area of the lip (also referred to as blade). As a result, generally the lips usually have a plurality of built-in protection or wear elements:
All these elements, normally referred to as wear or protection elements, are subjected to intense mechanical requirements, plastic deformations and intense wear. For this reason, they must normally be replaced as often as necessary, when the wear sustained requires doing so. Wear or protection elements can be fixed mechanically (easier and faster to change) or they can be welded (less expensive but difficult to change, and entailing the risk of damaging the blade with the weld), depending on degree of ground abrasiveness and machine dimensions. The front guards, side guards and mechanical adapters are fixed directly on the blade by means of a securing system, so in unloading jobs in which the material and forces act on the back part of the guards and adapters, the forces that the guards, the adapters and their fixing system receive are very high, and they tend to separate these elements from the blade and break securing systems.
A particularity of the guards and some mechanical adapters is that once they are mounted, they make contact with the blade in the front part. Due to stresses resulting from the job, the front parts of the blade deteriorate and must be repaired or rebuilt for which purpose the machine must be stopped, increasing the machine operating cost and reducing machine productivity.
There are several fixing systems for fixing the wear or protection elements on the lip of the bucket, such as those disclosed in patent documents US 2014/0202049 and WO 03/080946.
During normal working conditions, the wear or protection elements are subjected to a plurality of stresses in various directions. Fixing systems in the state of the art are normally designed to suitably withstand forces acting on the wear or protection element, pushing it towards the interior of the bucket, i.e., against the lip and side of the shovel or bucket, during the material loading movement (hereinafter referred to as “loading forces”). However, wear or protection elements are also subjected to forces that tend to separate them from the lip when unloading the material from the bucket (“unloading forces”). This is particularly important in the case of wear or protection elements with a mechanical fixing system (i.e., those that are not welded to the bucket). In fixing systems in the state of the art, this stress is usually withstood by more “delicate” components of the fixing system, such as setscrews, for example. This makes it necessary to suitably size these elements and/or use stronger materials, with the subsequent price increase. Nonetheless, the presence of fractures in these elements is not uncommon.
The object of the invention is to overcome these drawbacks. This objective is achieved by means of a fixing device for fixing a wear or protection element on a bucket of an earth moving machine, characterized in that it comprises:
In fact, as will be seen with further clarity in the examples discussed below, if the wear or protection element is subjected to unloading stress, the wear or protection element may shift forward (away from the bucket), taking the stop with it, until the stop comes into contact with the front wall of the housing. The unloading stress will thereby be transmitted from the wear or protection element to the base through the stop and not through the screw, because the elastic elements are capable of absorbing this shift without actually reaching their minimum length L0 corresponding to the fully compressed state. It can thereby be assured that the screw will always be subjected only to the force generated by the elastic means and will not be subjected to external excessive stresses having values that would hardly be quantifiable and foreseeable.
The fixing device remains tightly drawn back such that the wear or protection element is also tightly drawn back permanently, which causes less or slower-acting wear on the front part of the blade, delaying changing the wear or protection element, reducing machine downtime and operating costs and increasing machine productivity.
The normal working direction of the bucket, which coincides with the aforementioned longitudinal axis of the access of the rear wall of the base and defines “forward”, which is in the direction away from the bucket, and “back”, which is in the direction towards the interior of the bucket, has been taken into account in the present description and claims.
The stop has an upper part which projects from the housing in the mounted position. This upper part is inside an opening provided in the wear or protection element and is what will receive stresses from the wear or protection element and transmit them through the aforementioned front or rear walls (which are in a lower part of the stop) to the base.
In the present description and claims, “mounted position” has been defined as that position in which the fixing device is in conditions of being used, but without it being subjected to external stresses. In other words, it is the position in which the fixing device is located once the operator fixes the wear or protection element on the lip of the bucket up to the working position.
The elastic means can be compressed to a limit, after which it is not possible to further compress them in a reversible manner. This limit is what has been considered as the state of “fully compressed elastic means”, and in this situation the length thereof is L0. The elastic means are partially compressed in the mounted position, so the length thereof is always greater than L0.
In fact, the screw is, in general, a connection element with variable length between the base and the stop, which compresses the elastic means against the rear wall of the base. In this way, the elastic force of the partially compressed elastic means pushes the screw back and, given that the screw is integral with the stop, the stop is also pushed back, that is, towards the rear wall of the base. In order to perform this function, the screw may be arranged in two different ways:
Depending on the location of the screw, the reference to measure value D2 will be the head or the nut, respectively.
Thus, when the second end of the screw is fixed on the stop and the head is faced back, this is a preferred embodiment of the invention which, in particular, consists of a fixing device of the type indicated before, characterized in that it comprises:
The stop preferably has a second through hole, coaxial with the hole, and has a nut housed in said second through hole, the nut is screwed onto said screw in said mounted position.
Alternatively, the stop has a second hole, coaxial with the hole, and an upper hole which is in contact with the second hole, and has a nut housed in the second hole, the upper hole having a cross-section suitable for allowing the passage of the nut and the nut being screwed onto the screw in the mounted position.
The base preferably has a safety wall with a safety hole, coaxial with the hole, the head of the screw being located between the hole and the safety wall in the mounted position, the distance between the hole and the safety wall being less than the length of the screw in the axial direction, and the safety hole having a helical surface coaxial with the safety hole, and the head of the screw having a second helical surface complementary to the helical surface, such that the screw is only suitable for passing through the safety hole by means of rotation when both helical surfaces are facing one another. This safety device (formed by the screw and safety wall with the safety hole, with the corresponding helical surfaces) allows preventing the screw from coming out of the fixing device in the event that said screw should become unscrewed.
The fixing device advantageously comprises positioning means for positioning the screw in the mounted position. The operator can therefore know in a simple manner when the screw (and therefore the entire fixing device) has reached the mounted position.
When the first end of the screw (that is, the head) is fixed on the stop and the second end of the screw is faced back, this is another preferred embodiment of the invention which, in particular, consists of a fixing device of the type mentioned before, characterized in that it comprises:
In this embodiment, the access provided in the rear wall may substantially be shaped as an open duct at the lower part thereof, or may be a hole with a diameter sufficiently high for allowing the passage of the head of the screw, but sufficiently low for preventing the passage of the elastic means. The preferred solution is that the access would actually be a hole, given that it is thereby possible to fix the base on the bucket without the screw and it is possible to subsequently put the screw in place. In turn, in order to fix the first end (the head) of the screw on the stop, the stop preferably includes a cavity suitable for housing the head of the screw and a rear hole aligned with the access, through which the bolt shank will come out, but that will prevent the head from coming out. This cavity has a side opening, at the lower part of the stop, through which it is possible to introduce the head in the cavity and the shank in the rear hole. Preferably, the fixing device has a second nut adjacent to the nut at the side opposite the elastic means. This second nut allows to lock the nut in a certain position and to prevent it from moving as a result of the vibrations and shocks derived from the use of the earth moving machine. Another advantageous solution is replacing the nut and the second nut by a self-locking nut.
The screw advantageously has a threaded end part and a non-threaded intermediate part. Thereby the threaded end part limits the maximum screwing that the operator must perform when mounting the fixing device. In fact, it is necessary that the elastic means are not excessively compressed while mounting the fixing device because this affects the value of the distance D2. By limiting the threaded segment of the screw, it is assured that the operator will never tighten the elastic means too much. The operator must simply screw it in as far as the threaded segment of the screw allows, and knows that the remaining distance D2 is suitable for the fixing device to work correctly. In other words, the mounted position is defined when the nut reaches the end of the threaded part of the screw. As can be seen, the presence of the intermediate part provides the function of positioning means, which allow positioning the screw (or the nut) in the mounted position. However, it would be possible to use any other positioning means, such as position marks in the base, for example, which can be used as a reference for suitably positioning the head of the screw (or the nut), or even, for example, a torque wrench tared to a torque having a pre-established value (or even the operator simply knowing how many turns to be given to the screw or to the nut).
The screw preferably has a threaded part in which the screw thread has a rectangular cross-section. Given the working conditions of the screw, in which it will never have to withstand stresses greater than those generated by the elastic means, the screw thread having a rectangular cross-section is the most suitable because it is stronger and the threading does not deteriorate as quickly because it has a larger section.
The elastic means are advantageously a coil spring. The coil spring has a particularly simple and effective geometry which can furthermore be mounted around the screw shank, which simplifies handling and mounting.
In some circumstances when the mechanical requirements are more demanding, the wear or protection element is prone to move somewhat with respect to the stop, whereby fines enter the system and build up therein, being able to shift the stop upwards and bending the screw. If the screw is bent, it becomes very hard or impossible to demount the wear element, whereby it would have to be removed with a blowtorch, ruining the base, the stop and the wear element. To solve this problem, the stop is preferably provided with at least one rib, preferably on the rear face thereof, the upper edge of which is below the lower edge of the opening of the wear or protection element in said mounted position, and it has the function of coming into contact with an inner wall of the wear or protection element (preferably with the lower edge itself of said opening) when the stop is prone to be lifted up, thereby preventing this movement.
Another object of the invention is a fixing method for fixing a wear or protection element in a mounted position on a bucket of an earth moving machine by means of a fixing device according to the invention (where the second end of the screw is fixed on the stop), the wear or protection element comprising an opening,
Similarly, in case that the first end of the screw (the head) is fixed on the stop, the object of the invention is also a fixing method for fixing a wear or protection element in a mounted position on a bucket of an earth moving machine by means of a fixing device according to the invention, said wear or protection element comprising an opening,
The method can include a prior step of fixing the base on the bucket (by welding, for example), although this prior step may not be necessary, for example in the case of replacing a damaged wear or protection element and observing that the base does not require being changed.
Another object of the invention is a wear or protection system for a bucket of an earth moving machine, characterized in that it comprises a fixing device according to the invention (where the second end of the screw is fixed on the stop) and a wear or protection element with an opening, where in a mounted position
Similarly, another object of the invention is a wear or protection system for a bucket of an earth moving machine, characterized in that it comprises a fixing device according to the invention (where the first end of the screw is fixed on the stop) and a wear or protection element with an opening, where in a mounted position
Other advantages and features of the invention can be seen from the following description in which preferred non-limiting embodiments of the invention are described in reference to the attached drawings, where:
As will be seen below in the detailed description of embodiments of the invention, the wear or protection element depicted is a front blade guard. However, as has already been indicated above, the wear or protection element can be any other element compatible with the fixing device according to the invention, such as side guards and mechanical adapters, for example (see
The base 7 (also see
The stop 9 (also see
The guard 5 is mounted on the lip 1 such that the base 7 is housed between the interior of the guard 5 and the upper face of the lip 1, and such that the housing 15 is below an opening 37 arranged on the upper face of the guard 5. The stop 9 is introduced through this opening 37 such that the lower part 25 of the stop 9 is housed in the housing 15, whereas the upper part 23 of the stop 9 projects from the housing 15 and is housed in the opening 37. The screw 11, with the spring 13, is introduced in the rear part of the guard 5 and base 7, goes through the hole 21 and the second hole 31, and is screwed into the nut 35.
The stop 9 shown in
In the event that the guard 5 is subjected to loading forces, these loading forces are directly transmitted to the lip 1. In the case of plastic deformation or wear of the front edge 39 of the lip 1 and/or of the inner edge 41 of the guard 5, the tension of the spring 13 allows compensating for this wear or deformation and maintaining said contact. In other words, the guard is tightly drawn back at all times, thereby eliminating the gap that is generated due to wear. It can therefore be seen that distance D1 increases. However, distance D2 increases by the exact same amount. Therefore, if the condition D2−L0>D1 is met in the initial mounted position (with new elements not yet subjected to wear), this condition continues to be met even though the elements have been subjected to wear.
In the event that the guard 5 is subjected to unloading forces, the guard 5 is prone to shift away from the bucket, taking the stop 9 with it. This causes the screw 11 to also shift away from the bucket and the spring 13 to be further compressed, thereby reducing the length thereof. However, at no time does the spring 13 reach its fully compressed state, so the stop 9 can shift away from the bucket until coming into in contact with the front wall 17 of the housing 15. The unloading forces are thereby transmitted from the guard 5 to the base 7 through the stop 9, and the screw 11 is not subjected to these unloading forces.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2016/070108 | 2/22/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/135360 | 9/1/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2618873 | Hostetter | Nov 1952 | A |
4611418 | Launder | Sep 1986 | A |
6209238 | Ruvang | Apr 2001 | B1 |
6240663 | Robinson | Jun 2001 | B1 |
7219454 | Maher | May 2007 | B2 |
20140202049 | Ruvang | Jul 2014 | A1 |
20140360060 | Kunz | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2241683 | Oct 2010 | EP |
2003080946 | Oct 2003 | WO |
Entry |
---|
International Search Report, PCT/ES2016/070108, dated May 20, 2016. |
Number | Date | Country | |
---|---|---|---|
20180044895 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/ES2015/070119 | Feb 2015 | US |
Child | 15552361 | US |