The present invention relates to a fixing device for fixing a toner image on a paper sheet, the device being provided with a heat roller having a heat source, a pressure roller having an elastic layer on its surface and being in pressurized contact with the heat roller, and relates to an image forming device equipped with the same, such as a copy machine, a printer, a facsimile, or the like.
Generally, in image forming devices such as copy machines, printing devices, facsimiles, or the like, that use electrophotographic methods, light based on an image read by an image scanner, is irradiated by an exposing device onto a surface of a photoreceptor that is an image holding body, an electrostatic latent image of this image is formed, and after that, toner is attached to this electrostatic latent image by a developing device, to form a toner image. After the toner image is transferred by a transferring device onto a paper sheet, the paper holding the toner image is sandwiched and fed into a nip formed by a pressure roller and a heat roller arranged in a fixing device, and the toner image is fixed to the paper by heating and pressurizing.
Furthermore, in recent years, with a view towards energy saving, fixing devices are proposed in which, by reducing diameters of the heat roller and the pressure roller in the fixing devices, with regard to heating quantity of a heat source for heating the heat roller, the heat quantity of the heat roller and the pressure roller is made relatively small. More specifically, for example, a fixing device is disclosed that is provided with a heat roller consisting of a small sized hollow roller made of metal with an external diameter of 15 mm or less and a wall thickness of 1 mm or less, and a small sized pressure roller having an elastic layer with an external diameter of 15 mm or less.
Here, as in the abovementioned conventional fixing device, when the diameters of the heat roller and the pressure roller are made small, it becomes difficult to ensure the width of the nip formed by the heat roller and the pressure roller. Consequently, implementing measures such as reducing the hardness of the elastic layer of the pressure roller, increasing the pressurizing force of the pressure roller acting on the heat roller, or the like, are necessary. However, in conditions with these types of measure implemented, if the pressure roller is in continuous pressurized contact with the heat roller, due to insufficient strength of the elastic layer of the pressure roller, or the like, as shown in
Consequently, the present invention was made in view of the abovementioned problems, and has as an object the provision of a fixing device and an image forming device equipped with the same, that has a simple structure, that avoids occurrences of cracking in the elastic layer of the pressure roller, and in which the pressure roller has a long operating life.
In order to realize the abovementioned object, in a first aspect of the present invention, a fixing device comprises a heat roller having a heat source, and a pressure roller having a shaft and an elastic layer formed on the periphery thereof and forming, by being in pressurized contact with the heat roller, a nip through which paper sheets pass, wherein a concave region is arranged on an end face of the elastic layer in a longitudinal direction of the pressure roller. Here, in the first aspect of the fixing device according to the present invention, the concave region may be formed in an approximate arc shape in cross-section.
In a second aspect of the present invention, the fixing device comprises the heat roller having the heat source, and the pressure roller having the shaft and the elastic layer formed on the periphery thereof and forming, by being in pressurized contact with the heat roller, the nip through which the paper sheets pass, wherein an end portion of the shaft of the pressure roller is formed in a tapered shape, with an outer diameter gradually decreasing, from inside towards outside in the longitudinal direction of the pressure roller.
In a third aspect of the present invention, the fixing device comprises the heat roller having the heat source, and the pressure roller having the shaft and the elastic layer formed on the periphery thereof and forming, by being in pressurized contact with the heat roller, the nip through which the paper sheets pass, wherein the concave region, formed in an approximate arc shape in cross-section, is arranged on the end face of the elastic layer in the longitudinal direction of the pressure roller, and the end portion of the shaft of the pressure roller is formed in a tapered shape, with the outer diameter gradually decreasing, from the inside towards the outside in the longitudinal direction of the pressure roller.
Furthermore, an image forming device according to the present invention comprises the fixing device as in any of the above descriptions.
According to the first aspect of the present invention, the fixing device is configured so that the concave region is provided on the end face of the elastic layer in the longitudinal direction of the pressure roller, and in particular, the concave region is formed in an approximate arc shape in cross-section. Accordingly, the pressure roller can be realized with a simple structure, in which occurrences of cracking in the elastic layer of the pressure roller can be avoided, and with a long operational life.
Furthermore, according to the second aspect of the present invention, the fixing device is configured so that the end portion of the shaft of the pressure roller is formed in a tapered shape, with the outer diameter gradually decreasing, from the inside towards the outside in the longitudinal direction of the pressure roller. Accordingly, the pressure roller can be realized with a simple structure, in which occurrences of cracking in the elastic layer of the pressure roller can be avoided, and with a long operational life.
Furthermore, according to the third aspect of the present invention, the fixing device is configured so that the concave region, formed in an approximate arc shape in cross-section, is arranged on the end face of the elastic layer in the longitudinal direction of the pressure roller, and the end portion of the shaft of the pressure roller is formed in a tapered shape, with the outer diameter gradually decreasing, from the inside towards the outside in the longitudinal direction of the pressure roller. Accordingly, the pressure roller can be realized with a simple structure, in which occurrences of cracking in the elastic layer of the pressure roller can be assuredly avoided, and with an assuredly long operational life.
Furthermore, since the image forming device according to the present invention comprises the fixing device as in any of the above descriptions, it is possible to obtain the same effects as the fixing device in any of the above descriptions.
Below, specific embodiments of the present invention are explained, referring to the figures.
As shown in
The paper feeder 2 comprises a plurality of paper feeding cassettes 7a to 7d (four cassettes in the present embodiment), in which paper 9 is accommodated, and is configured so that the paper 9 is discharged to the paper feeding system 3 side from a cassette selected from among the plurality of paper feeding cassettes 7a to 7d, by rotation of a feed roller (or a pickup roller) 8, and the paper 9 is assuredly fed, one sheet at a time, to the paper feeding system 3.
The paper 9 fed by the paper feeding system 3 is fed, via a paper supply path 10, towards the image forming unit 4. The image forming unit 4 forms a predetermined toner image on the paper 9, by an electrophotographic process, and comprises a photoreceptor 11 that is an image holding body axially supported with rotation enabled in a predetermined direction (an arrowed direction in the figure), and, around the photoreceptor 11 along the direction of rotation thereof, a charging device 12, an exposing device 13, a developing device 14, a transferring device 15, a cleaning device 16, and a neutralizing device 17.
The charging device 12 comprises a charging wire to which high voltage is applied, and by giving a predetermined electrical potential to the surface of the photoreceptor 11 by corona discharge from the charging wire, the surface of the photoreceptor 11 is uniformly charged. By the exposing device 13 irradiating light, based on image data of a document read by the image reading device 6, onto the photoreceptor 11, the surface potential of the photoreceptor 11 is selectively attenuated, and an electrostatic latent image is formed on the surface of the photoreceptor 11. Next, toner is attached to the abovementioned electrostatic latent image by the developing device 14, the toner image is formed on the surface of the photoreceptor 11, and the toner image on the surface of the photoreceptor 11 is transferred, by the transferring device 15, to the paper 9 supplied between the photoreceptor 11 and the transferring device 15.
The paper 9 to which the toner image has been transferred is fed from the image forming unit 4 to the fixing device 5. This fixing device 5 is disposed on the downstream side in the paper feed direction of the image forming unit 4, and as shown in
A halogen lamp, for example, or the like, is used for the heat source 22 of the heat roller 18, and the heat source 22 in configured to heat a shaft 23, made of metal. Furthermore, the heat roller 18 is configured to be rotatable in the direction of an arrow A in the figure.
In addition, the pressure roller 19 comprises an elastic layer 25, arranged on the periphery of the shaft 24 that is made of metal, as a surface layer thereof, and is configured to be in pressurized contact with the heat roller 18, by a biasing means, not shown in the figure. Moreover, the length of the elastic layer 25 in a longitudinal direction X (see
In the image forming unit 4, when the paper 9, on which the toner image has been transferred, passes through the nip N of the abovementioned heat roller 18 and the pressure roller 19, the configuration is such that the toner melts by heat from the heat source 22 of the heat roller 18, and the toner image is fixed on the paper 9.
Next, the paper 9 from the image forming unit 4, on which the image forming has been performed in the fixing device 5, is ejected by a pair of ejection rollers 20 onto an ejection tray 21. Moreover, after the abovementioned transferring, the toner remaining on the surface of the photoreceptor 11 is removed by the cleaning device 16, and the residual electric charge on the surface of the photoreceptor 11 is removed by the neutralizing device 17. The photoreceptor 11 is again charged by the charging device 12, and image formation the same as below is performed.
Here, the distinguishing feature of the present embodiment is the shape of an end face of the elastic layer 25 in the longitudinal direction of the pressure roller 19. Below, this feature is explained in detail, referring to the figures.
As shown in
At this time, as shown in
Accordingly, the occurrence of cracking in the abovementioned end face 25a, towards the joining face 27 of the shaft 24 and the elastic layer 25, can be avoided, and additionally, long operative life can be realized for the pressure roller 19.
Furthermore, as shown in
As in the above explanation, the present embodiment is configured such that the concave region 25b is arranged on the end face 25a, and also the concave region 25b is formed in an approximate arc shape in cross-section. Accordingly, the pressure roller 19 can be realized with a simple structure, in which the occurrence of cracking in the elastic layer 25 of the pressure roller 19 can be avoided, and with long operational life.
Next, Embodiment 2 of the present invention is explained.
The present embodiment is distinguished by the shape of the end portion 24a of the shaft 24 in a longitudinal direction of the pressure roller 19. As shown in
At this time, as shown in
Accordingly, similar to Embodiment 1 described above, the occurrence of cracking in the abovementioned end face 25a, towards the joining face 27 of the shaft 24 and the elastic layer 25, can be avoided, and also, long operative life can be realized for the pressure roller 19.
Furthermore, in the present embodiment, since the end portion 24a only of the shaft 24 is formed in the above described tapered shape, even in cases in which the pressure roller 19 is put in pressurized contact with the heat roller 18 by high fixing pressure (for example, a load of 400 N at the nip N), the pressure roller 19 does not bend in a Y direction (see
As explained above, the present embodiment is configured such that the end portion 24a of the shaft 24 is formed in a tapered shape with the outer diameter gradually decreasing, from the inside towards the outside in the longitudinal direction X of the pressure roller 19. Accordingly, the pressure roller 19 can be realized with a simple structure, in which the occurrence of cracking in the elastic layer 25 of the pressure roller 19 can be avoided, and with long operational life.
Furthermore, the abovementioned embodiments are merely explanatory examples, and the scope of the present invention is not limited by the abovementioned embodiments; form, size, material, and the like, of each component part are not excluded from the scope of the present invention and may be varied, within the spirit of the invention.
For example, as shown in
Moreover, in Embodiment 1 described above, the concave region 25b is formed in an approximate arc shape in cross-section; however, if the shape is such that occurrence of cracking in the elastic layer 25 of the pressure roller 19 can be avoided, and long operational life can be realized for the pressure roller 19, any configuration is acceptable. For example, the concave region 25b can be formed in an approximate V-shape in cross-section. Furthermore, the end face 25a of the elastic layer 25 may be configured with a plurality of concave regions 25b having an approximate arc shape in cross-section.
In addition, in the embodiments described above, a digital copying machine is shown as one example of the image forming device; however, clearly, other image forming devices such as facsimiles, printers, or the like, are also feasible.
Number | Name | Date | Kind |
---|---|---|---|
5319430 | DeBolt et al. | Jun 1994 | A |
7218884 | Miyazaki | May 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070092314 A1 | Apr 2007 | US |