Fixing device having connection member for supplying AC current to an electromagnetic induction coil

Information

  • Patent Grant
  • 6522846
  • Patent Number
    6,522,846
  • Date Filed
    Tuesday, August 28, 2001
    23 years ago
  • Date Issued
    Tuesday, February 18, 2003
    21 years ago
Abstract
An electrophotographic fixing device allowing a flow of an AC current through an electromagnetic induction coil arranged close to a heating roller having a metal layer formed of a conductor and allowing the heat generation of the heating roller to heat a to-be-fixed members. The fixing device comprises a circuit board for outputting the AC current from an output terminal and passing the current through the electromagnetic induction coil. A connection plate having a thickness twice or more the current penetration depth and having one end side fixed by a fastening screw to the output terminal of the circuit board, and a male-side connection terminal provided on the other end of the plate metal. A female-side connection terminal provided at an end of a leader line of the electromagnetic induction coil is detachably connected to the male-side connection terminal.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to fixing device provided, for example, on an image forming apparatus and adapted to fix an image of a developing agent transferred to a sheet.




2. Description of the Related Art




This kind of fixing device includes a type adapted to set a pressure applying roller in pressure contact with a heating roller. A sheet with an image of a developing agent transferred thereto is fed to between the heating roller and the pressure applying roller and, by doing so, the image of the developing agent is heated/fused on a sheet and fixed. The heating roller comprises, for example, a metal roller and a tungsten halogen lamp, etc., provided within the metal roller.




Incidentally, the heating source of the tungsten halogen lamp, etc., once converting electric energy to light and heat, heats the metal roller with radiation heat and the heat efficiency is as low as about 60 to 70%. Therefore, it takes more time to start up the fixing operation and a longer wait time is required.




In order to shorten the start-up time, a fixing technique has been developed which uses an induction heating. For example, JPN PAT APPLN KOKAI PUBLICATION NO. 59-33476 discloses the techniques using a roller having a thin metal layer on the outer periphery of a cylinder-like ceramic and performing heating by passing an induction current through the thin metal layer of the roller with the use of a conductive coil. The terminals of the leader lines of the conductive coil are fixed by a fastening means, such as a fastening screw, to the output terminal of a circuit board for outputting a high frequency wave.




Incidentally, the induction heating technique is not restricted to the fixing device and also is adapted in a rice cooker, etc. Since, in the case of the rice cooker, there is almost no need for the maintenance of the induction heating device and its exchange, no problem arises even if the leader line terminals of the coil are fixed by the fastening means, such as the fastening screw, to the output terminals of the circuit board.




In the case of the fixing device, on the other hand, the maintenance and exchange are often necessary. In the case where the leader line terminals of the coil are fixed by the fastening means, such as the fastening screw, to the output terminals of the circuit board, it is necessary to, during the maintenance, exchange, etc., loosen or tighten the fastening means each time and it takes more time to do so.




Further, the tightening strength of the fastening means differs depending upon the operators and it is not possible to achieve a uniform tightening strength. And there is sometimes a possibility that the fastening means will come off if it is too loose and that the circuit board will be destroyed if the fastening means is too tight.




Further, a larger current is supplied and a contact resistance varies depending upon the tightening strength, there being a risk that there occurs a variation in the heating characteristic.




It is to be noted that the above-mentioned problem can be eliminated if the circuit board's output terminals and leader lines are detachably connected through a connector.




However, the conductive coil and leader line, being normally formed by twisting a plurality of (for example, 19) wires, are strong in rigidity. In the case where, therefore, the leader lines are connected in an excessively bent state, the reaction force of the leader line acts on a connection site between the output terminal and the connector, thus causing the connection site to be gradually loosened to bring it to a dangerous state. For this reason, it was usually not possible to connect the leader line's terminal of the conductive coil to the corresponding output terminal of the circuit board directly by a connector.




The present invention is achieved with the above situation in view and the object of the present invention is to provide a fixing device in which one end portion of a conductive connection member is fixed by a fastening means to the output terminal of the circuit board and the leader lines of the coil are detachably connected through a connector to the other end portion of the connection member to allow the attachment and detachment to be made between the output terminal and the leader line of the coil in one operation and, even if the connector is used, it is possible to maintain a better connection state between the output terminal and the leader line of the coil.




BRIEF SUMMARY OF THE INVENTION




The present invention provides an electrophotographic fixing device allowing a flow of an AC current through an electromagnetic induction coil arranged close to an endless member having a metal layer formed of a conductor and allowing the heat generation of the endless member to heat a to-be-fixed member, comprising a circuit board for outputting the current from an output terminal and passing the current through the electromagnetic induction coil, a conductive connection member having one end side fixed by a fastening means to the output terminal of the circuit board, a first connection terminal provided on the other end of the connection member, and a second connection terminal provided at a leader line end of the electromagnetic induction coil and detachably connected to the first connection terminal.




The present invention provides an electrophotographic fixing device allowing a flow of an AC current through an electromagnetic induction coil arranged close to an endless member having a metal layer formed of a conductor and allowing the heat generation of the endless member to heat a to-be-fixed member, comprising a circuit board for outputting the AC current from an output terminal and passing the current through the electromagnetic induction coil, a conductive connection member having one end side fixed by a fastening means to the output terminal of the circuit board, a first connection terminal provided at the other end of the connection member, and a second connection terminal provided at a leader line end of the electromagnetic induction coil and detachably connected to the first connection terminal, wherein the connection member has its thickness made two times or more the current penetration depth.




Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.





FIG. 1

is a schematic view generally showing an electronic copying apparatus according to one embodiment of the present invention;





FIG. 2

is a front view in cross-section showing a fixing device;





FIG. 3

is a side view in cross-section showing the fixing device;





FIG. 4

a perspective view showing the fixing device;





FIG. 5

is a side view showing a connection configuration between coil leader lines of an induction heating device and the output terminals of a circuit board;





FIG. 6

is a perspective view showing a connection configuration between the coil leader lines of the induction heating device and the output terminal of the circuit board;





FIG. 7

is a front view showing a circuit board of the induction heating device;





FIG. 8

is a side view in cross-section showing the circuit board of the induction heating device; and





FIG. 9

is an enlarged view showing a connection configuration between the output terminal of the circuit board and a plate metal.











DETAILED DESCRIPTION OF THE INVENTION




The embodiment of the present invention will be described below with reference to the accompanying drawings.





FIG. 1

shows a digital copying apparatus having an apparatus body


1


. Within the apparatus body


1


a scanner


2


and image forming section


3


are provided, the scanner


2


serving as a scanning means and the image forming section serving as an image forming means as will be later described.




A document glass


5


made of transparent glass is provided on the upper surface of the apparatus body


1


to allow a document


5


to be placed thereon. Further, an auto-document feeder


7


(hereinafter referred to as an ADF) is arranged above the upper surface of the apparatus body


1


to enable the document to be automatically fed onto the document glass


5


.




The scanner


2


arranged within the apparatus body


1


has a light source


9


, such as a fluorescent lamp, for illuminating the document placed on the document glass


5


and a first mirror


10


for deflecting light which is reflected from the document toward a predetermined direction. The light source


9


and first mirror


10


are mounted on a first carriage


11


arranged below the document glass


5


. Further, a second carriage


12


is arranged below the document glass


5


and is movable parallel to the document glass


5


. On the second carriage


12


, second and third mirrors


13


and


14


are mounted at a right angle with respect to each other to allow the reflected light from the document which is deflected on the first mirror


10


to be sequentially deflected. The second carriage


12


is driven relative to the first carriage


11


and moved at a speed of ½ relative to the first carriage


11


along the document glass


5


.




Further, below the document glass


5


an image formation lens


16


and light receiving sensor


18


are arranged, the image formation lens allowing the reflected light from the third mirror


14


on the second carriage


12


to be focused and the light receiving sensor


18


receiving the light focused by the image formation lens


16


.




On one hand, an image forming section


3


has a rotatable photosensitive drum


21


on one side of a substantially middle zone of the apparatus body


1


. Around the photosensitive drum


21


, an electric charger


22


, developing unit


23


, transfer charger


24


, separation charger


25


, separation claw


26


, cleaning unit


27


and discharger


28


are sequentially arranged along the rotation direction of the photosensitive drum.




On the other side of the middle zone of the apparatus body


1


, a polygon mirror


31


is rotatably mounted to scan the photosensitive drum


21


with information light corresponding to image information received by the light receiving sensor


18


.




In the lower side zone of the apparatus body, cassettes


33


are so provided as to be insertable and withdrawable. Copy sheets are stored in the cassettes


33


. On an upper area of one side of he cassette


33


, a corresponding pick-up roller


35


is provided to separate/pick up the copy sheets one by one. Within the apparatus body


1


, a conveying path


34


is provided in a way to upwardly extend from the cassette


33


past a transfer section situated between the photosensitive drum


21


and the transfer charger


24


. In the conveying path


34


, a conveying roller pair


37


and register roller pair


38


are provided, the conveying roller pair


37


conveying the copy sheet from the cassette


33


in a sandwiched way and the register roller pair


38


arraying the copy sheet thus conveyed.




On a downstream side of the transfer section of the conveying path


58


a fixing device


39


for fixing an image transferred onto the copy sheet and a discharge roller pair


40


are arranged. A discharge tray


41


receives the sheet discharged toward the discharge direction of a discharge roller pair


40


.




It is to be noted that, on the one side zone of the apparatus body, an automatic double-sided device is provided which inverts the copy sheet passed through the fixing device


39


and again feeds it to the image transfer section.




The image forming operation will now be explained below.




A document placed on the document glass


5


is subjected by the scanner


2


to light exposure. The light reflected from the document is passed through the first to third mirrors


10


,


13


,


14


and image formation lens


16


and received by the light receiving sensor


18


and read out as image information. This image information is photoelectrically converted as information light and sent to the polygon mirror


31


. Through the rotation of the polygon mirror


31


, the corresponding light is scanned onto the photosensitive drum


21


.




The surface of the photosensitive drum


21


is uniformly charged by the electric charger


22


and, through the scanning with the information light, an electrostatic latent image is formed in a form corresponding to the document image. The electrostatic latent image is set to the developing unit


23


through the rotation of the photosensitive drum


21


and a toner is fed from the developing unit


23


to provide a toner image.




On the other hand, at this time, the sheet is picked up by the pick-up roller


35


from the cassette


33


and sent onto the conveying path


34


.




The sheet is sent through the conveying roller pair


37


to the register roller pair


38


and, after the leading edge of the sheet is arrayed, sent onto the image transfer section. In the image transfer section, the toner image on the photosensitive drum


21


is transferred to the sheet P under the action of the transfer charger


24


. The sheet with the toner image transferred thereto is separated from the outer peripheral surface of the photosensitive drum


44


under the action of the separation charger


25


and separation claw


26


and conveyed to the fixing device


39


where, under the application of heat and pressure, the toner image is fused and fixed. The sheet with the toner image thus fixed is discharged onto the discharge tray


41


through the discharge roller pair


40


.





FIG. 2

is a front view in vertical cross-section showing the fixing device


39


and

FIG. 3

is a side view in its vertical cross-section and

FIG. 4

is a perspective view thereof.




The fixing device


39


has a heating roller (diameter of 40 mm)


45


serving as a first roller and a pressure applying roller (diameter of 40 mm)


46


placed in pressure contact with the lower side of the heating roller


45


and serving as a second roller. An induction heating device


48


is accommodated within the heating roller


45


. The heating roller


45


is connected to a drive mechanism not shown and rotationally driven in a direction indicated by an arrow.




The pressure applying roller


46


is urged, by a pressure applying mechanism not shown, and set in rolling contact with the heating roller


45


with a given nip (contact) width provided. The pressure applying roller


46


is driven by the heating roller


45


and rotated in an arrow-indicated direction.




The heating roller


45


is made of iron and has a thickness of 1.0 mm. A mold release layer of, for example, a fluorine resin is coated on the surface of the heating roller


45


. The pressure applying roller


46


is so constructed that, for example, silicon rubber or fluorine rubber is coated around the outer surface of its core metal.




By passing the sheet P as a to-be-fixed material through the nip, that is, a fixing point, between the heating roller


45


and the pressure applying roller


46


a transferred image on the sheet P is heated/fused to provide a fixed image.




A separating claw


50


, cleaning member


51


, mold release agent coating device


52


and thermistor


53


are arranged on the outer periphery of the heating roller


45


on a downstream side of the rolling contact side between the heating roller


45


and the pressure applying roller


46


as viewed in a rotation direction.




The separation claw


50


separates the sheet P off the heating roller


45


and the cleaning member


51


removes a toner offset on the heating roller


45


and dust, such as a paper dust. Further, the mold release agent coating device


52


coats the mold release agent for offset prevention and the thermistor


53


detects the temperature of the heating roller


45


.




The heating principle is based on the use of an induction heating device (magnetic field generating means). The induction heating device is comprised of a magnetic excitation coil


56


and arranged on the inner wall side of the heating roller


45


. As the magnetic excitation coil, use is made of a copper wire of 0.5 mm and a plurality of mutually insulated such wires are bundled into a Litz wire. By adopting such Litz wire, the wire diameter can be made smaller than the penetration depth and it is possible to flow an AC current.




In the present embodiment, 19 wires of 0.5 mm in diameter are bundled and as the coil's coating wire, use is made of heat-resistant polyamideimide. As the magnetic field generation means use is not made of any core material (for example, a ferrite core and iron core) for concentrating the magnetic flux of the coil and use is made of a coreless coil. The coil is supported by a coil support member


48


formed of a heat-resistant resin material (heat-resistant EMPEROR in the present embodiment). The coil support member


48


is positioned relative to a plate metal holding a roller, not shown. Since the coreless coil is used in place of any core material of a complicated shape, it is possible to achieve a low cost and also a low-cost magnetic excitation circuit.





FIGS. 5 and 6

show a circuit board


61


for supplying a high frequency current to a coil


56


.




The circuit board


61


has, as shown in

FIGS. 7 and 8

, various kinds of electronic components


61




a


to


61




c


and output terminals


62


,


62


(shown in FIG.


9


).




One end portion of an L-bent conductive plate metal


64


serving as a connection member is fixed, by a fastening screw


66


as a fastening means, to the output terminals


62


,


62


of the circuit board


61


. A spring washer


65


is present between the fastening screw


66


and the plate metal


64


. The intermediate portion of the plate metal


64


is mounted by a fastening means


68


on a support frame


70


. The support frame


70


is provided opposite to one end face side of the heating roller


45


in a spaced-apart relation. The other end side of the plate metal


64


on the support frame


40


projects from the support frame


70


toward the direction of the heating roller


45


and a male-side connection terminal


72


is mounted as a first connection terminal on that projecting portion.




The thickness of the plate metal


64


is two times or more the current penetration depth. The current flowing in the plate metal


64


is concentrated more toward the surface due to the skin effect to provide a high current density. The depth of the current penetration is used to represent the extent of the current concentration toward the surface. It may be practically possible to consider the depth of the current penetration as the depth of current flowing due to the skin effect.




Thus, if the thickness of the plate metal


64


becomes lower than two-times the depth of the current penetration, the current density becomes too high and the plate metal


64


is overheated, resulting in a dangerous state. According to the present invention, the thickness of the plate metal


64


is made above two-times the depth of the current penetration and, by doing so, it is possible to prevent the current density from becoming too high and maintain a stable state.




A female-side connection terminal


76


is mounted as a second connection terminal to the end of a corresponding leader line


74


of the coil


56


. The female-side connection terminal


76


is detachably connected to the male-side connection terminal of the plate metal


64


.




Then, an explanation will be made about the maintenance of the heating roller


45


or the detaching and attaching of it during replacement.




In this case, first, the female-side connection terminal


76


of the leader line


74


of the coil


56


brought out from the heating roller


45


is withdrawn out of the male-side connection terminal


72


of the plate metal


67


. By doing so, a disconnection is made between the leader lines


74


,


74


of the coil


56


and the corresponding output terminals


62


,


62


of the circuit board


61


. After this disconnection, the heating roller


45


is removed from the apparatus body


1


for maintenance or exchange. After the maintenance has been performed on the heating roller, the heating roller


45


is again inserted into the apparatus body


1


. In the case of the exchange, a new heating roller


45


is inserted into the apparatus body


1


. After the insertion of the heating roller


45


, the female-side connection terminal


76


of the leader line


74


is inserted over the male-side connection terminal


72


of the plate metal


64


, so that the connection of them has been made and the mounting of the heating roller has been completed.




In this embodiment, as set out above, the female-side connection terminal


76


of the leader line


74


of the coil


56


is detachably inserted over the male-side connection terminal


72


of the plate metal


64


fixed to the output terminal


62


, so that the connection of them is completed. Thus, without loosening or tightening the fastening means as in the conventional case, it is possible to attach or detach the leader line


74


to and from the output terminal


62


in one operation. This ensures a readier maintenance of the heating roller and a readier exchange operation.




Since the plate metal


64


, once being fixed to the output terminal


62


of the circuit board


61


, need not be removed, it is not necessary, unlike the conventional case, to attach or detach the fastening means for each maintenance or exchange of the heating roller


45


. Therefore, there is no variation in a fixing strength between the output terminal


62


and the plate metal


64


and it is, therefore, possible to make the fixing strength uniform to a last moment and improve the reliability.




Since, further, the output terminal


62


of the circuit board


61


and plate metal


64


are connected together by the fastening screw


66


, the connection site is not loosened even if a reaction force of the leader line


74


acts upon the connection site, so that a safety can be maintained.




The connection member connected to the output terminal


62


is not restricted to the plate metal and, as such, use may be made of a conductive harness or electric wire.




According to the present invention, as explained above, the leader line of the coil can be attached and detached to and from the output terminal of the circuit board in one operation and it is very easy to achieve the maintenance of the heating roller and exchange the heating roller with a new heating roller.




Further, the output terminal of the circuit board and connection member, once being fixed by the fixing means, are not detached from each other and it is possible to achieve a uniform fastening strength and improve the reliability.




Further, the output terminal of the circuit board is connected by the fastening means to one end of the connection member and the connection site, even if a reaction force of the leader line of the coil acts on the connection site, is not loosened and the reliability is insured.




Further, the thickness of the plate metal is made two times, or more, the current penetration depth and it is, therefore, possible to prevent the current density from becoming too high and maintain a stable state.




Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.



Claims
  • 1. An electrophotographic fixing device allowing a flow of an AC current through an electromagnetic induction coil arranged close to an endless member having a metal layer formed of a conductor and allowing the heat generation of the endless member to heat a to-be-fixed material, comprising:a circuit board for outputting the current from an output terminal and passing the current through the electromagnetic induction coil; a conductive connection member having one end side fixed by a fastening means to the output terminal of the circuit board; a first connection terminal provided on the other end of the connection member; and a second connection terminal provided at a leader line end of the electromagnetic induction coil and detachably connected to the first connection terminal, wherein the connection member has its thickness made two times or more the current penetration depth.
  • 2. An electrophotographic fixing device according to claim 1, wherein the connection member is comprised of a plate-like metal material.
  • 3. An electrophotographic fixing device according to claim 1, wherein the connection member is comprised of a harness.
  • 4. An electrophotographic fixing device according to claim 1, wherein the connection member is comprised of an electric wire.
  • 5. An electrophotographic fixing device according to claim 1, wherein the fastening means is comprised of a screw member fixed through a spring.
US Referenced Citations (10)
Number Name Date Kind
3287542 Weitzner Nov 1966 A
4571488 Reeves Feb 1986 A
5177529 Schroll et al. Jan 1993 A
5461215 Haldeman Oct 1995 A
5815771 Dhande et al. Sep 1998 A
5994682 Kelly et al. Nov 1999 A
6210208 Barnes et al. Apr 2001 B1
6252212 Takagi et al. Jun 2001 B1
6255633 Takagi et al. Jul 2001 B1
6262404 Higaya et al. Jul 2001 B1
Foreign Referenced Citations (7)
Number Date Country
57-001482 Jan 1982 JP
59-033476 Feb 1984 JP
06258971 Sep 1994 JP
07219373 Aug 1995 JP
07-269774 Oct 1995 JP
08044233 Feb 1996 JP
09-153392 Jun 1997 JP