This application claims priority from Japanese Patent Application No. 2013-017140 filed Jan. 31, 2013. The entire content of the priority application is incorporated herein by reference.
The present invention relates to a fixing device provided in an electrophotographic image forming apparatus.
A conventional electrophotographic image forming apparatus (such as a later printer or digital copier) includes a fixing device that thermally fixes a developing agent image formed on a recording sheet thereto. Such conventional fixing device includes a flexible endless fusing film (or an endless belt), a heater disposed in an internal space of the fusing film, a nip plate disposed in the internal space and in sliding contact with an inner peripheral surface of the fusing film to receive radiant heat from the heater, and a pressure roller that nips the fusing film together with the nip plate to permit the endless fusing film to be circularly movable in a circumferential direction thereof.
In this fixing device, a developing agent image formed on a recording sheet is thermally fixed to the recording sheet with radiant heat from the heater while the recording sheet is nipped and conveyed between the pressure roller and the fusing film.
In this fixing device, the nip plate has a small amount of heat capacity. Further, a relatively smaller amount of radiant heat from the heater can be transmitted to both longitudinal end portions of the nip plate, compared to a center portion of the nip plate. As a result, thermal fixation of a developing agent image to a recording sheet tends to become insufficient at widthwise end portions of the recording sheet (at longitudinal end portions of the nip plate).
In view of the foregoing, it is an object of the present invention to provide a fixing device capable of preventing occurrence of insufficient thermal fixation on widthwise end portions of a recording sheet.
In order to attain the above and other objects, there is provided a fixing device including an endless belt, a nip member, a heater and a rotary body. The endless belt may have an inner peripheral surface defining an internal space, the endless belt being configured to circularly move about a first axis extending in an axial direction. The nip member and heater may extend through the internal space. The rotary body may be disposed to be opposite to the heater with respect to the nip member, the rotary body and the nip member being configured to nip the endless belt therebetween. The nip member may include: a main portion extending in the axial direction and having a first axial end portion; and a protruding portion protruding from the first axial end portion of the main portion toward the heater, the protruding portion having a first surface configured to receive radiant heat from the heater.
According to another aspect of the present invention, there is provided a fixing device including an endless belt, a nip member, a heater and a rotary body. The nip plate may extend inside the endless belt, the nip plate having an end in an axial direction of the endless belt. The heater may extend inside the endless belt and may face the nip plate. The roller and the nip plate may be configured to nip the endless belt therebetween. The nip plate may include a protrusion protruding from the end of the nip plate in the axial direction toward the heater.
According to still another aspect of the present invention, there is provided a fixing device including an endless belt, a nip member, a heater and a rotary body. The endless belt may have one end and another end opposite to the one end in an axial direction of the endless belt, a first imaginary plane being defined as a plane passing through the another end and perpendicular to the axial direction and a second imaginary plane being defined as a plane passing through the one end and perpendicular to the axial direction. The nip plate and the heater may extend inside the endless belt. The rotary body and the nip plate may be configured to nip the endless belt therebetween. The nip plate may include a main portion and a protrusion protruding from the main portion toward an imaginary straight line that passes through the heater and is parallel to an axis of the endless belt, the protrusion being positioned opposite to the first imaginary plane with respect to the second imaginary plane.
In the drawings:
First, a general structure of a color printer 1 as an image forming device according to an embodiment of the present invention will be described with reference to
<General Structure of Laser Printer>
In
As shown in
The sheet feeding unit 20 is disposed at a lower portion of the main frame 40. The sheet feeding unit 20 includes a sheet tray 21 for accommodating the sheet P, a sheet feeding mechanism 22 disposed rearward of the sheet tray 21, and a lifter plate 23 for conveying the sheet P accommodated in the sheet tray 21 to the sheet feeding mechanism 22. The sheet P (rear end portion of the sheet P) accommodated in the sheet tray 21 is lifted upward by the lifter plate 32, separated one by one and conveyed upward by sheet feeding mechanism 22.
The process unit 60 includes a retaining case 61 and four process cartridges 62 accommodated in the retaining case 61. The four process cartridges 62 are juxtaposed in a front-rear direction at predetermined intervals.
Each process cartridge 62 includes a photosensitive drum 63, a charger 64, and a developing cartridge 65. The photosensitive drum 63 has a photosensitive layer as an outer peripheral surface. The charger 64 applies a uniform charge to the photosensitive layer of the photosensitive drum 63. The developing cartridge 65 is configured to supply developer to the photosensitive layer of the photosensitive drum 63. The photosensitive drum 63 is provided in an upper portion of the process cartridge 62. The charger 64 is disposed rearward of the photosensitive drum 63, and the developing cartridge 65 is disposed below the photosensitive drum 63.
In each process cartridge 62, after uniformly charged by the charger 64, the photosensitive layer of the photosensitive drum 63 is subjected to high speed scan of a laser beam emitted from the exposure device 70 (described next). An electrostatic latent image based on image data is thereby formed on the photosensitive layer of the photosensitive drum 63. Toner accommodated in the developing cartridge 65 is then supplied to the electrostatic latent image. Hence, the electrostatic latent image is developed into a visible toner image on the outer peripheral surface of the photosensitive drum 63.
The exposure device 70 is disposed above the sheet supply unit 20 and below the process unit 60 within the main frame 40. The exposure device 70 includes a laser source, a polygon mirror, lenses and reflection mirrors (all not shown). In the exposure device 70, the laser source emits a laser beam. The laser beam is reflected by or passes through the polygon mirror, the lenses, and the reflection mirrors such that the laser beam is irradiated on the outer peripheral surface of the photosensitive drum 63 at a high speed. The surface of a photosensitive drum 63 is thus exposed to light.
The transfer unit 80 is disposed upward of the process unit 60 within the main frame 40. The process unit 60 includes a drive roller 81, a follow roller 82 and an intermediate belt 83. The drive roller 81 is positioned above the sheet feeding mechanism 22. The follow roller 82 is disposed frontward of the drive roller 81 and is spaced away therefrom in the front-rear direction. The intermediate belt 83 is mounted (stretched) on and around the drive roller 81 and the follow roller 82.
The transfer unit 80 also includes four primary transfer rollers 84 and a secondary transfer roller 85. The primary transfer rollers 84 are disposed in an internal space of the intermediate belt 83 such that each primary transfer roller 84 opposes and is in pressure contact with each of the photosensitive drums 63 to nip a lower portion of the intermediate belt 83 therebetween. The secondary transfer roller 85 is disposed to oppose the drive roller 81 such that the secondary transfer roller 85 is pressed against the intermediate belt 83 from its rear side.
In the transfer unit 80, the toner image of each color formed on the surface of each photosensitive drum 63 is sequentially superimposed on the intermediate belt 83. The colored toner image superimposed on the intermediate belt 83 is then transferred onto the sheet P conveyed upward from the sheet feeding mechanism 22 while the sheet P is pressed against the intermediate belt 83 by the secondary transfer roller 85.
The fixing device 100 is disposed rearward of and upward of the transfer unit 80 within the main frame 40. The sheet P passing between the drive roller 81 and the secondary transfer roller 85 is conveyed upward to the fixing device 100, whereby the colored toner image transferred to the sheet P from the intermediate belt 83 is thermally fixed to the sheet P. The sheet P having the color image fixed thereto is finally discharged onto a discharge tray 41 by a discharge roller 93.
<Detailed Structure of Fixing Device>
Next, a detailed structure of the fixing device 100 according to the embodiment will be described with reference to
In
As shown in
In the following description, a direction in which the sheet P is fed (a front-rear direction in the embodiment) will be referred to as a sheet feeding direction, which is shown as an arrow in
The endless belt 110 is of an endless belt (of a tubular configuration) having heat resistivity and flexibility. The endless belt 110 has an inner peripheral surface that defines an internal space for accommodating the halogen lamp 120, the nip plate 130, the reflection plate 140 and the stay 160. The endless belt 110 defines a first axis X1 (hereinafter to be referred to as an “imaginary axis X1”) extending in an imaginary axial direction D1 (left-right direction in the embodiment or longitudinal direction) about which the endless belt 110 is circularly movable. The imaginary axis X1 (imaginary axial direction D1) is perpendicular to the sheet feeding direction. Movement of the endless belt 110 in the imaginary axial direction D1 (left-right direction) is guided (restricted) by restricting members (not shown in drawings).
Specifically, the endless belt 110 is configured of a base layer 111, a rubber layer 112 as an intermediate layer, and a fluorine resin layer 113 as an outermost layer, as shown in
The halogen lamp 120 is a well-known heater configured to emit radiant heat to heat the nip plate 130 and the endless belt 110 for heating toner on the sheet P. The halogen lamp 120 is positioned at the internal space of the endless belt 110 and extends through the internal space in a direction parallel to the imaginary axis X1. The halogen lamp 120 is positioned to be spaced away from the inner peripheral surface of the endless belt 110 and an upper surface 131A (described next) of the nip plate 130 respectively by a predetermined distance. As shown in
The nip plate 130 is disposed to extend through the internal space. The nip plate 130 has a plate shape extending in the left-right direction (longitudinal direction). The nip plate 130 is configured to contact the inner peripheral surface of the endless belt 110. The nip plate 130 is adapted for receiving radiant heat from the halogen lamp 120 and for transmitting the radiant heat to the toner on the sheet P through the endless belt 110.
The nip plate 130 has a generally flat U-shaped cross-section taken along a plane perpendicular to the longitudinal direction of the nip plate 130. The nip plate 130 is made from a material such as aluminum having a thermal conductivity higher than that of the stay 160 (described later) made from steel. More specifically, for fabricating the nip plate 130, an aluminum plate is bent into a flat U-shape to provide a base portion 131 and upwardly folded side wall portions 132.
The base portion 131 has the upper surface (inner surface) 131A and a lower surface 131B opposite to the upper surface 131A. The upper surface 131A faces the halogen lamp 120 to receive radiant heat therefrom (see
As shown in
The base portion 131 is flat and extends in the left-right direction. The base portion 131 has a width (front-rear dimension) in the sheet feeding direction. In the embodiment, the sheet feeding direction is coincident with the front-rear direction of the nip plate 130. The base portion 131 has front and rear end portions 131E (see FIG. 2). The side wall portions 132 extend upward respectively from the front and rear end portions 131E of the base portion 131. The side wall portions 132 have inner surfaces 132A (see
As shown in
The reflection plate 140 configured into U-shape in cross-section. The reflection plate 140 has a U-shaped reflection portion 141 and a flange portion 142 extending from each end portion of the reflection portion 141 in the sheet feeding direction.
As shown in
The pressure roller 150 is formed of an elastically deformable material. The pressure roller 150 is positioned below the nip plate 130, as shown in
The pressure roller 150 is driven by a motor (not shown) disposed in the main frame 40 to rotate about a second axis X2 (hereinafter, to be referred to as an “imaginary axis X2” as shown in
The stay 160 is adapted to support the front and rear end portions 131E of the nip plate 130 via the flange portions 142 of the reflection plate 140 for maintaining rigidity of the nip plate 130. The stay 160 has a U-shape configuration in conformity with an outer profile of the reflection plate 140 (reflection portion 141) for covering the reflection plate 140. For fabricating the stay 160, a highly rigid member such as a steel plate is folded into U-shape to provide a top wall 166, a front wall 161 and a rear wall 162.
As shown in
The front and rear walls 161, 162 have left end portions provided with L-shaped engagement legs 165 each extending downward and then leftward. The top wall 166 has a right end portion provided with a retainer 167 having U-shaped configuration in a right side view. The retainer 167 has a pair of retaining walls 167A each of whose inner surfaces is provided with an engagement boss 167B protruding inward (only one engagement boss 167B is shown in
As shown in
Assembling procedure of the reflection plate 140 and the nip plate 130 to the stay 160 will now be described.
First, the reflection plate 140 is coupled to the stay 160. The reflection plate 140 is temporarily assembled to the stay 160 by the abutment of the outer surface of the reflection portion 141 on the abutment bosses 168. At this time, the engagement sections 143 are brought into contact with the outermost contact portions 163A in the longitudinal direction.
Then, as shown in
Here, referring to
The bent portion 135 extends leftward from the insertion portion 133 and is then folded rightward to cover the insertion portion 133 from above. Thus, the bent portion 135 has a generally U-shape in a side view. The protruding portion 136 extends generally vertically upward from the bent portion 135 to be positioned above the insertion portion 133. In other words, the protruding portion 136 extends in a direction perpendicular to the longitudinal direction of the base portion 131.
The protruding portion 136 has a generally flat first surface 136A (right surface) opposing the main body portion of the halogen lamp 120 in the left-right direction so that the first surface 136A can receive radiant heat from the halogen lamp 120. The protruding portion 136 also has a second surface 136D opposite to the first surface 136A, and an end face 136E connecting between the first surface 136A and the second surface 136D. As shown in
The protruding portion 136 has an upper end in which a recessed portion 136B is formed. The recessed portion 136B has a flat U-shape opening upward in a side view. As shown in
The protruding portion 136 and the bent portion 135 are also formed at the right end portion (another longitudinal end portion) of the base portion 131 of the nip plate 130, i.e., rightward of the engagement portion 134.
As shown in
Further referring to
In the fixing device 100 of the depicted embodiment, a toner image is thermally fixed to the sheet P while the sheet P passes the nip region, i.e., between the pressure roller 150 rotating about the imaginary axis X2 and the endless belt 110 heated by the nip plate 130 and circularly moving about the imaginary axis X1.
The endless belt 110 of the present embodiment includes the rubber layer 112 as shown in
However, the base portion 131 of the nip plate 130 of the present embodiment is provided with the protruding portions 136 at the both longitudinal ends. Since the protruding portion 136 has the flat first surface 136A opposing the halogen lamp 120, radiant heat from the halogen lamp 120 can be transmitted from the first surface 136A to the longitudinal ends of the base portion 131 via the bent portion 135 and the insertion portion 133 (or the engagement portion 134). With this structure, the base portion 131 of the nip plate 130 can be heated sufficiently across an entire longitudinal dimension thereof by radiant heat from the halogen lamp 120.
Further, heat capacity of the nip plate 130 increases with provision of the protruding portion 136 and the bent portion 135, since the mass of the nip plate 130 increases by the mass of the protruding portion 136 and the bent portion 135. As a result, the base portion 131 of the nip plate 130 as a whole in the longitudinal direction can transmit sufficient heat to the sheet P (across the entire width of the sheet P) via the endless belt 110, thereby preventing insufficient thermal fixation on the sheet P that tends to occur on widthwise ends of the sheet P.
Further, end components of the halogen lamp 120 (components near the electrical terminals 121 of the halogen lamp 120) are disposed to be received in the corresponding recessed portions 136B. Therefore, interference between the end components of the halogen lamp 120 and the protruding portions 136 can be prevented at the time of assembly of the fixing device 100. Assembly of the fixing device 100 can be thus facilitated.
Further, since the end components of the halogen lamp 120 are received in respective recessed portions 136B, the protruding portions 136 can positioned even closer to the halogen lamp 120, leading to increase in heat capacity and increase in amount of heat received at the protruding portion 136.
As described above, with the structure of the fixing device 100 of the present embodiment, entirety of the sheet P can be heated sufficiently with respect to its widthwise direction by entirety of the base portion 131 of the nip plate 130 spanning in the longitudinal direction. As a result, insufficient thermal fixation can be prevented from occurring at widthwise ends of the sheet P. Further, interference between the end components of the halogen lamp 120 and the protruding portions 136 at the time of assembly can be prevented, which facilitates assembly of the fixing device 100.
In the described embodiment, the end components of the halogen lamp 120 are completely disposed (received) within the recessed portion 136B. However, if the end components of the halogen lamp 120 have a vertical dimension higher than that shown in
Various modifications are conceivable.
Hereinafter, first to fifth modifications to the above-described embodiment will be described with reference to
In the first modification, the protruding portion 136 and the bent portion 135 of the embodiment are replaced with a protruding portion 236 and a bent portion 235.
Specifically, the nip plate 230 of the first modification has both longitudinal end portions each formed with the protruding portion 236 and the bent portion 235. In
The protruding portion 236 is flat plate shaped. The protruding portion 236 has a base end 236C extending upward from a left end of the insertion portion 133, and a tip end connected to the bent portion 235. The bent portion 235 extends leftward from the tip end of the protruding portion 236 and has a generally L-shaped cross section. Thus, the protruding portion 236 and the bent portion 235 together form a generally inverted U-shape in cross section when viewed in the front-rear direction.
The protruding portion 236 has a generally flat inner wall 236A opposing the main body portion of the halogen lamp 120 in the left-right direction. Thus this inner wall 236A (first wall 236A) serves to receive radiant heat from the halogen lamp 120, just like the first surface 136A of the embodiment.
Here, in the first modification, a lower surface of the base portion 131 of the nip plate 230 may be coated with a fluorine resin having heat resistivity, since the lower surface is configured to be in sliding contact with the inner peripheral surface of the endless belt 110.
In the second modification, the bent portion 135 of the embodiment is dispensed with.
Specifically, the nip plate 330 of the second modification has both longitudinal end portions each formed with a protruding portion 336. In
The protruding portion 336 is flat plate shaped. The protruding portion 336 has a base end 336C extending upward from the insertion portion 133 and an upper end portion formed with a recessed portion 336B. The recessed portion 336B has the same flat U-like shape as the recessed portion 136B of the embodiment.
The protruding portion 336 has a generally flat first surface 336A (inner surface) opposing the main body portion of the halogen lamp 120, a second surface 336D opposite to the first surface 336A, and an end face 336E connecting between the first surface 336A and the second surface 336D. The protruding portion 336 stands upright and extends upward in
The recessed portion 336B of the second modification may be in a form of a through-hole penetrating the protruding portion 336 in the left-right direction.
In the third modification, the bent portion 135 of the embodiment is dispensed with, as in the second modification.
Specifically, the nip plate 430 of the third modification has both longitudinal end portions each formed with a protruding portion 436. In
The protruding portion 436 is flat plate shaped and has a substantially similar configuration with the protruding portion 336 of the second modification. Specifically, the protruding portion 436 has a base end 436C extending from the insertion portion 133, an upper end portion formed with a recessed portion 436B, a generally flat first surface 436A opposing the main body portion of the halogen lamp 120, a second surface 436D opposite to the first surface 436A, and an end face 436E connecting between the first surface 436A and the second surface 436D.
The protruding portion 436 extends diagonally upward and outward from the insertion portion 133. The first surface 436A of the protruding portion 436 may form an angle (acute angle) smaller than 45 degrees relative to a vertical plane (not shown) perpendicular to the longitudinal direction of the base portion 131 of the nip plate 430.
The protruding portion 436 of the third modification may be slanted relative to the insertion portion 133 such that the protruding portion 436 (first surface 436A) extends away from the main body of the halogen lamp 120 toward the upper end portion of the protruding portion 436. Such slanted provision of the protruding portion 436 relative to the insertion portion 133 can increase an amount of radiant heat received from the halogen lamp 120, compared to a case where a protruding portion tilts inward in the left-right direction.
The recessed portion 436B of the third modification may be in a form of a through-hole penetrating the protruding portion 436 in the left-right direction.
The nip plate 530 of the fourth modification has both longitudinal end portions each formed with a protruding portion 536. In
The protruding portion 536 is flat plate shaped. The protruding portion 536 originally occupies a portion spanning between the base portion 131 and the insertion portion 133. This portion is cut and bent upward to extend generally vertically such that the protruding portion 536 extends upward from the base portion 131 but is separated from the insertion portion 133. In other words, the protruding portion 536 has a base end 536C extending upward from the base portion 131, not from the insertion portion 133. The protruding portion 536 has a generally flat inner surface (first surface) 536A opposing the main body portion of the halogen lamp 120 to receive radiant heat from the halogen lamp 120. The protruding portion 536 also has a second surface 536D opposite the first surface 536A, and an end face 536E connecting the first surface 536A and the second surface 536D.
The nip plate 630 of the fifth modification has both longitudinal end portions each formed with a protruding portion 636. In
The protruding portion 636 is a flat, rectangular shaped plate-like shaped member. The protruding portion 636 is formed with a slit 671 extending in the front-rear direction. The longitudinal end portion of the base portion 131 is inserted into and press-fitted to the slit 671 such that the protruding portion 636 is generally perpendicular to the base portion 131. The protruding portion 636 thus extends vertically upward from the base portion 131.
In the nip plate 630 of the fifth modification produced as above, the protruding portion 636 has an inner surface 636A (first surface 636A) configured to receive radiant heat from the halogen lamp 120, a second surface 636D opposite the first surface 636A and an end face 636E connecting between the first surface 636A and the second surface 636D.
Just like the protruding portion 636 of the fifth modification, the claimed protruding portion may be formed as a separate member from the claimed main portion (base portion 131 in the embodiment). If this is the case, such protruding portion may be bonded to the main portion by an adhesive agent with heat resistance, or by screws. Alternatively, the claimed nip member may be made from a single plate produced by rolling or by machining.
In the present invention, the claimed nip member is “integrally formed” as a metal member not only means that the claimed main portion (metal) and the claimed protruding portion (metal) are integrally formed by folding a single metal material, but also means that the claimed main portion (metal) and the claimed protruding portion (metal) are combined into a single metal member by welding or blazing. However, “integrally formed” in the present invention excludes integration of the claimed main portion (metal) and the claimed protruding portion (metal) by a non-metal adhesive agent.
Instead of the endless belt 110 of the embodiment having three-layered structure, a single-layered endless belt configured solely of the base layer 111 (see
It should be noted that in the fixing device 100 of the present invention, “contact with the inner peripheral surface of the endless belt 110” may include both “direct contact” with the inner peripheral surface and “indirect contact” with the inner peripheral surface via other layer-shaped member.
While the invention has been described in detail with reference to the embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-017140 | Jan 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20110150544 | Ishida et al. | Jun 2011 | A1 |
20110158715 | Suzuki et al. | Jun 2011 | A1 |
20110206409 | Kondo et al. | Aug 2011 | A1 |
20130164056 | Imada et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2011-095551 | May 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20140212190 A1 | Jul 2014 | US |