The present application is based on and claims priority to Japanese Patent Application No. 2010-140508, filed on Jun. 21, 2010, in the Japan Patent Office, which is hereby incorporated herein by reference in its entirety.
1. Field of the Invention
Exemplary aspects of the present invention relate to a fixing device, an image forming apparatus, and a fixing method, and more particularly, to a fixing device for fixing a toner image on a recording medium, an image forming apparatus including the fixing device, and a fixing method for fixing a toner image on a recording medium.
2. Description of the Related Art
Related-art image forming apparatuses, such as copiers, facsimile machines, printers, or multifunction printers having at least one of copying, printing, scanning, and facsimile functions, typically form an image on a recording medium according to image data. Thus, for example, a charger uniformly charges a surface of an image carrier; an optical writer emits a light beam onto the charged surface of the image carrier to form an electrostatic latent image on the image carrier according to the image data; a development device supplies toner to the electrostatic latent image formed on the image carrier to make the electrostatic latent image visible as a toner image; the toner image is directly transferred from the image carrier onto a recording medium or is indirectly transferred from the image carrier onto a recording medium via an intermediate transfer member; a cleaner then cleans the surface of the image carrier after the toner image is transferred from the image carrier onto the recording medium; finally, a fixing device applies heat and pressure to the recording medium bearing the toner image to fix the toner image on the recording medium, thus forming the image on the recording medium.
The fixing device used in such image forming apparatuses may employ a fixing belt formed into a loop and a pressing roller pressed against the fixing belt to form a nip therebetween through which the recording medium bearing the toner image passes.
For example, Japanese patent publication no. JP-2002-251084-A proposes a configuration in which the fixing belt is stretched over and rotated around a rotatable fixing roller and a stationary heat generator (e.g., a resistance heat generator) and the pressing roller disposed outside the loop formed by the fixing belt is pressed against the fixing roller via the fixing belt to form the nip between the fixing belt and the pressing roller through which the recording medium bearing the toner image passes. With this configuration, the heat generator contacting the inner circumferential surface of the fixing belt heats the fixing belt; the fixing roller contacting the inner circumferential surface of the fixing belt rotates the fixing belt which in turn rotates the pressing roller by friction therebetween. As the fixing belt and the pressing roller rotate and convey the recording medium through the nip, they apply heat and pressure to the recording medium to fix the toner image on the recording medium. The fixing belt includes a ferromagnet that is attracted by a magnet of the heat generator, thus the fixing belt is adhered to the heat generator precisely with no gap therebetween, to improve heating efficiency of the fixing belt.
As another example, Japanese patent publication no. JP-2009-258453-A proposes a configuration in which the looped fixing belt is sandwiched between a heat generator (e.g., a temperature sensitive element) disposed inside the loop formed by the fixing belt and an exciting coil unit disposed outside the loop formed by the fixing belt. The heat generator contacts or is disposed opposite the inner circumferential surface of the fixing belt with a slight gap therebetween. As the heat generator generates heat by a magnetic flux from the exciting coil unit by electromagnetic induction, it heats the fixing belt.
However, the above-described configurations have a drawback in that the heat generator constantly contacting or disposed opposite the fixing belt may heat the fixing belt even in a standby mode in which the fixing belt is not rotated, resulting in localized overheating of the fixing belt. Accordingly, when a fixing process is started, the locally heated fixing belt, with a temperature not uniform and stable but instead varying in the direction of rotation of the fixing belt, may generate faulty fixing of the toner image on the recording medium.
This specification describes below an improved fixing device. In one exemplary embodiment of the present invention, the fixing device includes a fixing rotary body to rotate in a predetermined direction of rotation and a pressing rotary body pressed against the fixing rotary body to rotate in a direction counter to the direction of rotation of the fixing rotary body and form a nip therebetween through which a recording medium bearing a toner image passes. A heat generator is disposed opposite the fixing rotary body at a section other than the nip to heat the fixing rotary body. A moving assembly is disposed opposite the heat generator to generate a magnetic force to move the heat generator with respect to the fixing rotary body so as to change one of a pressure and a distance between the heat generator and the fixing rotary body.
This specification further describes an improved image forming apparatus. In one exemplary embodiment, the image forming apparatus includes the fixing device described above.
This specification further describes an improved fixing method for fixing a toner image on a recording medium and including the steps of rotating a fixing rotary body in a predetermined direction of rotation; pressing a pressing rotary body against the fixing rotary body to rotate the pressing rotary body in a direction counter to the direction of rotation of the fixing rotary body and form a nip therebetween through which the recording medium bearing the toner image passes; heating the fixing rotary body with a heat generator disposed opposite the fixing rotary body at a section other than the nip; and moving the heat generator with respect to the fixing rotary body to change one of a pressure and a distance between the heat generator and the fixing rotary body with a moving assembly disposed opposite the heat generator and generating a magnetic force.
A more complete appreciation of the invention and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, in particular to
Referring to
As illustrated in
Below the image forming device 4 is a transfer device 7 that transfers the toner image formed on the photoconductive drum 5 onto a recording medium P sent from one of paper trays 12, 13, and 14, each of which loads a plurality of recording media P (e.g., transfer sheets), disposed in a lower portion of the image foiling apparatus 1 below the transfer device 7. The recording medium P bearing the transferred toner image is sent to a fixing device 20 disposed downstream from the transfer device 7 in a recording medium conveyance direction, where a fixing belt 21 and a pressing roller 31 disposed opposite each other apply heat and pressure to the recording medium P, thus fixing the toner image on the recording medium P.
Referring to
An original document D bearing an original image, placed on an original document tray of the auto document feeder 10 by a user, is conveyed by a plurality of conveyance rollers of the auto document feeder 10 in a direction D1 above the original document reader 2. As the original document D passes over an exposure glass of the original document reader 2, the original document reader 2 optically reads the original image on the original document D to generate image data.
The image data is converted into an electric signal and then sent to the exposure device 3. The exposure device 3, serving as an image writer, emits light L (e.g., a laser beam) onto the photoconductive drum 5 of the image forming device 4 according to the electric signal, thus writing an electrostatic latent image on the photoconductive drum 5.
The image forming device 4 performs a plurality of image forming processes as the photoconductive drum 5 rotates clockwise in
At the same time, a recording medium P is sent to a transfer nip formed between the photoconductive drum 5 and the transfer device 7 from one of the plurality of paper trays 12, 13, and 14, which is selected manually by the user using a control panel disposed atop the image forming apparatus 1 or automatically by an electric signal of a print request sent from a client computer. If the paper tray 12 is selected, for example, an uppermost recording medium P of a plurality of recording media P loaded in the paper tray 12 is conveyed to a registration roller pair disposed in a conveyance path K extending from each of the paper trays 12, 13, and 14 to the transfer device 7.
When the uppermost recording medium P reaches the registration roller pair, it is stopped by the registration roller pair temporarily and then conveyed to the transfer nip formed between the photoconductive drum 5 and the transfer device 7 at a time when the toner image formed on the photoconductive drum 5 is transferred onto the uppermost recording medium P by the transfer device 7.
After the transfer of the toner image onto the recording medium P, the recording medium P bearing the toner image is sent to the fixing device 20 through a conveyance path extending from the transfer device 7 to the fixing device 20. As the recording medium P passes through a fixing nip formed between the fixing belt 21 and the pressing roller 31 of the fixing device 20, it receives heat from the fixing belt 21 and pressure from the fixing belt 21 and the pressing roller 31, which fix the toner image on the recording medium P. Thereafter, the recording medium P bearing the fixed toner image is discharged from the fixing nip to an outside of the image forming apparatus 1, thus completing a series of image forming processes.
Referring to
As illustrated in
The fixing belt 21 is a flexible, thin, endless belt serving as a fixing member or a fixing rotary body that rotates or moves clockwise in
The base layer 21a constitutes an inner circumferential surface of the fixing belt 21, that is, a contact face sliding over the nip formation pad 22 and the heat generator 23 disposed inside the loop formed by the fixing belt 21. The base layer 21a has a thickness of about 200 μm and is made of polyimide (PI).
The elastic layer 21b, made of a rubber material such as silicon rubber, silicon rubber form, and/or fluorocarbon rubber, has a thickness in a range of from about 100 μm to about 300 μm. The elastic layer 21b eliminates or reduces slight surface asperities of the fixing belt 21 at a nip NP formed between the fixing belt 21 and the pressing roller 31. Accordingly, heat is uniformly transmitted from the fixing belt 21 to a toner image T on a recording medium P passing through the nip NP, minimizing formation of a rough image such as an orange peel image. According to this exemplary embodiment, silicon rubber with a thickness of about 150 μm is used as the elastic layer 21b.
The release layer 21c has a thickness in a range of from about 10 μm to about 50 μm, and is made of tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), polytetrafluoroethylene (PTFE), polyimide, polyetherimide, and/or polyether sulfide (PES). The release layer 21c releases or separates the toner image T from the fixing belt 21. According to this exemplary embodiment, the release layer 21c has a thickness of about 30 μm and is made of PFA.
Inside the loop formed by the fixing belt 21 are disposed the nip formation pad 22, the heat generator 23, the magnetic member 24, the tension spring 27, and an insulator 29 depicted in
The nip formation pad 22 contacting the inner circumferential surface of the fixing belt 21 is a stationary member fixedly disposed inside the loop formed by the fixing belt 21; thus, the rotating fixing belt 21 slides over the stationary, nip formation pad 22. Further, the nip formation pad 22 presses against the pressing roller 31 via the fixing belt 21 to form the nip NP between the fixing belt 21 and the pressing roller 31 through which the recording medium P bearing the toner image T passes. Lateral ends of the nip formation pad 22 in a longitudinal direction thereof parallel to an axial direction of the fixing belt 21 are mounted on and supported by side plates of the fixing device 20, respectively. The nip formation pad 22 is made of a rigid material that prevents substantial bending of the nip formation pad 22 by pressure applied from the pressing roller 31.
The nip formation pad 22 is constituted by an opposed face (e.g., a contact face that contacts the inner circumferential surface of the fixing belt 21 sliding over the nip formation pad 22) facing the pressing roller 31 and having a concave shape corresponding to the curvature of the pressing roller 31. The recording medium P moves along the concave opposed face of the nip formation pad 22 in conformity with the curvature of the pressing roller 31 and is discharged from the nip NP in a direction Y11. Thus, the concave shape of the nip formation pad 22 prevents the recording medium P bearing the fixed toner image T from adhering to the fixing belt 21, thereby facilitating separation of the recording medium P from the fixing belt 21.
As described above, according to this exemplary embodiment, the nip formation pad 22 has a concave shape to form the concave nip NP. Alternatively, the nip formation pad 22 may have a flat, planar shape to form a planar nip NP. Specifically, the opposed face of the nip formation pad 22 disposed opposite the pressing roller 31 may have a flat, planar shape. Accordingly, the planar nip NP formed by the planar opposed face of the nip formation pad 22 is substantially parallel to an imaged side of the recording medium P. Consequently, the fixing belt 21 pressed by the planar opposed face of the nip formation pad 22 is precisely adhered to the recording medium P to improve fixing performance. Further, the increased curvature of the fixing belt 21 at an exit of the nip NP facilitates separation of the recording medium P discharged from the nip NP from the fixing belt 21.
As illustrated in
As noted above and illustrated in
The protective layer 23c is made of an insulating material, such as glass, that prevents the electric current applied to the heat generator 23 from flowing to the fixing belt 21. The base layer 23a of the heat generator 23 is mounted with the magnetic member 24 via the insulator 29.
With the above-described configuration, the heat generator 23 generates heat by itself, conducting the heat therefrom to the fixing belt 21. Then, the heat is applied from the outer circumferential surface of the heated fixing belt 21 to a toner image T on a recording medium P depicted in
The temperature sensor 40, disposed opposite the outer circumferential surface of the fixing belt 21, serves as a temperature detector that detects a temperature of the outer circumferential surface of the fixing belt 21. The temperature sensor 40 may be for example, a thermistor, a thermopile, or the like. Based on the temperature detected by the temperature sensor 40, a controller 6 depicted in
As described above, according to this exemplary embodiment, the heat generator 23 has multiple layers including the heat generation layer 23b. Alternatively, the heat generator 23 may have a single layer, that is, the heat generation layer 23b only.
As illustrated in
The permanent magnet 26 is slidably moved over a frame of the fixing device 20, for example, by the driver 45 bidirectionally as indicated by the double-headed arrow A1 in
The driver 45 that moves the permanent magnet 26 may be a mechanism that includes a cam contacting the permanent magnet 26 biased upward in
Optionally, a fan that cools the permanent magnet 26 may be added to minimize the decrease in magnetic permeability due to the heated permanent magnet 26.
As illustrated in
As illustrated in
With the above-described configuration of the insulator 29 combined with the heat generator 23 and the magnetic member 24, in accordance with the bidirectional movement of the permanent magnet 26 as indicated by the double-headed arrow A1 in
As illustrated in
As illustrated in
On the pressing roller 31 is mounted a gear engaging a driving gear of a driving mechanism that drives and rotates the pressing roller 31 counterclockwise in
With the elastic layer 33 of the pressing roller 31 made of a sponge material such as silicon rubber form, the pressing roller 31 applies decreased pressure to the nip formation pad 22 via the fixing belt 21 at the nip NP to decrease bending of the nip formation pad 22. Further, the pressing roller 31 provides increased heat insulation that minimizes heat conduction thereto from the fixing belt 21, improving heating efficiency of the fixing belt 21.
As a mechanism to convey the recording medium P bearing the toner image T to and from the nip NP formed between the fixing belt 21 and the pressing roller 31, the fixing device 20 includes two guide plates, the guide 35, that is, an entry guide plate, disposed at an entry to the nip NP and the guide 37, that is, an exit guide plate, disposed at an exit of the nip NP. The guide 35 is directed to the entry to the nip NP to guide the recording medium P conveyed in a direction Y10 from the transfer device 7 depicted in
Referring to
When the image forming apparatus 1 is powered on, the power source supplies an electric current to the heat generator 23; at the same time, the pressing roller 31 starts rotating in the rotation direction R2. Accordingly, the fixing belt 21 rotates in accordance with rotation of the pressing roller 31 in the rotation direction R1 counter to the rotation direction R2 of the pressing roller 31 due to friction therebetween at the nip NP.
Thereafter, at the transfer nip formed between the photoconductive drum 5 and the transfer device 7, the toner image T formed on the photoconductive drum 5 as described above is transferred onto a recording medium P sent from one of the paper trays 12, 13, and 14. Being guided by the guide 35, the recording medium P bearing the toner image T is conveyed from the transfer nip in the direction Y10 toward the nip NP, entering the nip NP formed between the fixing belt 21 and the pressing roller 31 pressed against each other.
As the recording medium P bearing the toner image T passes through the nip NP, it receives heat from the heated fixing belt 21 and pressure from the fixing belt 21, the nip formation pad 22, and the pressing roller 31 that form the nip NP. Thus, the toner image T is fixed on the recording medium P by the heat and the pressure applied at the nip NP. Thereafter, the recording medium P bearing the fixed toner image T is discharged from the nip NP and conveyed in the direction Y11 as guided by the guide 37.
Referring to
As illustrated in
As illustrated in
As illustrated in
By contrast, as illustrated in
Accordingly, instead of a moving mechanism including a cam that contacts and moves the heat generator 23, the fixing device 20 employs the permanent magnet 26 that moves the heat generator 23 by magnetic force without contacting the heat generator 23, preventing elements of the fixing device 20 other than the fixing belt 21 from drawing heat generated by the heat generator 23 and thereby maintaining heating efficiency of the fixing belt 21.
For example, even when the entire heat generator 23 does not contact the fixing belt 21, with a gap therebetween of about 0.2 mm or smaller, preferably about 0.1 mm or smaller, an air layer of the gap degrades heat conductivity to an extent that can be ignored, maintaining high heat conductivity from the heat generator 23 to the fixing belt 21. Accordingly, the driver 45 moves the permanent magnet 26 in such a manner that the position of the permanent magnet 26 is switchable between the two positions: a first position shown in
Optionally, the fixing device 20 may further include a stopper that restricts an amount of movement of the heat generator 23 moving upward in the direction D3 and downward in the direction D5 in accordance with movement of the permanent magnet 26 as described above, thus facilitating adjustment of the pressure with which the heat generator 23 presses against the fixing belt 21 or the distance between the heat generator 23 and the fixing belt 21 within a target range.
The moving assembly 60 that moves the heat generator 23 is controlled by the controller 6 depicted in
Specifically, when the fixing device 20 is warmed up or a recording medium P passes through the fixing device 20 and therefore the fixing belt 21 rotates clockwise in
Conversely, in a standby mode in which the fixing belt 21 does not rotate, the driver 45 moves the permanent magnet 26 to the second position shown in
In addition to the above-described control, even when the fixing belt 21 rotates after conveyance of the recording medium P through the nip NP is finished, the controller 6 controls the moving assembly 60 to move the heat generator 23 to the position where the heat generator 23 presses against the fixing belt 21 with a decreased pressure or is disposed opposite the fixing belt 21 with a greater distance therebetween compared to when conveyance of the recording medium P through the nip NP is ongoing.
For example, when the fixing process is performed at the nip NP while a recording medium P is conveyed through the nip NP or until the fixing process is finished on the last recording medium P when a plurality of recording media P is conveyed through the nip NP continuously, the driver 45 moves the permanent magnet 26 to the first position shown in
Conversely, immediately after the fixing process is finished at the nip NP while a recording medium P is conveyed through the nip NP or immediately after the fixing process is finished on the last recording medium P when a plurality of recording media P is conveyed through the nip NP continuously, the driver 45 moves the permanent magnet 26 to the second position shown in
As described above, the configuration according to the first illustrative embodiment changes the pressure with which the heat generator 23 presses against the fixing belt 21 or the distance between the heat generator 23 and the fixing belt 21 disposed opposite the heat generator 23. Thus, even when the heat generator 23 presses against the fixing belt 21 or is disposed opposite the fixing belt 21 to heat the fixing belt 21, the heat generator 23 can heat the fixing belt 21 efficiently. Further, even when the fixing belt 21 does not rotate, temperature variation of the fixing belt 21 does not arise in the rotation direction R1 thereof.
Additionally, according to the first illustrative embodiment, the permanent magnet 26 generates an attractive force between the permanent magnet 26 and the magnetic member 24 and at the same time the tension spring 27 exerts a biasing force on the magnetic member 24 and the heat generator 23 downward in
Further, the configuration according to the first illustrative embodiment uses the permanent magnet 26 as a magnet that slidably moves over the frame of the fixing device 20 in the diametrical direction of the fixing belt 21 and exerts a magnetic force on the magnetic member 24 to cause the heat generator 23 to contact and separate from the fixing belt 21 or change pressure with which the heat generator 23 presses against the fixing belt 21. Alternatively, an electromagnet or a superconducting magnet may be used as a magnet that exerts a magnetic force on the magnetic member 24. Such magnets can also slidably move to cause the heat generator 23 to contact and separate from the fixing belt 21 or change pressure with which the heat generator 23 presses against the fixing belt 21, thus attaining effects equivalent to the effects of the first illustrative embodiment.
Referring to
As illustrated in
The fixing device 20S further includes a moving assembly 60S that moves the heat generator 23 combined with the magnetic member 24 and the insulator 29 to change pressure with which the heat generator 23 presses against the fixing belt 21 or a distance between the heat generator 23 and the fixing belt 21 disposed opposite the heat generator 23.
For example, the moving assembly 60S includes the permanent magnet 26S, the magnetic member 24, and the driver 46 that drives and rotates the permanent magnet 26S.
The permanent magnet 26S, disposed opposite the magnetic member 24 via the fixing belt 21 and the heat generator 23, is rotated about a rotary shaft 26a by the driver 46 to change the magnetic pole, that is, the north pole or the south pole, of the permanent magnet 26S disposed opposite the magnetic member 24. The magnetic member 24, together with the insulator 29 depicted in
With this configuration, when the fixing belt 21 rotates, the driver 46 depicted in
By contrast, when the fixing belt 21 does not rotate, the driver 46 rotates the permanent magnet 26S to a second position shown in
It is to be noted that, according to the second illustrative embodiment, the south pole of the magnetic member 24 is disposed opposite the permanent magnet 26S.
According to the second illustrative embodiment, since the permanent magnet 26S biases the magnetic member 24 and the heat generator 23 attached to the magnetic member 24 by its magnetic repulsive force to separate the heat generator 23 from the fixing belt 21, the tension spring 27 of the fixing device 20 according to the first illustrative embodiment shown in
As described above, like the configuration according to the first illustrative embodiment, the configuration according to the second illustrative embodiment changes the pressure with which the heat generator 23 presses against the fixing belt 21 or the distance between the heat generator 23 and the fixing belt 21 disposed opposite the heat generator 23. Thus, even when the heat generator 23 presses against the fixing belt 21 or is disposed opposite the fixing belt 21 to heat the fixing belt 21, the heat generator 23 can heat the fixing belt 21 efficiently. Further, even when the fixing belt 21 does not rotate, temperature variation of the fixing belt 21 does not arise in the rotation direction R1 thereof.
Referring to
As illustrated in
The fixing device 20T further includes a moving assembly 60T that moves the heat generator 23 combined with the magnetic member 24 and the insulator 29 depicted in
For example, the moving assembly 60T includes the electromagnet 28, the magnetic member 24, the tension spring 27, the power source 50, and the variable resistor 51.
The electromagnet 28 is disposed opposite the magnetic member 24 via the fixing belt 21 and the heat generator 23. The variable resistor 51 changes an amount of electric current applied to the electromagnet 28 (e.g., an electromagnetic coil) from the power source 50 to change a magnetic force exerted on the magnetic member 24. The magnetic member 24, together with the insulator 29 depicted in
With this configuration, when the fixing belt 21 rotates, the controller 6 depicted in
By contrast, when the fixing belt 21 does not rotate, the controller 6 controls the variable resistor 51 to supply a decreased amount of electric current from the power source 50 to the electromagnet 28; thus, the electromagnet 28 exerts a decreased magnetic attractive force on the magnetic member 24, moving the heat generator 23, together with the magnetic member 24, downward in
According to the above-described fixing device 20T according to the third illustrative embodiment, the controller 6 controls the variable resistor 51 to change the amount of electric current supplied from the power source 50 to the electromagnet 28, thus causing the heat generator 23 to contact and separate from the fixing belt 21. Alternatively, the controller 6 may change a direction in which the electric current is applied to the electromagnet 28 to change the magnetic pole thereof, that is, the north pole or the south pole, which exerts a magnetic force on the magnetic member 24, thus causing the heat generator 23 to contact and separate from the fixing belt 21.
For example, as illustrated in
As illustrated in
The fixing device 20TV further includes a moving assembly 60TV that moves the heat generator 23 combined with the magnetic member 24 and the insulator 29 depicted in
For example, the moving assembly 60TV includes the electromagnet 28, the magnetic member 24, the power source 50, and the switching circuit 52.
With this configuration, when the fixing belt 21 rotates, the controller 6 depicted in
By contrast, when the fixing belt 21 does not rotate, the controller 6 controls the switching circuit 52 to change the direction in which the power source 50 applies the electric current to the electromagnet 28, causing the south pole of the electromagnet 28 to be disposed opposite the fixing belt 21 and the magnetic member 24; thus, the electromagnet 28 exerts a magnetic repulsive force on the magnetic member 24, moving the heat generator 23, together with the magnetic member 24, downward in
It is to be noted that, in the fixing devices 20T and 20TV, the south pole of the magnetic member 24 is disposed opposite the electromagnet 28.
As described above, like the configuration according to the above-described illustrative embodiments, the configurations according to the third illustrative embodiment and the variation thereof change the pressure with which the heat generator 23 presses against the fixing belt 21 or the distance between the heat generator 23 and the fixing belt 21 disposed opposite the heat generator 23. Thus, even when the heat generator 23 presses against the fixing belt 21 or is disposed opposite the fixing belt 21 to heat the fixing belt 21, the heat generator 23 can heat the fixing belt 21 efficiently. Further, even when the fixing belt 21 does not rotate, temperature variation of the fixing belt 21 does not arise in the rotation direction R1 thereof.
Referring to
As illustrated in
Like the fixing device 20 according to the first illustrative embodiment depicted in
The exciting coil unit 25, serving as an induction heater, includes an exciting coil 25a and an exciting coil core 25b. The exciting coil 25a, extending in a longitudinal direction of the exciting coil unit 25 parallel to the axial direction of the fixing belt 21U, is constructed of litz wire formed by bundling thin wire and wound around the exciting coil core 25b that covers a part of an outer circumferential surface of the fixing belt 21U. The exciting coil core 25b, made of ferromagnet (e.g., ferrite) having a relative permeability of about 2,500, generates a magnetic flux toward a heat generation layer of the fixing belt 21U and a heat generation layer of the heat generator 23U efficiently.
Referring to
The fixing belt 21U is constructed of three layers: a base layer 21d constituting an inner circumferential surface of the fixing belt 21U, that is, a contact face that slides over the nip formation pad 22 and the heat generator 23U; the elastic layer 21b disposed on the base layer 21d; and the release layer 21c disposed on the elastic layer 21b.
For example, the base layer 21d, having a thickness of from about several microns to about several hundred microns, is made of a magnetic material, such as SUS420 stainless steel or Fe—Ni alloy, thus serving as a heat generation layer heated by the exciting coil unit 25 by electromagnetic induction. The configuration of the elastic layer 21b and the release layer 21c of the fixing belt 21U is identical to that of the fixing belt 21 depicted in
Referring to
The heat generator 23U is constructed of three layers like the heat generator 23 of the fixing device 20 shown in
The heat generation layer 23f, having a thickness of about 10 μm, is made of copper. As an exciting magnetic flux generated by the exciting coil unit 25 passes through the heat generation layer 23f, it induces an eddy current that heats the heat generation layer 23f by electromagnetic induction.
Each of the antioxidant layers 23e and 23g, having a thickness of about 30 μm, is made of nickel plate; the antioxidant layers 23e and 23g sandwich the heat generation layer 23f, inhibiting oxidation of the heat generation layer 23f.
With this configuration, the heat generator 23U is heated by electromagnetic induction by an alternating magnetic field generated by the exciting coil unit 25, thus heating the fixing belt 21U contacting the heat generator 23U. That is, the exciting coil unit 25 heats the heat generator 23U directly by electromagnetic induction and heats the fixing belt 21U indirectly via the heat generator 23U by heat conduction from the heat generator 23U to the fixing belt 21U.
Further, since the fixing belt 21U has the base layer 21d that functions as a heat generation layer, the fixing belt 21U itself, that is, the base layer 21d, is also heated directly by electromagnetic induction by the alternating magnetic field generated by the exciting coil unit 25. That is, the fixing belt 21U is heated directly by electromagnetic induction by the exciting coil unit 25 and at the same time is heated indirectly by the exciting coil unit 25 by heat conduction from the heat generator 23U heated by electromagnetic induction by the exciting coil unit 25, improving heating efficiency of the fixing belt 21U.
Thereafter, the heated fixing belt 21U heats a recording medium P bearing a toner image T.
The controller 6 depicted in
Referring to
When the image forming apparatus 1 is powered on, a high-frequency power source supplies an alternating electric current to the exciting coil 25a of the exciting coil unit 25, and at the same time the pressing roller 31 starts rotating in the rotation direction R2. Accordingly, the fixing belt 21U rotates in accordance with rotation of the pressing roller 31 in the rotation direction R1 counter to the rotation direction R2 of the pressing roller 31 due to friction therebetween at the nip NP.
Thereafter, at the transfer nip formed between the photoconductive drum 5 and the transfer device 7, the toner image T formed on the photoconductive drum 5 as described above is transferred onto a recording medium P sent from one of the paper trays 12, 13, and 14. The recording medium P bearing the toner image T is conveyed from the transfer nip in the direction Y10 toward the nip NP, entering the nip NP formed between the fixing belt 21U and the pressing roller 31 pressed against each other.
As the recording medium P bearing the toner image T passes through the nip NP, it receives heat from the heated fixing belt 21U and pressure from the fixing belt 21U, the nip formation pad 22, and the pressing roller 31 that form the nip NP. Thus, the toner image T is fixed on the recording medium P by the heat and the pressure applied at the nip NP. Thereafter, the recording medium P bearing the fixed toner image T is discharged from the nip NP and conveyed in the direction Y11.
With the above-described configuration of the fixing device 20U shown in
By contrast, when the fixing belt 21U does not rotate, the driver 45 moves the permanent magnet 26 to a second position shown in
Even when the heat generator 23U is isolated from the fixing belt 21U, it is constantly disposed within a magnetic field indicated by the broken line in
Preferably, the heat generation layer 23f of the heat generator 23U may be made of a magnetic shunt alloy.
For example, the base layer 21d, that is, the heat generation layer, of the fixing belt 21U is made of a ferromagnetic, magnetic shunt alloy such as iron, nickel, cobalt, or an alloy of these.
With such materials of the heat generation layer 23f of the heat generator 23U and the base layer 21d of the fixing belt 21U, the base layer 21d of the fixing belt 21U has a Curie temperature near an upper temperature limit of the fixing temperature with which the toner image T is fixed on the recording medium P, preventing overheating of the fixing belt 21U with self temperature control of the magnetic shunt alloy and thereby minimizing thermal degradation of the fixing belt 21U. Further, the base layer 21d of the fixing belt 21U has a Curie temperature equivalent to a temperature that maintains magnetic permeability against the heated magnetic member 24, rendering the insulator 29 disposed between the heat generator 23U and the magnetic member 24 unnecessary.
According to the fourth illustrative embodiment, the fixing belt 21U includes the heat generation layer, that is, the base layer 21d, heated by the exciting coil unit 25 by electromagnetic induction. Alternatively, the fixing belt 21U may not include the heat generation layer. For example, the fixing belt 21U is heated solely by the heat generator 23U by heat conduction or heat radiation, which is heated by the exciting coil unit 25 by electromagnetic induction, thus further enhancing prevention of localized overheating of the fixing belt 21U when the fixing belt 21U does not rotate.
As described above, like the configuration according to the above-described illustrative embodiments, the configuration according to the fourth illustrative embodiment changes the pressure with which the heat generator 23U presses against the fixing belt 21U or the distance between the heat generator 23U and the fixing belt 21U disposed opposite the heat generator 23U. Thus, even when the heat generator 23U presses against the fixing belt 21U or is disposed opposite the fixing belt 21U to heat the fixing belt 21U, the heat generator 23U can heat the fixing belt 21U efficiently. Further, even when the fixing belt 21U does not rotate, temperature variation of the fixing belt 21U does not arise in the rotation direction R1 thereof.
According to the above-described exemplary embodiments, the fixing belts 21 and 21U are used as a fixing rotary body that rotates in the predetermined direction of rotation; the pressing roller 31 is used as a pressing rotary body disposed opposite the fixing rotary body to form the nip NP therebetween and rotating in the direction counter to the direction of rotation of the fixing rotary body. Alternatively, a fixing film, a fixing roller, or the like may be used as a fixing rotary body; a pressing belt or the like may be used as a pressing rotary body, attaining effects equivalent to the effects of the fixing devices 20, 20S, 20T, 20TV, and 20U according to the above-described exemplary embodiments.
Further, the fixing devices 20, 20S, 20T, 20TV, and 20U according to the above-described exemplary embodiments are installed in the image forming apparatus 1 serving as a monochrome copier. Alternatively, they may be installed in color image forming apparatuses such as copiers, printers, facsimile machines, and multifunction printers having at least one of copying, printing, scanning, plotter, and facsimile functions, or the like.
Further, according to the above-described exemplary embodiments, the fixing devices 20, 20S, 20T, and 20TV include the heat generator 23 that generates heat; the fixing device 20U includes the heat generator 23U heated by the exciting coil unit 25 by electromagnetic induction. Alternatively, the fixing devices 20, 20S, 20T, 20TV, and 20U may include a heat generator heated by a heater (e.g., a halogen heater) by radiant heat, attaining effects equivalent to the effects of the fixing devices 20, 20S, 20T, 20TV, and 20U according to the above-described exemplary embodiments.
The present invention has been described above with reference to specific exemplary embodiments. Note that the present invention is not limited to the details of the embodiments described above, but various modifications and enhancements are possible without departing from the spirit and scope of the invention. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative exemplary embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-140508 | Jun 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5832354 | Kouno et al. | Nov 1998 | A |
5915147 | Kouno et al. | Jun 1999 | A |
6219520 | Ehara | Apr 2001 | B1 |
6560421 | Matsumoto | May 2003 | B1 |
6628916 | Yasui et al. | Sep 2003 | B2 |
6636709 | Furukawa et al. | Oct 2003 | B2 |
6778790 | Yoshinaga et al. | Aug 2004 | B2 |
6785505 | Yasui et al. | Aug 2004 | B2 |
6807386 | Yasui et al. | Oct 2004 | B2 |
6881927 | Yoshinaga et al. | Apr 2005 | B2 |
6892044 | Yasui et al. | May 2005 | B2 |
7022944 | Yoshinaga et al. | Apr 2006 | B2 |
7266336 | Ueno et al. | Sep 2007 | B2 |
7450872 | Ueno et al. | Nov 2008 | B2 |
7491917 | Ueno | Feb 2009 | B2 |
7509085 | Yoshinaga et al. | Mar 2009 | B2 |
7546049 | Ehara et al. | Jun 2009 | B2 |
7693439 | Seo et al. | Apr 2010 | B2 |
7715774 | Ueno | May 2010 | B2 |
7734208 | Seo et al. | Jun 2010 | B2 |
7742714 | Shinshi et al. | Jun 2010 | B2 |
7778581 | Seo et al. | Aug 2010 | B2 |
7783240 | Ito et al. | Aug 2010 | B2 |
7796933 | Ueno et al. | Sep 2010 | B2 |
7801457 | Seo et al. | Sep 2010 | B2 |
7817952 | Seo et al. | Oct 2010 | B2 |
7885590 | Seo et al. | Feb 2011 | B2 |
7925177 | Ishii et al. | Apr 2011 | B2 |
20060245797 | Suzuki | Nov 2006 | A1 |
20060257183 | Ehara et al. | Nov 2006 | A1 |
20060285893 | Ishii | Dec 2006 | A1 |
20070003334 | Shinshi et al. | Jan 2007 | A1 |
20070014600 | Ishii et al. | Jan 2007 | A1 |
20070280754 | Ogawa et al. | Dec 2007 | A1 |
20080025773 | Ito et al. | Jan 2008 | A1 |
20080063443 | Yoshinaga et al. | Mar 2008 | A1 |
20080317532 | Ehara et al. | Dec 2008 | A1 |
20090060550 | Seo | Mar 2009 | A1 |
20090123201 | Ehara et al. | May 2009 | A1 |
20090142114 | Yasuda et al. | Jun 2009 | A1 |
20090148204 | Yoshinaga et al. | Jun 2009 | A1 |
20090148205 | Seo et al. | Jun 2009 | A1 |
20090245897 | Seo et al. | Oct 2009 | A1 |
20100074667 | Ehara et al. | Mar 2010 | A1 |
20100158553 | Ueno | Jun 2010 | A1 |
20100178088 | Koshida et al. | Jul 2010 | A1 |
20100303521 | Ogawa et al. | Dec 2010 | A1 |
20110044706 | Iwaya et al. | Feb 2011 | A1 |
20110052277 | Ueno et al. | Mar 2011 | A1 |
20110064450 | Ishii et al. | Mar 2011 | A1 |
20110064451 | Yamaguchi et al. | Mar 2011 | A1 |
20110064490 | Imada et al. | Mar 2011 | A1 |
20110064502 | Hase et al. | Mar 2011 | A1 |
20110091253 | Seo et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2975435 | Sep 1999 | JP |
2003-337490 | Nov 2003 | JP |
3998955 | Aug 2007 | JP |
2008-76794 | Apr 2008 | JP |
2009-258453 | Nov 2009 | JP |
1293745 | Feb 1987 | SU |
Entry |
---|
Extended Search Report issued Aug. 29, 2011 in Europeanl Application No. 11169961.7. |
U.S. Appl. No. 13/026,945, filed Feb. 14, 2011, Kenji Ishii et al. |
U.S. Appl. No. 13/041,703, filed Mar. 7, 2011, Tadashi Ogawa et al. |
U.S. Appl. No. 13/064,201, filed Mar. 10, 2011. |
U.S. Appl. No. 13/064,137, filed Mar. 8, 2011. |
U.S. Appl. No. 13/064,105, filed Mar. 7, 2011. |
U.S. Appl. No. 12/974,852, filed Dec. 21, 2010. |
U.S. Appl. No. 13/049,330, filed Mar. 16, 2011, Satoshi Ueno et al. |
U.S. Appl. No. 13/049,181, filed Mar. 16, 2011, Masanao Ehara et al. |
Number | Date | Country | |
---|---|---|---|
20110311284 A1 | Dec 2011 | US |