1. Field of the Invention
The present invention relates to a fixing device configured to thermally fix a developing agent image to a recording sheet.
2. Description of Related Art
A known fixing device, which is configured to thermally fix a developing agent image to a recording sheet, comprises a tubular fixing belt, a heat generating member, a nip member, a pressure roller, and a stay. The heating generating member and the nip member are disposed in an inner space of the fixing belt. The fixing belt is nipped between the nip member and the pressure roller. The stay supports the nip member from a side opposite from the pressure roller.
In such a fixing device, the stay may take heat from the nip member, which may reduce heating efficiency of the nip member and especially adversely affect temperature rising of the nip member at the start of operation.
Therefore, a need has arisen for a fixing device which prevents or reduces heat transfer from a nip member to a stay during heating of the nip member, and allows heat to escape from the nip member to the stray during cooling of the nip member.
According to an embodiment of the invention, a fixing device configured to thermally fix a developing agent image to a recording sheet comprises a fixing belt having a tubular shape defining an inner space, a heat generating member disposed in the inner space of the fixing belt, a nip member made of metal and disposed in the inner space of the fixing belt such that an inner surface of the fixing belt is configured to make slide contact with the nip member, a rotating member configured to rotate and disposed outside the inner space of the fixing belt such that the fixing belt is nipped between the nip member and the rotating member, a stay made of metal and disposed in the inner space of the fixing belt, and a heat insulator made of a non-metallic material. The stay comprises a first receiving portion and a second receiving portion which are positioned upstream and downstream of the heat generating member, respectively, in a conveying direction of the recording sheet and are configured to receive a force exerted from the rotating member to the nip member. The heat insulator is disposed between the nip member and one of the first receiving portion and the second receiving portion of the stay.
Other objects, features, and advantages will be apparent to persons of ordinary skill in the art from the following detailed description of the invention and the accompanying drawings.
For a more complete understanding of the invention, the needs satisfied thereby, and the features and technical advantages thereof, reference now is made to the following descriptions taken in connection with the accompanying drawings.
Embodiments of the invention and their features and technical advantages may be understood by referring to
In the following description, the expressions “front”, “rear”, “upper (up)”, “lower (down)”, “right”, and “left” are used to define the various parts when a laser printer 1, is disposed in an orientation in which it is intended to be used.
<General Structure of a Laser Printer>
As shown in
The sheet feed unit 3, which is disposed at the bottom of the housing 2, mainly includes a feed tray 31, a sheet lifting plate 32, and a sheet feeding mechanism 33. A sheet S accommodated in the feed tray 31 is shifted upwardly by the sheet lifting plate 32 and is supplied toward the process cartridge 5 (specifically, a nip between a photosensitive drum 61 and a transfer roller 63) by the sheet feeding mechanism 33.
The exposure device 4, which is disposed at the upper part of the housing 2, includes a laser light emitting unit (not shown) as well as a polygon minor, a lens, and a reflecting minor, which are shown without reference numerals. In the exposure device 4, laser light (see the dash-dot line) emitted from the laser light emitting unit according to image data is scanned at high speed on the surface of the photosensitive drum 61 to expose the surface of the photosensitive drum 61 to light.
The process cartridge 5, which is disposed below the exposure device 4, is removably attached to the housing 2 through an opening made when a front cover 21 attached to the housing 2 is opened. The process cartridge 5 is formed with a drum unit 6 and a developing unit 7.
The drum unit 6 mainly includes the photosensitive drum 61, a charger 62, and the transfer roller 63. The developing unit 7, which is removably attached to the drum unit 6, mainly includes a developing roller 71, a supply roller 72, a blade 73, and a toner storage 74 that stores toner (a developing agent).
In the process cartridge 5, the surface of the photosensitive drum 61 is uniformly charged by the charger 62, after which laser light from the exposure device 4 is scanned at high speed on the photosensitive drum 61, so its surface is exposed to light, forming an electrostatic latent image on the photosensitive drum 61 according to the image data. Toner in the toner storage 74 is supplied through the supply roller 72 to the developing roller 71 and then enters between the developing roller 71 and the blade 73. The toner is supported on the developing roller 71 as a thin layer with a fixed thickness.
The toner supported on the developing roller 71 is supplied from the developing roller 71 to the electrostatic latent image formed on the photosensitive drum 61. Thus, the electrostatic latent image is visualized, forming a toner image on the photosensitive drum 61. When a sheet S is then conveyed between the photosensitive drum 61 and the transfer roller 63, the toner image on the photosensitive drum 61 is transferred to the sheet S.
The fixing device 100 is disposed behind the process cartridge 5. The toner image (toner) transferred to the sheet S is thermally fixed to the sheet S while the sheet S passes through the fixing device 100. The sheet S on which the toner image has been thermally fixed is discharged to a discharge tray 22 by convey rollers 23 and 24.
<Fixing Device in First Embodiment>
As shown in
The fixing belt 110, which is heated by the heating unit 200 described later, is a belt having heat resistance and flexibility. The rotation of the fixing belt 110 is guided by a guide member, which is shown without a reference numeral.
The pressure roller 120, which can be elastically deformed, is disposed below the fixing belt 110 and the heating unit 200. When the pressure roller 120 is elastically deformed and nips the fixing belt 110 in cooperation with the heating unit 200 (particularly, a nip plate 220), a nip region N is formed. In this embodiment, the heating unit 200 and the pressure roller 120 are mutually brought into pressure contact while one of them is urged toward the other.
When a driving force is transmitted from a motor (not shown) provided in the housing 2 to the pressure roller 120, its rotation is driven. Then, the fixing belt 110 is rotated by a frictional force exerted between the pressure roller 120 and the fixing belt 110 (or the sheet S). Thus, while the sheet S, to which the toner image has been transferred, is conveyed from front to rear between the pressure roller 120 and the heated fixing belt 110, the toner image (toner) is thermally fixed to the sheet S.
The heating unit 200, which heats toner on the sheet S through the fixing belt 110, includes a heat generating member, e.g., a halogen lamp 210, a nip member, e.g., the nip plate 220, a reflective member 230, and a stay 240.
The halogen lamp 210 is a heater that generates radiant heat and heats the nip plate 220 and the fixing belt 110, thereby to heat the toner on the sheet S. The halogen lamp 210 is disposed in the inner space defined by the fixing belt 110 with prescribed spacing from the fixing belt 110 and from the inner face of the nip plate 220.
The nip plate 220 is a plate-shaped member made of metal and receives radiant heat from the halogen lamp 210. The nip plate 220 is disposed in the inner space defined by the fixing belt 110 such that the inner peripheral surface of the tubular fixing belt 110 makes sliding contact with the lower face of the nip plate 220. In this embodiment, the nip plate 220 is formed by machining an aluminum plate, or a plate made of other material, having higher thermal conductivity than the steel stay 240 described later.
As shown in
The base portion 221, the lower face of which is in contact with the inner peripheral surface of the fixing belt 110, receives heat from the halogen lamp 210 and transfers the received heat through the fixing belt 110 to toner on the sheet S. One bent portion 222 extends upwardly from the front end of the base portion 221 and the other bent portion 222 extends upwardly from the rear end of the base portion 221.
As shown in
Since this reflective member 230 collects the radiant heat from the halogen lamp 210 on the nip plate 220, the radiant heat from the halogen lamp 210 can be efficiently used, enabling the nip plate 220 and the fixing belt 110 to be quickly heated.
Specifically, the reflective member 230 is formed by bending in a substantially U-shape an aluminum plate, or a plate made of other metallic material, which reflects infrared rays and far infrared rays with high reflectance and has higher thermal conductivity than the stay 240. More specifically, the reflective member 230 has a reflective portion 231 in a curved shape, which is a substantially U-shape in cross-sectional view, and flange portions 232 that are disposed facing the nip plate 220 and extend from both ends of the reflective portion 231 in directions away from the halogen lamp 210; one of the flange portions 232 extends to the front and the other extends to the rear. The reflective member 230 is thinner than the stay 240.
The stay 240 supports, from the opposite side from the pressure roller 120, both ends of the nip plate 220, one end extending to the front and the other end extending to the rear. When a force is exerted from the pressure roller 120 to the nip plate 220, the stay 240 receives the force. The stay 240 is formed by bending a steel plate, or a metal plate, having relatively high stiffness in a substantially U-shape in cross-sectional view along the reflective member 230 (particularly, the reflective portion 231), so as to define an opening which is open toward the nip plate 220.
More specifically, the stay 240 includes an upper wall 241 disposed above the halogen lamp 210, a front wall 242 (a first receiving portion) extending downwardly from the front end of the upper wall 241, and a rear wall 243 (a second receiving portion) extending downwardly from the rear end of the upper wall 241. The front wall 242 and the rear wall 243 receive a force exerted from the pressure roller 120 to the nip plate 220.
The front wall 242 is disposed upstream of the halogen lamp 210 in the conveying direction of the sheet S. The lower end of the front wall 242 sandwiches, in cooperation with the nip plate, the flange portion 232 disposed on the front side of the reflective member 230, and also supports the front end of the nip plate 220 (the end of the bent portion 222 on the front side) from above.
The rear wall 243 is disposed downstream of the halogen lamp 210 in the conveying direction of the sheet S. The lower end of the rear wall 243 sandwiches, in cooperation with the nip plate 220, the flange portion 232 disposed on the rear side of the reflective member 230, and also supports the rear end of the nip plate 220 (the rear end of the base portion 221) from above.
In this embodiment, the lower end of the front wall 242 is disposed upstream of the nip region N in the conveying direction of the sheet S, and the lower end of the rear wall 243 is disposed downstream of the nip region N in the conveying direction of the sheet S.
As shown in
The heat insulator 250 is a resin tape which may be a foamed resin tape. A polyimide tape, which is a resin tape superior in heat resistance, can be used as an example of the heat insulator 250. The heat insulator 250 is attached at the lower end of the front wall 242, from the left end to the right end, as shown in
Thus, the heat insulator 250 is disposed so as to be sandwiched between the front wall 242 and the flange portion 232 on the front side as shown in
The physical properties of the material of the heat insulator 250 and its thickness are preferably enough to suppress heat transfer between the front wall 242 and the flange portion 232 on the front side.
The heat insulator 250 is not disposed between the rear wall 243 of the stay 240 and the nip plate 220; the rear wall 243 is in contact with the flange portion 232 on the rear side of the reflective member 230. That is, the heat insulator 250 is disposed only between the front wall 242 of the stay 240 and the nip plate 220, and is not disposed between the rear wall 243 of the stay 240 and the nip plate 220.
The fixing device 100, structured as described above according to the first embodiment, has the following advantages. When the halogen lamp 210 is turned on, the nip plate 220 receives radiant heat from the halogen lamp 210 and starts to be heated.
The reflective member 230, which is in contact with the nip plate 220, has high thermal conductivity and small thermal capacity attributable to the thin thickness of the reflective member 230, so the reflective member 230 is easily heated together with the nip plate 220. However, the stay 240 has lower thermal conductivity than the nip plate 220 and the reflective member 230, so the stay 240 is not easily heated. Since, in this embodiment, the heat insulator 250 is provided between the nip plate 220 and the front wall 242 of the stay 240, heat of the nip plate 220 is made less likely to be transferred to the stay 240. Thus, the nip plate 220 can be quickly heated. Unlike this embodiment, in the case where the heat of the nip plate 220 is easily transferred to the stay 240 and the stay 240 takes heat from the nip plate 220, the heating efficiency (temperature rising rate) of the nip plate 220 will be lowered.
Even if the sheet S and fixing belt 110 take heat from the nip plate 220 when they enter the nip region N, the front wall 242 does not take heat from the nip plate 220. This is because the heat insulator 250 is disposed between the nip plate 220 and the front wall 242, which is disposed upstream of the nip region N in the conveying direction. Accordingly, the temperature of the nip plate 220 is less likely to decrease.
When the halogen lamp 210 is turned off, the heat of the nip plate 220 is easily transferred to the rear wall 243. This is because the heat insulator 250 is not provided between the rear wall 243 and the nip plate 220. Thus, heat of the nip plate 220 is allowed to escape to the stay 240 during the cooling of the nip plate 220, so the nip plate 220 can be quickly cooled.
So far, the first embodiment of the invention has been described, but the invention is not limited to the embodiment. The specific structures can be appropriately changed without departing from the intended scope of the invention.
Although, in the first embodiment described above, the heat insulator 250 is provided between the front wall 242 of the stay 240 and the nip plate 220, but not provided between the rear wall 243 and the nip plate 220, the invention is not limited to this structure. For example, as shown in
Specifically, the heat insulator 250 is attached to the lower end of the rear wall 243 so as to cover the lower face of the rear wall 243. Thus, the heat insulator 250 is disposed between the rear wall 243 and the flange portion 232 on the rear side of the reflective member 230.
Even in this structure, as in the first embodiment described above, heat of the nip plate 220 is made less likely to be transferred to the stay 240 during the heating of the nip plate 220, and heat of the nip plate 220 is allowed to escape to the stay 240 during the cooling of the nip plate 220 (when the halogen lamp 210 is turned off).
Although, in the embodiments described above, the heat insulator 250 is provided between the nip plate 220 and only one of the front wall 242 and the rear wall 243 of the stay 240, the invention is not limited to this structure. For example, heat insulators having different heat insulating effects may be provided between the front wall 242 and the nip plate 220 and between the rear wall 243 and the nip plate 220.
Specifically, as shown in
The first heat insulator 251 is attached to the lower end of the front wall 242 so as to cover the lower face of the front wall 242. The first heat insulator 251 is disposed between the front wall 242 and the flange portion 232 on the front side of the reflective member 230.
The second heat insulator 252 is attached to the lower end of the rear wall 243 so as to cover the lower face of the rear wall 243. The second heat insulator 252 is disposed between the rear wall 243 and the flange portion 232 on the rear side of the reflective member 230. Although the second heat insulator 252 is made of the same material as the first heat insulator 251, the second heat insulator 252 is thinner than the first heat insulator 251. As compared with the first heat insulator 251, the second heat insulator 252 allows more heat transfer between the rear wall 243 and the flange portion 232 on the rear side.
In this structure, heat of the nip plate 220 is made less likely to be transferred to the rear wall 243 and the front wall 242 of the stay 240 during the heating of the nip plate 220. However, heat of the nip plate 220 is allowed to escape to the rear wall 243 of the stay 240 during the cooling of the nip plate 220.
A first heat insulator and a second heat insulator may be made of materials having different heat insulating performances and may have the same thickness. For example, a first heat insulator may be made of a material having a physical property unlikely to transfer heat, and a second heat insulator may be made of a material having a physical property more likely to transfer heat than the material of the first heat insulator. When the first heat insulator and the second heat insulator are made in this way, they have different heat insulating effects.
A first heat insulator and a second heat insulator may be made of materials having the same heat insulating performance and may have the same thickness. An exposed area of a second heat insulator attached to the lower face of the front wall 242 may be larger than an exposed area of a first heat insulator attached to the lower face of the rear wall 243. In this structure, the first heat insulator and second heat insulator have different heat insulating effects.
Although, in the first embodiment described above, the heat insulator 250 is disposed between the front wall 242 of the stay 240 and the flange portion 232 on the front side of the reflective member 230, the invention is not limited to this structure. For example, a heat insulator may be disposed between the nip plate 220 and the flange portion 232 on the front side. Alternatively, a heat insulator may be disposed both between the front wall 242 and the flange portion 232 on the front side and between the nip plate 220 and the flange portion 232 on the front side.
A specific example in which a heat insulator is disposed between the nip plate 220 and the flange portion 232 on the front side will be described with reference to
Next, an example in which heat insulators are disposed both between the front wall 242 and the flange portion 232 on the front side and between the nip plate 220 and the flange portion 232 on the front side will be described with reference to
Although, in the first embodiment described above, the tape-like heat insulator 250 is attached to the lower end of the front wall 242 of the stay 240 to place the heat insulator 250 between the front wall 242 and the flange portion 232 at the front end of the reflective member 230, the invention is not limited to this structure. For example, a heat-insulative coating may be applied to the lower end of the front wall 242, or a sheet-like heat insulator may be secured to the lower end of the front wall 242 with an adhesive or a double-faced adhesive tape.
Although, in the first embodiment described above, the heat insulator 250 is made of resin, the invention is not limited to this. For example, a heat insulator may be made of a ceramic material or any of various fibrous materials such as glass cloth, and may be a glass cloth tape.
Although, in the first embodiment described above, the halogen lamp 210 is taken as an example of a heat generating member, the invention is not limited to this. The heat generating member may be, for example, a carbon heater.
Although, in the first embodiment described above, the nip plate 220 having a plate-shape is taken as an example of a nip plate, the invention is not limited to this. For example, a relatively thick member, which is not plate-shaped, may be used.
Although, in the first embodiment described above, the pressure roller 140 is taken as an example of a rotating member, the invention is not limited to this. The rotating member may be, for example, a belt-shaped pressurizing member.
Although, in the first embodiment described above, the sheet S such as plain paper and a postcard is taken as an example of the recording sheet, the invention is not limited to this. The recording sheet may be, for example, an overhead projector (OHP) sheet.
<Fixing Device in Second Embodiment>
A fixing device 300 used for a laser printer, according to a second embodiment of the invention will now be described. The fixing device 300 may be used, in place of the fixing device 100, for the laser printer 1 shown in
The fixing belt 310, which is heated by the heating unit 400 described later, is a belt having heat resistance and flexibility. The rotation of the fixing belt 310 is guided by a guide member (not shown).
The pressure roller 320, which can be elastically deformed, is disposed below the fixing belt 310 and the heating unit 400. When the pressure roller 320 is elastically deformed and nips the fixing belt 310 in cooperation with the heating unit 400 (particularly, a nip plate 420), a nip region N is formed. In this embodiment, the heating unit 400 and pressure roller 320 are mutually brought into pressure contact while one of them is urged toward the other.
When a driving force is transmitted from a motor (not shown) provided in the housing 2 to the pressure roller 320, its rotation is driven. Then, the fixing belt 310 is rotated by a frictional force exerted between the pressure roller 320 and the fixing belt 310 (or the sheet S). Thus, while the sheet S, to which the toner image has been transferred, is conveyed from front to rear between the pressure roller 320 and the heated fixing belt 110, the toner image (toner) is thermally fixed to the sheet S.
The heating unit 400, which heats toner on the sheet S through the fixing belt 310, includes a heat generating member, e.g., a halogen lamp 410, the nip plate 420, a reflective member 430, and a stay 440.
The halogen lamp 410 is a heater that generates radiant heat and heats the nip plate 420 and the fixing belt 410 thereby to heat the toner on the sheet S. The halogen lamp 410 is disposed in the inner space defined by the fixing belt 410 with prescribed spacing from the fixing belt 410 and from the inner face of the nip plate 420.
The nip plate 420 is a plate-shaped member made of metal and receives radiant heat from the halogen lamp 410. The nip plate 420 is disposed in the inner space defined by the fixing belt 310 so that the inner peripheral surface of the tubular fixing belt 310 makes sliding contact with the surface of the nip plate 420. In this embodiment, the nip plate 420 is formed by machining an aluminum plate, or a plate made of other material, having higher thermal conductivity than the steel stay 440 described later.
As shown in
The base portion 421, the lower face of which is in contact with the inner peripheral surface of the fixing belt 310, receives heat from the halogen lamp 410 and transfers the received heat through the fixing belt 110 to toner on the sheet S.
Two protruding portions 422 are provided at a central portion of the rear end of the base portion 421, and one protruding portion 422 is provided at a right end portion of the rear end of the base portion 221. More specifically, as shown in
As shown in
Since this reflective member 430 collects the radiant heat from the halogen lamp 410 on the nip plate 420, the radiant heat from the halogen lamp 410 can be efficiently used, enabling the nip plate 420 and the fixing belt 310 to be quickly heated.
Specifically, the reflective member 430 is formed by bending in a substantially U-shape an aluminum plate, or a plate made of other metallic material, which reflects infrared rays and far infrared rays with high reflectance and has higher thermal conductivity than the stay 440. More specifically, the reflective member 430 has a reflective portion 431 in a curved shape, which is a substantially U-shape in cross-sectional view, and flange portions 432 that are disposed facing the nip plate 420 and extend from both ends of the reflective portion 431 in directions away from the halogen lamp 410; one of the flange portions 432 extends to the front and the other extends to the rear. The reflective member 430 is thinner than the stay 440.
The stay 440 supports, from the opposite side from the pressure roller 320, both ends of the nip plate 420, one end extending to the front and the other end extending to the rear. When a force is exerted from the pressure roller 320 to the nip plate 420, the stay 440 receives the force. The stay 440 is formed by bending a steel plate, or a metal plate, having relatively high stiffness in a substantially U-shape in cross-sectional view along the reflective member 430 (particularly, the reflective portion 431), so as to define an opening which is open toward the nip plate 420.
More specifically, the stay 440 includes an upper wall 441 disposed above the halogen lamp 410, a front wall 442 (a first receiving portion) extending downwardly from the front end of the upper wall 441, and a rear wall 443 (a second receiving portion) extending downwardly from the rear end of the upper wall 441. The front wall 442 and the rear wall 443 receive a force exerted from the pressure roller 320 to the nip plate 420.
As shown in
The rear wall 443 is disposed downstream of (on the other side of) the halogen lamp 410 in the conveying direction of the sheet S. The lower end of the rear wall 443 sandwiches, in cooperation with the nip plate 420, the flange portion 432 disposed at the rear end of the reflective member 430, and also supports the rear end of the nip plate 420 (the rear end of the base portion 421) from above.
In this embodiment, the lower end of the front wall 442 is disposed upstream of the nip region N in the conveying direction of the sheet S, and the lower end of the rear wall 443 is disposed downstream of the nip region N in the conveying direction of the sheet S.
As shown in
The heat insulator 450 is a resin tape which may be a foamed resin tape. A polyimide tape, which is a resin tape superior in heat resistance, can be used as an example of the heat insulator 450. The heat insulator 450 is attached at the lower end of the rear wall 443, from the left end to the right end. The heat insulator 450 covers the lower face of the rear wall 443. Thus, the heat insulator 450 is sandwiched between the rear wall 443 and the flange portion 432 on the rear side, preventing the rear wall 443 and the flange portion 432 from being brought into contact with each other.
The physical properties of the material of the heat insulator 450 and its thickness are preferably enough to suppress heat transfer between the rear wall 443 and the flange portion 432 on the rear side.
As shown in
The temperature sensors 350, each of which is a known sensor such as a thermostat or a thermistor, are disposed on the opposite side of the rear wall 443 of the stay 440 from the halogen lamp 410 and senses the temperature of the nip plate 420.
Specifically, as shown in
As shown in
Through-holes 332 are formed vertically through the retainer 331 at positions overlapping the respective protruding portions 422 of the nip plate 420. The temperature sensors 350 disposed on the protruding portions 422 are fitted in the holes 332, respectively so as not to be displaced in the front-rear direction and in the right-left direction.
The fixing device 300, structured as described above according to the second embodiment, has the following advantages. When the halogen lamp 410 is turned on and the base portion 421 of the nip plate 420 is heated by the halogen lamp 410, the base portion 421 transfers heat to the protruding portions 422, thereby heating the protruding portions 422.
Heat of the nip plate 420 is unlikely to be transferred to the rear wall 443 of the stay 440 because the heat insulator 450 is provided between the nip plate 420 and the rear wall 443 of the stay 440. The stay 440 supports, through the reflective member 430, the rear end (located closer to the halogen lamp 410 than the protruding portions 422) of the base portion 421. Heat is transferred from the base portion 421 to the protruding portions 422 without escaping to the stay 440, and the base portion 421 and the protruding portions 422 are heated quickly to substantially the same temperature. Thus, the temperatures to be sensed by the temperature sensors 350 become substantially equal to the temperature of the nip region N. Accordingly, responsiveness of the temperature sensors 350 can be improved.
The reflective member 430, which has high thermal conductivity and small thermal capacity, is quickly heated to substantially the same temperature as that of the nip plate 420. Thus, the reflective member 430 is unlikely to take heat from the nip plate 420.
The heat insulator 250 is not provided between the front wall 442 of the stay 440 and the nip plate 420. Thus, when the halogen lamp 410 is turned off, the nip plate 420 is quickly cooled while heat escapes from the nip plate 420 to the front wall 442.
The second embodiment of the invention has been described, but the invention is not limited to the embodiment. The specific structures can be appropriately changed without departing from the intended scope of the invention.
Although, in the second embodiment described above, the heat insulator 450 is disposed between the rear wall 443 of the stay 440 and the flange portion 432 on the rear side of the reflective member 430, the invention is not limited to this structure. For example, a heat insulator may be disposed between the nip plate 420 and the flange portion 432 on the rear side. Alternatively, a heat insulator may be disposed both between the rear wall 443 and the flange portion 432 on the rear side and between the nip plate 420 and the flange portion 432 on the rear side.
A specific example in which a heat insulator is disposed between the nip plate 420 and the flange portion 432 on the rear side will be described with reference to
Thus, the base portion 421 of the nip plate 420 and the protruding portions 422 are quickly heated, and responsiveness of the temperature sensors 350 can be improved as in the second embodiment described above.
Next, an example in which heat insulators are disposed both between the rear wall 443 and the flange portion 432 on the rear side and between the nip plate 420 and the flange portion 432 on the rear side will be described with reference to
Thus, the base portion 421 of the nip plate 420 and the protruding portions 422 are quickly heated, and responsiveness of the temperature sensors 350 can be improved as in the second embodiment described above.
Although, in the second embodiment described above, the heat insulator 450 is provided only between the rear wall 443 of the stay 440 and the nip plate 420, the invention is not limited to this structure. For example, a heat insulator 450 may be provided between the front wall 442 of the stay 440 and the nip plate 420.
Although, in the second embodiment described above, the temperature sensors 350 are disposed on the opposite side of the rear wall 443 of the stay 440 from the halogen lamp 410, i.e., disposed downstream of the stay 440 in the conveying direction of the sheet S, the invention is not limited to this structure. For example, temperature sensors may be disposed on the opposite side of the front wall 442 of the stay 440 from the halogen lamp 410, i.e., disposed upstream of the stay 440 in the conveying direction of the sheet S so as to be in contact with the nip plate 420. A heat insulator may be provided between the front wall 442 and the nip plate 440. In this case, the front wall 442 serves as a second support portion and the rear wall 443 serves as a first support portion.
Although, in the second embodiment described above, the tape-like heat insulator 450 is attached to the lower end of the rear wall 443 of the stay 440 to place the heat insulator 450 between the rear wall 443 and the flange portion 432 of the reflective member 430, the invention is not limited to this structure. For example, a heat-insulative coating may be applied to the lower end of the rear wall 443, or a sheet-like heat insulator may be secured to the lower end of the rear wall 443 with an adhesive or a double-faced adhesive tape.
Although, in the second embodiment described above, the heat insulator 450 is made of resin, the invention is not limited to this. For example, a heat insulator may be made of a ceramic material or any of various fibrous materials such as glass cloth, and may be a glass cloth tape.
Although, in the second embodiment described above, the halogen lamp 410 is taken as an example of a heat generating member, the invention is not limited to this. The heat generating member may be, for example, a carbon heater.
Although, in the second embodiment described above, the pressure roller 340 is taken as an example of a rotating member, the invention is not limited to this. The rotating member may be, for example, a belt-shaped pressurizing member.
Although, in the second embodiment described above, the sheet S such as plain paper and a postcard is taken as an example of the recording sheet, the invention is not limited to this. The recording sheet may be, for example, an overhead projector (OHP) sheet.
Although, in the second embodiment described above, the nip plate 420 having a plate-shape is taken as an example of a nip plate, the invention is not limited to this. For example, a relatively thick member, which is not plate-shaped, may be used.
While the invention has been described in connection with embodiments of the invention, it will be understood by those skilled in the art that variations and modifications of the embodiments described above may be made without departing from the scope of the invention. Other embodiments will be apparent to those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and the described examples are considered merely as exemplary of the invention, with the true scope of the invention being defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2012-211845 | Sep 2012 | JP | national |
2012-211847 | Sep 2012 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 14/018,788, filed Sep. 5, 2013, which claims priority from Japanese Patent Application Nos. 2012-211845 and 2012-211847, filed on Sep. 26, 2012, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20090110451 | Jung et al. | Apr 2009 | A1 |
20110158718 | Fujiwara et al. | Jun 2011 | A1 |
20110158719 | Miyauchi et al. | Jun 2011 | A1 |
20110211876 | Iwaya et al. | Sep 2011 | A1 |
20110222931 | Shinshi et al. | Sep 2011 | A1 |
20110236088 | Maruyama | Sep 2011 | A1 |
20120275833 | Ishida et al. | Nov 2012 | A1 |
20130071159 | Suzuki et al. | Mar 2013 | A1 |
20130136511 | Suzuki et al. | May 2013 | A1 |
20130136513 | Suzuki et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2003-084602 | Mar 2003 | JP |
2011-095534 | May 2011 | JP |
2011-113014 | Jun 2011 | JP |
2011-203405 | Oct 2011 | JP |
2013-114052 | Jun 2013 | JP |
2013-114057 | Jun 2013 | JP |
Entry |
---|
Co-Pending U.S. Appl. No. 14/018,734, filed Sep. 5, 2013. |
Number | Date | Country | |
---|---|---|---|
20150286177 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14018788 | Sep 2013 | US |
Child | 14745789 | US |