This disclosure relates generally to light fixtures, and more particularly to light fixture connection assemblies including a set of couplers for mounting a light shade on a post or stem.
Outdoor light fixture shades are commonly used to protect light bulbs from environmental elements, including rainwater. A light shade is typically attached to a light fixture connection assembly using conventional metal fasteners that screw onto the exterior surface of a threaded post, which houses the electrical wiring for the light fixture. The fasteners commonly employ two threaded nuts: one engaging an exterior surface of the light fixture shade, and the other engaging an interior surface of the light fixture shade.
The fasteners hold the light fixture shade onto the post of the connection assembly. However, in outdoor applications, as well as indoor applications with high humidity, the fasteners may not protect the electrical wiring of the light fixture from water-leakage. Exposure of electrical wiring to water creates an electrical hazard. Progressive water damage to the circuitry may reduce the operating lifetime of the light fixture. Water exposure may also affect the surfaces of the light fixture. For example, rust may form on the surfaces of the light shade that adjoin to the components of the connection assembly. Damage may be exasperated in hanging light fixtures that do not provide a secure covering for the electrical wiring, as gravity in combination with other external forces may cause the connection assembly to loosen and open over time.
Features of the present disclosure overcome the foregoing and various other deficiencies of the prior art, providing light fixture connection assemblies that secure light fixture shades, reduce water-leakage, and protect electrical wiring.
Objectives of the present disclosure may include an improved light fixture connection assembly that more effectively secures a light fixture shade and protects the electrical wiring of the light fixture from water damage. In certain embodiments, the disclosed assembly may reduce water-leakage into the interior of the light fixture. Furthermore, an advantage of the disclosed connection assembly in some embodiments may include the mitigation of water damage to the electrical wiring in environments where external forces cannot be controlled.
In order to achieve the above-mentioned objectives, embodiments of the disclosed connection assemblies may include a stem with an internal threaded-stem segment and two connectors. One of the two connectors may contain an external threaded-connector segment that engages the internal threaded-stem segment of the stem. One connector may engage an exterior surface of a lighting shade, while another connector may engage an interior surface of the lighting shade. Bores that traverse the interiors of the stem and the connectors may allow electrical wiring to pass through and connect a light source to the light fixture shade.
In an embodiment, a light fixture connection assembly may include a stem, a bottom connector and a top connector that secure a light fixture shade. The stem may include a longitudinal stem-bore and an internal threaded segment within the bore. The internal threaded segment of the stem may engage an external threaded-connector segment of the bottom connector. The bottom connector may include a longitudinal connector-bore that traverses the entire axial length of the bottom connector. The bottom connector may pass through an aperture in a light fixture shade, and the external threaded-connector segment of the bottom connector may engage an internal threaded-connector segment of the top connector. A bottom ring on the bottom connector may couple with an interior surface of the light fixture shade, adjacent to the aperture in the light fixture shade. A top bottom side of the top connector may couple with an exterior surface of the light fixture shade, adjacent to the aperture in the light fixture shade.
In some embodiments, the longitudinal stem-bore of the stem and the longitudinal connector-bore of the bottom connector may define a hollow passage adapted to contain electrical wiring. The coupling between the top connector and the light fixture shade may form a seal that reduces water leakage. The light fixture shade may be configured to project light from a light source in a downward directly.
In certain embodiments, the top connector may be configured to engage the stem, and the bottom connector may be configured to engage the top connector. The top connector may couple with the exterior surface of the light fixture shade, and the bottom connector may couple with the interior surface of the light fixture shade. The connectors may each contain a hollow bore.
In some embodiments, the bores may create a hollow passage capable of housing electrical wiring when the internal threads of a stem engage the external threads of the top connector, which may include internal threads that engage the external threads of the bottom connector. Coupling of the top connector with the light fixture shade may create a seal to reduce water leakage.
The foregoing and other objects, features, and advantages for embodiments of the present disclosure will be apparent from the following more particular description of the embodiments as illustrated in the accompanying drawings, in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the present disclosure.
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
With reference to
Referring to
As shown in
Referring back to
In certain embodiments, as illustrated in
In embodiment, the size and type of the threading for the bottom-segment 311 and the top-segment 312 may match. In some embodiments, where the bottom-segment 311 and the top-segment 312 have different diameters, the threading may be different. The threading of the bottom-segment 311 and the top-segment 312 may be in the same direction. In certain embodiments, the threading of the bottom-segment 311 and the top-segment 312 may be in opposite directions. The opposing direction of the threads may facilitate improved assembly of the connection assembly 100. Such an embodiment may allow for tighter engagement of the bottom connector 300 with the top connector 700 and with the stem 200.
In some embodiments, use of O-rings, gaskets, or the like may further improve the engagements. Referring to
The nut 320 of the bottom connector 300 may be located adjacent to the external threaded-connector segment 310. The nut 320 may have two external diameters. The first external-diameter 321 may be the distance between two diametrically opposite sides, and the second external-diameter 322 may be the distance between two diametrically opposite vertices. Accordingly, the first external-diameter 321 may be less than the second external-diameter 322. Various shapes may be suitable for the configuration of the nut 320, including hexagons, pentagons, squares, and other shapes known in the art. Such shapes may enable engagement of the nut 320 by a wrench, socket driver, pliers, or other torsional tool to effectuate threaded engagement of the bottom connector 300 with the stem 200. The nut 320 may be configured to engage an aperture 501 in the light fixture shade 500. The nut 320 may have a shape that corresponds to the shape of the aperture 501 in the light fixture shade 500. The top-end portion 302 of the bottom connector 300 may pass through the aperture 501 in the light fixture shade 500, allowing engagement of the top-end portion 302 with the top connector 700 and the stem 200 above the light fixture shade 500.
The bottom ring 330 of the bottom connector 300 may be located adjacent to the nut 320. The bottom ring 330 may have a diameter greater than the second external-diameter 322 of the nut 320. The bottom ring 330 may have an upper surface 332 configured for coupling to an interior surface 502 of the light fixture shade 500 adjacent to the aperture 501. In some embodiments, this coupling may be direct, while in other embodiments the coupling may be indirect such as through the use of an intervening element such as a gasket 105. The bottom ring 330 may further have a bottom opening 333 configured to extend into a cavity 503 within the light fixture shade 500. In some embodiments, this bottom opening 333 may facilitate the passing of electrical components, such as wiring 106, through the bottom connector 300.
In some embodiments, the bottom connector 300 may have a bottom-end portion 303 adjacent to the bottom ring 330. As illustrated in
Referring to
In some embodiments, upon operative engagement of the stem 200 with the bottom connector 300, the longitudinal stem-bore 201 of the stem 200 and the longitudinal connector-bore 301 of the bottom connector 300 may define a hollow passage 101, as illustrated in
In certain embodiments, the hollow passage 101 may be adapted to house electrical wiring 106, and the seal 102 may be adapted to reduce water-leakage into the hollow passage 101. In an embodiment, the electrical wiring 106 may be adapted to connect to a light source within the cavity 503 of the light fixture shade 500. In some embodiments, the light fixture shade 500 may be configured to enable projection of light from the light source in a downward direction. The stem 200 may be adapted for mounting such a downward facing light fixture shade 500. The connection assembly 100 may be adapted to mount the light fixture shade 500 on a ceiling (not shown) where the stem 200 has a tube or cylindrical shape (e.g., as illustrated in
In certain embodiments, a bottom seal 103 may form between the bottom connector 300 and the light fixture shade 500, in addition to the seal 102 between the top connector 700 and the light fixture shade 500. In such embodiments, the seal 102 and the bottom seal 103 may be located adjacent to the aperture 501 in the light fixture shade 500. The seal 102 and the bottom seal 103 may clamp and support the light fixture shade 500. In some embodiments, an intervening component (such as an O-ring 104 or another component that would be obvious to one of ordinary skill in the art) may enhance the seal 102. An intervening component, such as a rubber gasket 105 or another component that would be obvious to one of ordinary skill in the art, may enhance the bottom seal 103. Such sealing mechanisms may further reduce water leakage in the hollow passage 101 and the housing 340 that contain the electrical wiring 106. Similar mechanisms may be implemented to seal the bottom-opening 333 of the bottom ring 330 with the housing 340 for the light source within the cavity 503 of the light fixture shade 500.
Referring to
In some embodiments, the alternative top connector 900 may contain a hollow-bore 904. The hollow-bore 904 may traverse an entire axial length of the alternative top connector 900. In an embodiment, the hollow-bore 904 may differ in width throughout. The internal threaded-connector segment 903 may traverse a portion of the hollow-bore 904. The top portion of the external threaded-connector segment 1010 of the alternative bottom connector 1000 may be configured to access the bottom portion of the hollow-bore 904 in order to facilitate the engagement of the external threaded-connector segment 1010 with the internal threaded-connector segment 903 of the alternative top connector 900. In certain embodiments, this engagement of the alternative top connector 900 housing a portion of the alternative bottom connector 1000 may provide the benefit of an improved sealing mechanism to reduce water leakage into the cavity 503 within the light fixture shade 500 and may provide additional protection for the electrical wiring 106 within the housing 1040.
Referring to
Referring back to
In some embodiments, use of O-rings, gaskets, or the like may further improve the engagements. Referring to
The nut 1020 of the alternative bottom connector 1000 may be located adjacent to the external threaded-connector segment 1010. The nut 1020 may have various shapes and two external diameters, similar to the first external-diameter 321 and the second external-diameter 322 described above. Such shapes may enable engagement of the nut 1020 by a wrench, socket driver, pliers, or other torsional tool to effectuate threaded engagement of the alternative bottom connector 1000 with the alternative top connector 900. The nut 1020 may be configured to engage the aperture 501 in the light fixture shade 500. The nut 1020 may have a shape that corresponds to the shape of the aperture 501 in the light fixture shade 500. The top-end portion 1002 of the bottom connector 1000 may pass through the aperture 501 in the light fixture shade 500, allowing engagement of the top-end portion 1002 with the alternative top connector 900 above the light fixture shade 500.
The bottom ring 1030 of the alternative bottom connector 1000 may be located adjacent to the nut 1020. The bottom ring 1030 may have a diameter greater than the larger of the two external diameters of the nut 1020. The bottom ring 1030 may have an upper surface 1032 configured for coupling to the interior surface 502 of the light fixture shade 500 adjacent to the aperture 501 in the light fixture shade 500. In some embodiments, the coupling may be direct, while in other embodiments the coupling may be indirect such as through the use of an intervening element such as a gasket 105. The bottom ring 1030 may have a bottom opening 1033 configured to extend into the cavity 503 within the light fixture shade 500. In some embodiments, this bottom opening 1033 may facilitate the passing of electrical components, such as electrical wiring 106, through the alternative bottom connector 1030.
In some embodiments, the alternative bottom connector 1000 may have a bottom-end portion 1003 adjacent to the bottom ring 1030. As illustrated in
In some embodiments, upon operative engagement of the stem 200 with the alternative top connector 900 and the operative engagement of the alternative top connector 900 with the alternative bottom connector 1000, a hollow passage 801 is defined as illustrated in
In some embodiments, the hollow passage 801 may be adapted to house electrical wiring 106, and the seal 802 may be adapted to reduce water-leakage into the hollow passage 801. In an embodiment, the bottom-opening 1033 of the bottom ring 1030 of the alternative bottom connector 1000 may be configured to receive electrical wiring 106 adapted to connect to a light source (not shown). In some embodiments, the cavity 503 within the light fixture shade 500 may be adapted to house the light source. The light fixture shade 500 may be configured to enable projection of light from the light source in a downward direction. The stem 200 may be adapted for mounting such a downward facing light fixture shade 500. The alternative connection assembly 800 may be adapted to mount the light fixture shade 500 on a ceiling (not shown) where the stem 200 has a tube or cylindrical shape (e.g., as illustrated in
In certain embodiments, a bottom seal 803 may form between the alternative bottom connector 1000 and the light fixture shade 500, in addition to the seal 802 between the alternative top connector 900 and the light fixture shade 500. In such embodiments, the seal 802 and the bottom seal 803 may be located adjacent to the aperture 501 in the light fixture shade 500. The seal 802 and the bottom seal 803 may clamp and support the light fixture shade 500. In some embodiments, an intervening component (such as an O-ring 104 or another component that would be obvious to one of ordinary skill in the art) may enhance the seal 802. An intervening component, such as a rubber gasket 105 or another component that would be obvious to one of ordinary skill in the art, may enhance the bottom seal 803. Such sealing mechanisms may further reduce water leakage in the hollow passage 801 and the housing 1040 that contain the electrical wiring 106. Similar mechanisms may be implemented to seal the bottom-opening 1033 of the bottom ring 1030 with the housing 1040 for the light source within the cavity 503 of the light fixture shade 500.
While the present disclosure has been particularly shown and described with reference to an embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure. Although some embodiments are specifically mentioned, others will be apparent to those of ordinary skill in the art and so do not present an exhaustive list of alternatives.
This non-provisional patent application claims priority to, and incorporates herein by reference, U.S. Provisional Patent Application No. 62/874,644 that was filed Jul. 16, 2019.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/041083 | 7/7/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62874644 | Jul 2019 | US |