Fixture for controlling the trajectory of wires to reduce crosstalk

Information

  • Patent Grant
  • 6379175
  • Patent Number
    6,379,175
  • Date Filed
    Thursday, March 25, 1999
    25 years ago
  • Date Issued
    Tuesday, April 30, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Reichard; Dean A.
    • Nino; Adolfo
    Agents
    • Wolf, Greenfield & Sacks, P.C.
Abstract
A fixture is provided adjacent to a cable containing multiple twisted pairs. The fixture includes longitudinal channels for controlling the trajectory of the wire pairs after the twisted pairs have been exited the cable and have been detwisted. The fixture maintains the wire pairs in an orientation beneficial for reducing crosstalk.
Description




BACKGROUND




1. Field of the Invention




The present invention relates to high-speed data communication cables. More particularly, it relates to a high-speed data communication cable that uses a mechanical fixture to stabilize and control the physical layout of twisted pairs in the detwisted segment of the cable jacket so as to reduce crosstalk between the wire pairs.




2. Related Art




High speed data communications cables in current usage include pairs of wire twisted together forming a balanced transmission line. Such pairs of wire are referred to as twisted pairs.




One common type of conventional cable for high-speed data communications includes multiple twisted pairs within it. In each twisted pair, the wires are twisted together in a helical fashion, thus forming a balanced transmission line. Twisted pairs that are placed in close proximity, such as within a cable, may transfer electrical energy from one pair of the cable to another. Such energy transfer between pairs is undesirable and is referred to as crosstalk. Crosstalk is electromagnetic noise coupled to a twisted pair from an adjacent twisted pair, or from an adjacent cable. Telecommunications systems contain noise that interferes with the transmission of information. Crosstalk increases the interference to the information being transmitted through the twisted pair. The increased interference due to crosstalk can cause an increase in the occurrence of data transmission errors and a concomitant decrease in the data transmission rate. The Telecommunications Industry Association (TIA) and Electronics Industry Association (EIA) have defined standards for crosstalk in a data communications cable that include: TIA/EIA 568-A-2, published Aug. 14, 1998. The International Electrotechnical Commission (IEC) has also defined standards for data communications cable crosstalk, including ISO/IEC 11801 that is the international equivalent to TIA/EIA 568-A. One high performance standard for data communications cable is ISO/IEC 11801, Category 5.




Crosstalk is primarily capacitively coupled or inductively coupled energy passing between adjacent twisted pairs within a cable. Among the factors that determine the amount of crosstalk energy coupled between the wires in adjacent twisted pairs, the center-to-center distance between the wires in the adjacent twisted pairs is very important. The center-to-center distance is defined herein to be the distance between the center of one wire of a twisted pair to the center of another wire in an adjacent twisted pair. The magnitude of both capacitively coupled and inductively coupled crosstalk is inversely proportional to the center-to-center distance between wires. Increasing the distance between twisted pairs can thus reduce the level of crosstalk interference. Another factor relating to the level of crosstalk is the distance over which the wires run parallel to one another. Twisted pairs that have longer parallel runs typically have higher levels of crosstalk occurring between them.




In twisted pairs, the rate of the twist is known as the twist lay, and it is the distance between adjacent twists of the wire. The direction of the twist of a twisted pair is known as the twist direction. Adjacent twisted pairs having the same twist lay and/or opposing twist directions tend to lie more closely together within a cable than if they have different twist lays and/or same twist directions. Thus, compared to twisted pairs having different twist lays and/or same twist directions, adjacent twisted pairs having the same twist lay and opposing directions have a reduced center-to-center distance, and longer parallel run. Therefore, the level of crosstalk energy coupled between the wires in adjacent twisted pairs tends to be higher between twisted pairs that have the same twist lay and/or opposing directions as compared to other twisted pairs that have different twist lays and/or same twist directions. Thus, the unique twist lay serves to decrease the level of crosstalk between the adjacent twisted pairs within the cable. Therefore, twisted pairs within a cable are sometimes given unique twist lays when compared to other adjacent twisted pairs within the cable.




As the continuous twisted or helical structure reaches a termination point, for example as the cable is terminated to be joined to a connector, the helical structures of the individual twisted pairs are deformed to mate with contacts in the terminating hardware creating a detwisted region within the cable. The actual angle of arrival of the helix of the individual twisted pairs in relation to the mating hardware depends on where the cable is cut within its length. Therefore, the amount of deformation required to align the conductors of the wire pair with the connection points can vary from twisted pair to twisted pair within a cable. The random nature of the deformation of the helical structure creates undesirable inter-pair coupling variations from one connector to the next. Therefore, although the unique twist lay and twist direction can reduce the level of crosstalk within the cable, the de-twisting action produces a level of crosstalk that tends to be random.




In an attempt to reach cross-manufacturer compatibility, EIA/TIA mandates a known coupling level in category 5 mating hardware. Mating hardware is designed, via counter-coupling, to compensate for the mandated coupling level in order to establish a predetermined level of coupling in a data communications link over a category 5 cable. The variability in the inter-pair coupling encountered from one plug to the next serves to limit the effectiveness of the counter-coupling compensation.




This specified, standard level of coupling within the mating hardware is provided so that overall the system can have a level of crosstalk that ensures that the particular transmission standard is properly met. Although it is possible to reduce the actual amount of coupling in the mating hardware to improve overall performance, this is not desirable in order to be in compliance with the appropriate standards and reverse compatibility reasons as well. What is preferable is a constant, repeatable and known level of crosstalk. If a category 5 plug is connected to a superior performance jack, it is expected that the plug and jack will be able to meet category 5 coupling specifications. This means that the jack/plug must be able to counter-couple for the level of coupling specified for a category 5 plug/jack. In addition, if two superior performance connectors are used, it is reasonable to expect that the superior performance mating hardware is able to counter-couple for the level of coupling specified for the superior performance hardware.




It is desirable for the crosstalk occurring in the region adjacent to where the twisted pairs have exited from the cable be of a known, consistent, repeatable, and standard value in order to mate with the connecting hardware. At least part of the region is herein referred to as the “detwisted” portion of the cable. Various conventional methods have been used in an attempt to improve the consistency of counter-coupling within the cable and jack or plug. For example, the use of shielded connectors, lead frames, and complex electronic counter-coupling have been used. However, these methods often increase the time required for installation, may require special tools, and can increase the material cost due to a larger parts count. This may lead to market acceptance problems due to the increased costs associated with the special tooling and the additional training required.




The EIA/TIA has mandated the values of the terminated open circuit crosstalk (TOC) which is assumed to represent the electrostatic component of the crosstalk. The TIA/EIA but has not yet mandated the values for terminated short circuit crosstalk(TSC) which is assumed to represent the magnetic component of crosstalk. Theory and models that support it predicts that the electrostatic coupling between wire pairs carries a phase offset of minus ninety (−90) degrees while magnetic coupling carries a phase offset of zero (0) or one hundred eighty (180) degrees. The models also depict that near end crosstalk and far end crosstalk are caused by the vectorial addition of these electrostatic and magnetic components, near end crosstalk having its current in reverse direction of far end crosstalk.




SUMMARY




A fixture is provided adjacent to a cable containing multiple twisted pairs. The fixture includes longitudinal channels for controlling the trajectory of the wire pairs after the twisted pairs have been exited the cable and have been de-twisted. The fixture maintains the wire pairs in an orientation beneficial for reducing crosstalk.




In one aspect of the present invention a fixture for use with a multi-wire cable having a plurality of twisted pairs of insulated conductors, the cable having a proximal exit region adjacent to a de-twisted region wherein said twisted pair of insulated conductor exit said cable and are transitioned to a de-twisted configuration consisting of wire pairs, at least a portion of the fixture can be axially adjacent to the de-twisted region of the cable the wire pair in the detwisted region of the multi-wire cable are disposed within corresponding of the plurality of channels such that the trajectories of the plurality of wire pairs are controlled.




In one embodiment the channels are disposed on the exterior surface of the fixture and can be disposed in a helical pattern. In another embodiment the fixture is generally cylindrical and the longitudinal channels are disposed on diametrically opposed sides of the fixture. In another embodiment, the longitudinal channels are W-shaped.




In another aspect of the present invention the fixture is generally planar and has longitudinal channels disposed on a top surface and bottom surface of the fixture. In one embodiment, the longitudinal channels are arranged so as to orient the wire pairs in proper arrangement for mating with mating hardware. In one embodiment, there can be two longitudinal channels on the top surface that each have one wire of a wire pair disposed therein and the three longitudinal channels on the bottom each configured to contain both the wires of a wire pair. The longitudinal channels are arranged so as to properly arrange the wire pairs for mating with the mating hardware.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of one embodiment of the present invention;





FIG. 1-A

is an end view of the embodiment of

FIG. 1

;





FIG. 2

is a view of an exemplary longitudinal channel of the embodiment of the invention shown in

FIG. 1

;





FIG. 3

is an exploded view of another embodiment of the present invention;





FIG. 4

is an exploded view of another embodiment of the present invention;





FIG. 5

is a perspective view of another embodiment of the present invention;





FIG. 6

is a cross sectional view of the structure of the fixture according to one embodiment of the present invention;





FIG. 7

is a perspective view of a presently preferred cable termination;





FIG. 8

is an exploded view of a management bar as shown in

FIG. 7

; and





FIG. 9

is a side view of an alternate embodiment of the invention.











DETAILED DESCRIPTION OF THE DRAWINGS




A fixture for controlling the trajectory of twisted pairs exiting a cable for connection to mating hardware for reducing crosstalk and controlling the characteristic impedance is disclosed. The fixture includes a body portion that has a distal end proximate to where the twisted pairs exit the cable and transition into a detwisted configuration of wire pairs. The fixture may include a plurality of longitudinal channels on the exterior surface of the body portion. In one embodiment, the number of longitudinal channels corresponds to the number of twisted pairs, and one twisted pair is disposed within each longitudinal channel. In another embodiment, the longitudinal channels are W-shaped having two sub-channels in each longitudinal channel. This allows each wire of the twisted pair to be disposed within an individual sub-channels.





FIGS. 1

,


1


A and


2


illustrate one embodiment of the present invention in which a fixture


100


is disclosed. The fixture


100


includes a body portion


102


that has four longitudinal channel walls


104


-


110


disposed along its exterior surface forming 4 longitudinal channels


112


-


118


between them. In one embodiment, the body portion


102


is generally cylindrically shaped and tapers toward a distal end


120


. In one embodiment, as shown in

FIG. 2

, the longitudinal channels can be formed in a W-shape having two adjacent sub-channels


122


,


124


and a sub-channel divider


126


. In this embodiment, one wire of the wire pair are disposed within each sub-channel


122


,


124


. In one embodiment, the longitudinal channels can be helically formed around the body portion (not shown) for maintaining the twist lay of the twisted pairs.




In one embodiment, the fixture


100


is inserted into a cable (not shown) containing four twisted pairs of wires, wherein the cable is cut and the twisted pairs exposed and a portion of the fixture


100


is inserted into the cable (not shown). Inserting a portion of the fixture into the cable axially aligns the distal end of the fixture with the cable. The twisted pairs are exited from the cable, detwisted, and placed in a longitudinal channel, with one wire of each pair disposed within a corresponding sub-channel.




In one embodiment, a head piece (not shown) is attached or coupled to the fixture


100


and is used to transition the twisted pairs of wires from the fixture into a configuration suitable for mating to a piece of mating hardware. The head piece can be constructed of the same material as the fixture


100


. In addition, the head piece can provide additional isolation by a plurality of longitudinal channels guiding the various wires of the twisted pairs exiting the cable into the correct mating orientation. In this way the isolation of the various twisted pairs is maintained and a suitable level of crosstalk is maintained.





FIGS. 3-5

illustrate another embodiment of the present invention. The fixture


300


includes a generally planar fixture frame


302


covered by form fitting tape


304


and


306


on the top and bottom surfaces,


320


and


324


respectively, of fixture frame


302


. The fixture frame


302


contain slots


310


near the distal end


316


, and slots


312


located at approximately the middle of the longitudinal length, and holes


314


located at approximately one-third the longitudinal length from the proximate end


318


. Tape


304


has slots


310


′,


312


′, and holes


314


′ defined therethrough and axially aligned with the slots


310


,


312


and holes


314


defined within the fixture frame


302


. Similarly, tape


306


contains slots


310


″,


312


″, and holes


314


″ defined therethrough and axially aligned with the slots


310


,


312


, and holes


314


defined within the fixture frame


302


. Therefore, slots


310


,


310


′ and


310


″ exist for a continuous passage defined through the laminated structure of tape


304


, fixture frame


302


, and tape


306


. Similarly, slots


312


,


312


′, and


312


″ and holes


314


,


314


′, and


314


″ define continuous passageways through the laminated structure of tape


304


, fixture frame


302


, and tape


306


.




The laminated structure of tape


304


, fixture frame


302


, and tape


306


include a plurality of longitudinal channels


504


,


506


,


508


,


510


, and


512


. In the illustrative embodiment, channels


504


,


508


and


512


are on the bottom surface


324


and channels


506


and


510


are on the top surface


320


. In one embodiment, channels


506


and


510


are configured to hold one wire each of a wire pair and channels


504


,


508


, and


512


are configured to hold two wires separately. Channels


504


,


508


,


512


may, in an alternative embodiment include a center ridge


516


,


518


, and


520


, respectively to separate the wires and more precisely control the trajectory of the wire pairs contained therein.




As shown in

FIG. 5

, in one embodiment a head piece


502


can be fitted to the laminated structure at the distal end


316


and secured through slots


310


,


310


′, and


310


″ and


312


,


312


′, and


312


″. The headpiece can be secured by ultrasonic welding, heat, glue or other method appropriate to an electrical system. In a preferred embodiment, the head piece is molded over the laminated structure. The head piece


502


is inserted into a cable (not shown), the twisted pairs are detwisted, and routed into particular channels. For instance, in the illustrative embodiment, pair


1


is placed in channel


508


, pair


2


in channels


506


and


510


, pair


3


is placed in channel


504


and pair


4


in channel


512


. The placement of the pairs may be changed according to the requirements of those skilled in the art. The distal end


316


is inserted into a twisted pair cable (not shown), the twisted pairs are detwisted into wire pairs and the trajectory of the wire pairs is controlled by fixture


300


.




In the embodiment shown in

FIG. 4

, a control bar


402


,


406


is used to prevent movement of the fixture, control bar


402


has posts


404


that extend through the holes


314


and are received by holes


408


. The control bars


402


and


406


are then secured by ultrasonic welding, heat, glue or other method appropriate to an electrical system. In a preferred embodiment, the control bar can be over molded onto the laminated structure. In an alternative embodiment, the fixture can be constructed without the control bar


402


and


406


. The fixture can be manufactured from dielectric, conductive, or ferromagnetic materials or a combination of all three or a subcombination of any two of the materials. The fixture


100


can be sized and dimensioned in order to mate with the cable (not shown) and a head portion (not shown) that can guide the twisted pairs into the mating hardware (not shown).




In some embodiments, the fixture


100


or


300


can be constructed of a dielectric material. In these embodiments, the fixture


100


or


300


, does not act as a shield preventing the coupling of electromagnetic fields from among the various twisted pairs of insulated conductors. Rather fixture


100


or


300


, by virtue of having a given thickness and being disposed between two wires of two adjacent twisted pairs, increases the center-to-center distance between the adjacent twisted pairs and thus reduces the level of crosstalk between the twisted pairs. In addition, because fixture


100


or


300


may be a dielectric material, it can affect both the magnitude and phase of time-varying electromagnetic fields passing through it. Controlling the phase and magnitude of time-varying electromagnetic fields passing through the fixture


100


or


300


couples energy between twisted pairs within a cable to achieve a desired crosstalk level. Those skilled in the art may, using Maxwell's equations design such a fixture and many variations thereof guided by the principles of the invention discussed herein.




In other embodiments, the fixture


100


or


300


can be constructed of a conductive material. In addition to controlling the trajectory of the twisted pairs exiting the cable, the conductive material may further reduce crosstalk among the twisted pairs due to the shielding action of the conductor.




It is known in electromagnetic field theory that a conductor placed in the path of a time-varying electric, magnetic, or electromagnetic field will, ideally, prevent that time varying electromagnetic field from passing through the conductor, thus shielding the opposite side of the conductor from the time-varying field. There, of course, will be a small penetration of the conductor by the time-varying field. The depth of this penetration is known as penetration depth or skin depth and is inversely proportional to the conductivity of the material and the frequency of the time-varying field. While the penetration or skin depth depends upon the frequency, conductivity and thickness of the material, in general the more conductive the isolation element may be made, the better its shielding properties will be. For example, silver, copper, and aluminum foil, will provide superior shielding relative to the shielding provided by some less conductive materials.




However, the present invention is not limited to merely these materials. Other materials may be doped with conductive atoms or ions, in order to affect the magnitude and the phase of the energy passing through the isolation element. The fixture


100


or


300


can therefore be constructed of sheets of metallic foil, such as silver, copper or aluminum, or the isolation element can be constructed of plastic materials that have been ionized or doped with conducting atoms in order to increase their conductivity level while still retaining properties associated with a dielectric boundary.




In a twisted pair transmission line, the twisted pair form a balanced transmission line. A balanced transmission line can be driven differentially, that is each wire is driven with signals of equal and opposite amplitude. In contrast, a common mode signal is signal of equal amplitude on both wires. In most circumstances, noise within a transmission system will be a common mode signal when present in a twisted pair balanced transmission line. A differential apparatus coupled to a balanced transmission line will convey a differential signal while attenuating any common mode signals that are present according to the common mode rejection ratio of the apparatus. Therefore, it is important to maintain a high level of balance between the wires comprising a twisted pair.




Imbalance in a twisted pair can be caused by several factors. For example, placing a wire near a conductor forms a parasitic capacitor between the conductor and the wire. This parasitic capacitance affects the impedance of the wire and can also couple other interfering signals to the wire as well. In a twisted pair if there is a difference in the value of the parasitic capacitance for each of the wires in the twisted pair then the impedance will be unbalanced, and any noise signals, such as crosstalk, coupled to each wire can be unequal in magnitude. Thus, the twisted pair will no longer be a balanced transmission line, and some noise will converted to be a differential signal. This can lead to an decrease in the signal to noise ratio since the noise will not be rejected by the common mode rejection of the differential apparatus. Therefore under some circumstances, using conductive materials for the fixture


300


can lead to unbalancing of the twisted pairs and a degradation of performance.




One possible cause of the imbalance between the wires comprising the twisted pair can be any eccentricities in the location of the wire within the insulation surrounding it. During the manufacturing process of wires, conductors are often not placed perfectly within the center of the insulation surrounding them resulting in eccentricities within the wire. Because most wires are produced with a double twisting action, i.e., as the wires are twisted around each other, the individual wires are also back twisted so that the orientation of the wires with respect to each other is not constant, but rather varies with a given period. Over the length of the cable run, which is many times longer than the wavelengths of the transmitted signals, the changing orientation of the wires helps to ensure that on the average, the wires will be correct distance from each other. The same theory would be true for the fixture


300


if the fixture


300


was several twist lengths long. However, the fixture


300


generally extends for an electrically short length comparable to the wavelength of the transmitted signals, and any eccentricities present in the wires may result in the wires of each twisted pair being different distances from fixture


300


. Thus, fixture


300


could cause an impedance imbalance to occur among the wires comprising the twisted pairs.




To reduce the effect of wire eccentricities, in one embodiment, fixture


300


can be covered with a dielectric material forming a laminated structure as shown in FIG.


6


. The dielectric material, which in one embodiment is Mylar® tape, is used to increase the distance between fixture


300


and the wires of the twisted pairs. This increase in distance between the wires and the isolation element will be much larger than the eccentricities within the wire. The Mylar® tape therefore, will proportionally reduce the effect of any eccentricity of the position of the wire within the conductor. This will reduce any affect caused by the eccentricity of the wire and can increase the stability of fixture


300


with respect to the impedance of the twisted pairs. In one embodiment shown in

FIG. 6

, the dielectric layers,


602


and


604


, covering fixture


300


do not have to be the same thickness. Furthermore, the tape may be used to adjust or alter the characteristic impedance of the pairs.




In another embodiment not shown, a pliable tubing having a plurality of longitudinal channels on the inside surface with each longitudinal channel having an adhesive on the inside surface could be placed over the detwisted pairs to control the trajectory of the pairs.





FIG. 7

illustrates a preferred embodiment of a cable termination


700


according to the present invention. The cable termination


700


includes the cable containing


4


twisted pairs


702


, a cable boot


704


that is designed to house the cable termination hardware, a strain relief


706


, an isolation element


708


, shrink tubing


710


designed to be fitted over the isolation element


708


for physically securing the twisted pairs within their individual trajectories, and a modular plug


712


. Preferably, the isolation element


708


is a laminated material consisting of 0.003 inch steel foil covered on both sides with Mylar®, polyester, foils, of 0.0025 inches and 0.0065 inches, respectively. The shrink tubing


710


is used to keep in place the twisted pairs once the wires have been properly placed and dressed on the isolation element


708


. An adhesive liner on the shrink tubing advantageously prevents the dressed wires from migrating across the isolation element


708


during assembly. In another embodiment not shown, the wires may be crimped to provide the necessary mechanical stability. However, the process of crimping the wires may induce errors in the desired trajectories and introduce unwanted variations in the level of crosstalk and in the characteristic impedance. Thus, crimping the wires, while mechanically sound may degrade the performance of the fixture. Preferably, simple heating equipment will be needed to shrink the tubing. The cable boot


704


is provided with the plug for appearance and color identification. The strain relief


706


is used to provide effective strain relief between the cable jacket and the modular plug shell. This enables the connector to pass the mechanical pull test without having to crimp the wires together. Strain relief


706


, in one embodiment, is used to provide increased mechanical stability for the isolation element


708


because the isolation element


708


may extend beyond the plug shell and not allow the jacket of the cable to be crimped by the plastic bar within the plug


712


.




In one embodiment, the isolation element


708


can be adjusted by moving the metal foil forward toward the modular plug


712


or backwards toward the cable


702


. This has the effect of increasing or decreasing the length of the parallel run of wires prior to mating with the modular plug


712


. Thus, by moving isolation element


708


forward toward the plug, the parallel run length is decreased and thus, the crosstalk between adjacent wires is also decreased. By moving the isolation element


708


rearward toward the cable


702


, the parallel run length of a adjacent wires is increased and thus the level of crosstalk is increased as well. Advantageously, this allows the terminated cable according to one embodiment of the invention to be adapted to changing crosstalk standards in the future. In one embodiment, the movement of isolation element


708


may be accomplished during production and in another embodiment, a field adjustable isolation element may be used.





FIG. 8

illustrates a preferred embodiment of isolation element


708


that is comprised of a molded bar


802


and a formed foil management bar


804


. The molded bar can be an injection molded plastic bar that is fitted onto


804


and extends into the


4


pair cable


1002


(not shown).




The present invention has now been described in connection with a number of specific embodiments thereof. However, numerous modifications which are contemplated as falling with in the scope of the present invention should now be apparent to those skilled in the art. Therefore, it is intended that the scope of the present invention be limited only by the scope of the claims appended hereto.



Claims
  • 1. An apparatus for use with a multi-wire cable having a plurality of twisted pairs of insulated conductors, the cable having a proximal exit region adjacent to a detwisted region wherein said plurality of twisted pairs of insulated conductors exit said cable and are de-twisted into a plurality of pairs of singular conductors, the apparatus comprising:a fixture having a distal region transversely adjacent and axially aligned with the multi-wire cable and inserted into the multi-wire cable; said fixture controlling the trajectory of each singular conductor of said plurality of pairs of singular conductors through said de-twisted region.
  • 2. The apparatus of claim 1 wherein the fixture includes a body portion that is substantially cylindrically shaped and tapers toward the distal region.
  • 3. The apparatus of claim 1, wherein said fixture includes a plurality of longitudinal channels wherein said plurality of pairs of singular conductors are disposed within said plurality of longitudinal channels.
  • 4. The apparatus of claim 3, wherein said fixture is generally cylindrical and said plurality of longitudinal channels are disposed in a helical pattern on an exterior surface of said fixture.
  • 5. The apparatus of claim 3, wherein said plurality of longitudinal channels are arranged in pairs on said exterior surface of said fixture, wherein said channels arranged in pairs diametrically opposed to each other in a substantially X orientation.
  • 6. The apparatus of claim 3, wherein said plurality of channels are arranged such that the pairs of singular insulated conductors are guided into a pre-determined arrangement and orientation for mating with a mating connector.
  • 7. The apparatus of claim 3, wherein said channels are substantially U shaped.
  • 8. The apparatus of claim 3, wherein said plurality of channels are W shaped for separating each of said pair of insulated conductors in said twisted wire pair from the other.
  • 9. The apparatus of claim 3, wherein said plurality of channels further includes a pair of outside channel walls defining each channel of said plurality of channels.
  • 10. The apparats of claim 9, wherein said outside channel walls are composed of a dielectric material.
  • 11. The apparatus of claim 9, wherein said outside channel walls are composed of a conductive material.
  • 12. The apparatus of claim 9, wherein said outside channel walls are composed of a ferromagnetic material.
  • 13. The apparatus of claim 9, wherein said outside channel walls are composed of at least from the group consisting of a dielectric material, a conductive material, and a ferromagnetic material.
  • 14. An apparatus for use with a multi-wire cable having a plurality of twisted pairs of insulated conductors, the cable having a proximal exit region adjacent to a detwisted region wherein said plurality of twisted pairs of insulated conductors exit said cable and are de-twisted into a plurality of pairs of singular conductors, the apparatus comprising:a fixture having a distal region and a head region; said fixture having at least a portion of said distal region transversely adjacent and axially aligned with the multi-wire cable and inserted into said proximal exit region of the multi-wire cable; said fixture having a plurality of longitudinal channels extending from said distal region into said head region, wherein said plurality of pairs of singular conductors are disposed within corresponding longitudinal channels and wherein each singular conductor of said plurality of pairs of singular conductors in said de-twisted region are guided by said plurality of longitudinal channels such that the trajectories of each singular conductor of said plurality of pairs of singular conductors are controlled.
  • 15. The apparatus of claim 14 wherein the fixture includes a body portion that is substantially cylindrically shaped and tapers toward the distal region.
  • 16. The apparatus of claim 14, wherein said plurality of longitudinal channels are disposed on an exterior surface of said fixture.
  • 17. The apparatus of claim 16, wherein,said fixture is generally planar having a top surface and a bottom surface; said plurality of longitudinal channels includes a first plurality of longitudinal channels disposed on the top surface and a second plurality of longitudinal channels disposed on the bottom surface.
  • 18. The apparatus of claim 17, wherein said plurality of channels are arranged such that the pairs of singular insulated conductors are guided into a pre-determined arrangement and orientation for mating with a mating connector.
  • 19. The apparatus of claim 17, wherein the fixture comprises a laminated structure of materials.
  • 20. The apparatus of claim 19, wherein the laminated structure includes a top material, a bottom material and an intermediate material.
  • 21. The apparatus of claim 20, wherein the top material and bottom material are comprised of a dielectric material.
  • 22. The apparatus of claim 21, wherein the dielectric material is Mylar®.
  • 23. The apparatus of claim 21, wherein the top material has a first thickness and the bottom material has a second thickness.
  • 24. The apparatus of claim 23, wherein the first and second thicknesses are substantially equal.
  • 25. The apparatus of claim 23, wherein the first and second thicknesses are unequal.
  • 26. The apparatus of claim 20, wherein the intermediate material is a conductor.
  • 27. The apparatus of claim 26, wherein the conductor is stainless steel.
  • 28. The apparatus of claim 14, further comprising a mating connector adjacent to said head region wherein said longitudinal channels orient said insulated conductors into a pre-determined arrangement for mating with said mating connector.
  • 29. The apparatus of claim 14 wherein said plurality of longitudinal channels are U-shaped.
  • 30. The apparatus of claim 14 wherein said plurality of longitudinal channels are W-shaped.
  • 31. An apparatus for controlling a trajectory of each singular conductor of a plurality of pairs of singular conductors of a multi-wire cable through a de-twisted region where the conductors exit the cable, the apparatus comprising:a fixture having a distal region transversely adjacent to and axially aligned with the cable and a head region; the fixture having a plurality of longitudinal channels extending from the distal region to the head region, wherein each pair of the plurality of pairs of singular conductors is disposed within a corresponding longitudinal channel; and wherein the plurality of longitudinal channel are W-shaped, having two sub-channels within each longitudinal channel such that each singular conductor of the pair of singular conductors disposed within the longitudinal channel is disposed within a corresponding sub-channel, the sub-channel controlling the trajectory of the singular conductor through the detwisted region.
Parent Case Info

This appln claims benefit of Prov. Nos. 60/106,140 filed Oct. 29, 1998 and 60/117,525 filed Jan. 28, 1999.

US Referenced Citations (9)
Number Name Date Kind
2538019 Lee Jan 1951 A
4614028 Rich Sep 1986 A
4767891 Biegon et al. Aug 1988 A
5772465 Hwang et al. Jun 1998 A
5899770 Ezawa May 1999 A
5969295 Boucino et al. Oct 1999 A
6074503 Clark et al. Jun 2000 A
6091025 Cotter et al. Jul 2000 A
6099345 Milner et al. Aug 2000 A
Foreign Referenced Citations (2)
Number Date Country
2164398 Jun 1996 CA
2186651 Mar 1997 CA
Provisional Applications (2)
Number Date Country
60/106140 Oct 1998 US
60/117525 Jan 1999 US