This application is the US-national stage of PCT application PCT/AU2010/001112 filed 27 Aug. 2010, published 3 Mar. 2011 as WO2011/022784, and claiming the priority of Australian patent application 209904147 itself filed 28 Aug. 2009, whose entire disclosures are herewith incorporated by reference.
The present invention is related to flags and, in particular, devices for protecting flags. In this specification the term “flag” should be understood to also include such means as banners, pennants, standards, colors, jacks, ensigns, streamers, pennons, banderoles, gonfalons or the like. The present invention may also be useful for other means where protection of same is desired.
Flags are used to display indicia for nation states, sporting teams, clubs, societies and are appreciated by a community of vexillologists throughout the world. Furthermore, flags are often used for advertising, signaling in shipping, warning signs and many other purposes.
Flags are often displayed in an elevated position from flag poles. Some flag poles are very tall and so a flag must be raised toward the top of the flag pole using, for example, a halyard. Some flags are displayed in positions that are difficult to access, such as at the side of tall buildings, on ship masts, on buoys at sea and other locations. Raising and lowering of flags can be a time consuming and, sometimes, even a dangerous process. Some flags must be raised every morning and lowered every evening.
Furthermore, flags need to be protected from certain weather conditions such as rain, wind, hail and storms. If such weather conditions appear imminent, or are prevailing, then a flag may need to be lowered. Once the inclement weather has subsided or passed, the flag may then need to be raised for display once more.
As a result, a flag may need to be attended by a person who raises and lowers the flag at the start and end of each day and lowers the flag in advance of, or during, bad weather conditions. Providing such attendance may be inconvenient and/or expensive. The problem may be magnified where there are many flag installations, 30 which require attendance. Sometimes a choice is made to leave flags displayed despite potentially damaging conditions as it may be considered that the cost of replacing or repairing a flag is less than the cost of an attendant.
Additionally, where there are many flag installations requiring attendance, it can be difficult to lower all flags quickly for bad weather conditions. Should some flags remain displayed when the bad weather conditions prevail, these flags may be subject to wear and tear or significant damage.
Flags may be very expensive. This is especially the case where a flag has been custom designed or is a very large flag. It may, therefore, be expensive (and time consuming) to repair a damaged flag.
Previously, flags may have been somewhat protected by devices which attempted to shelter the flag from bad weather conditions when the flag is in a display position, such as toward the top of a flag pole. Some of these devices are difficult to use, expensive and/or do not work very well to protect the flag.
Furthermore, some devices result in a further significant problem in that, when protection is no longer needed and it is desired to again display the flag, it is difficult to unfurl the flag. This can lead to frustration and may require complex operations to release and/or properly unfurl the flag. Such complex operations may even involve a person having to scale a tall flag pole to release and/or unfurl the flag.
Yet a further problem exists in that some devices are configured so that it is difficult to raise or lower flags. Some devices may completely prevent raising or lowering flags.
Accordingly, it is an object of the present invention to overcome at least one of the above-mentioned problems and/or disadvantages.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form or suggestion that these reference form part of the common general knowledge of a person skilled in the relevant field.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and 3
The present invention provides a device for protecting a flag located in a storage space, the storage space having an aperture disposed forwardly of the storage space, such that, when the aperture is uncovered, the flag is able to be displayed, the device including a retractable shutter for substantially covering the aperture, the retractable shutter including a shutter actuator for deploying and retracting the shutter.
In an embodiment, the device may include a divider, disposed rearwardly of the storage space, for substantially preventing contact between the flag, when in the storage space, and a part of the retractable shutter disposed rearwardly of the divider.
The retractable shutter may also include a yoke, disposed at a first end of the retractable shutter, for facilitating gathering of the flag in to the storage space when the retractable shutter is deployed to substantially cover the aperture. The shutter actuator may include a drive belt.
Optionally, the drive belt is a toothed belt which engages with a toothed drive roller for moving the drive belt.
In an embodiment, the first end of the retractable shutter is connected to a first end of the drive belt of the shutter actuator and a second end of the retractable shutter is connected with a second end of the drive belt of the shutter actuator. In this way the retractable shutter and shutter actuator form a loop, such that when the drive belt of the shutter actuator is moved in a first direction, the retractable shutter is caused to be deployed so as to substantially cover the aperture; and, such that when the drive belt of the shutter actuator is moved in a second direction, the retractable shutter is caused to retract so as to uncover the aperture.
The device may also include a drive mechanism for operating the shutter actuator to move in the first and the second directions. In one embodiment, the drive mechanism includes a drive roller disposed at a first end of the loop, and a second roller disposed at a second end of the loop.
In embodiments where the device is situated in a vertically disposed flag pole, the drive roller may be located at or near a lower end of, or below the storage space, and the second roller may be located at or near an upper end of, or above the storage space.
In a further embodiment, the yoke is disposed within the loop, such that a first end of the yoke connects with the first end of the retractable shutter and a second end of the yoke connects with first end of the shutter actuator. Where the device is used in a vertically disposed flag pole, the first end of the yoke may be an upper end and the second end of the yoke may be a lower end.
Optionally, the yoke includes a cradle arm disposed at the second end of the yoke. Furthermore, the drive belt may be connected to a portion of the yoke cradle arm which is disposed rearwardly of the divider with respect to the yoke. The yoke may be configured such that the yoke cradle arm is substantially “U” shaped in cross-section. Each side of the cradle arm, represented by side of the “U”, may be connected, respectively, to a side of the yoke and the cradle arm is adapted so that the divider may be disposed between the sides of the “U”. The cross bar of the cradle arm, represented by a crossbar of the “U”, may be disposed rearwardly of the divider.
Further, in this embodiment, when the shutter is-retracted to uncover the aperture, the cradle arm causes the divider to move forwardly into a first position toward the aperture. This in turn causes the flag to move forwardly toward the aperture. As a result, when the shutter is retracted to uncover the aperture, the flag may be disposed near the aperture, partially through the aperture or fully through the aperture such that the flag is more readily exposed to any wind or breeze. This should allow the flag to readily unfurl.
In another embodiment the shutter is configured such that a portion of the shutter which covers the aperture may form into a shape with a curved cross-section. Where the flag pole has a substantially circular cross-section, the shutter may have a flexibility which allows it to attach a substantially arcuate cross-section, thus complementing the shape of the flag pole where there is a lacuna in the flag pole resulting from the formation of the aperture.
In such an embodiment, the curving of the shutter may allow for a larger storage space and may also provide a more aerodynamically suitable profile. An aerodynamically suitable profile may be useful when a strong wind is blowing in which situation it may be desirable to protect the flag by deploying the shutter to cover the aperture protecting the flag in the storage space. The profile may assist with directing strong wind around the flag pole.
Furthermore, the shutter may be configured so that it may flatten when moving over the second roller. The shutter may be formed from a canvas like material, which is flexible but may substantially protect the flag from rain damage and/or wind damage and/or other sorts of damage which may be caused by environmental conditions.
In yet a further embodiment, the device includes a first mounting block for mounting the drive mechanism and may further include a second mounting block for mounting the second roller. The first mounting block may also include two guides, each guide disposed at a side of the mounting block, for guiding the drive belt, such as to narrow the loop near the guides.
In an embodiment suitable for use in a vertically disposed flag pole, the first mounting block may be located toward a lower part-of the flag pole, such that a person can operate the drive mechanism with a crank handle. The second mounting block may be located at or toward a top part of the flag pole. The second mounting block may also include a mounting point for connecting an upper end of the divider.
Furthermore, the flag may be mounted on a halyard for raising and lowering the flag. The second mounting block may include a mounting point for a pulley for the halyard.
In yet a further embodiment, the divider includes a first part and a second part rearwardly disposed with respect to the first part. In this embodiment, the divider may be formed from a folded over single piece of material.
Optionally, the fold is located at the upper end of the divider wherein the divider mounting point on the second mounting block supports the divider. In this embodiment the divider mounting point is positioned in the crook of the fold.
The lower end of the first portion of the divider may be connected to a lower part of the aperture and a lower end of the second part of the divider may be connected to the first mounting block. In an embodiment, a part of the cradle arm for moving the divider forwardly is disposed between the first part of the divider and the second part of the divider. The cradle arm causes the first part of the divider to move forwardly when the shutter is retracted.
The divider may be formed from a canvas like material, which is flexible such that the divider is able to be moved forward by the cradle arm when the shutter is retracted. The material of the divider should also protect the flag from being damaged and/or being entangled with the shutter actuator. The divider may also protect the flag from being damaged and/or being entangled with other moving and/or non moving parts of the device. Furthermore, the divider may also protect the flag from damage and/or entanglement with other objects, which are not included as parts of the device.
In an embodiment, the configuration of the flag protection device allows for the drive belt of the shutter actuator to be rearward of the first portion of the divider. Such a configuration results from the drive belt being attached to a part of the yoke cradle arm, which is located rearwardly of the first part of the divider, but forwardly of the second part of the divider
In yet another embodiment, the first part of the divider may have a curved cross-sectional shape. The curve may be concave with respect to the flag storage space.
Furthermore, the first part of the divider may be configured to be slightly wider than the diameter of the internal space of the hollow flag pole, such that the first part is induced to form into shape with a curved transverse cross-section.
The halyard may be disposed such that a part of the halyard is internal to the flag pole and another part is external to the flag pole. The part of the halyard external to the flag pole is accessible to an operator for hoisting and lowering the flag. The halyard may be operated with a pulley located at or near the top of the flag pole. The halyard pulley may be mounted to the second mounting block of the device. It will be understood that the halyard is intended to operate independently of the device.
It will also be understood that, whilst the forgoing embodiments of the device for protecting the flag have been described in relation to an upright flag pole, it is envisaged that the device may be suitable for flag poles wherein the longitudinal axis thereof is angled with respect to a vertical direction. The device may also be used in flag poles which are disposed substantially horizontally. Furthermore, it will be understood that the device may be used for protecting indicia which are not generally hoisted or lowered.
It will be further appreciated that the device may be adapted for use in very high flag poles. In such applications, the device may include a long shutter actuator such that the drive mechanism may be located in a position which is accessible for a person at ground level.
Alternatively, when the device is used in a very high flag pole, the drive mechanism may include a motor, which is located at a position close to the storage space which would not be readily accessible by a person. In such an embodiment, the shutter actuator may be much shorter than if the shutter drive mechanism were to be located in a position accessible to a person. Furthermore, the drive mechanism motor may be controlled remotely.
While certain exemplary embodiments have been, or will be, described, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements described since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above and below paragraphs, are possible. Those skilled in the art will appreciate that various adaptations and modifications of the described embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
Before setting forth the detailed explanation of embodiments, it is noted that all of the discussion below, regardless of the particular implementation being described, is exemplary in nature, rather than limiting.
The following description relates to embodiments shown in the drawings of a device for protecting a flag 18 (218), wherein the device is located in a vertically disposed flag pole 12 (212). The flag pole 12 (212)′ may be a tubular construction for housing the device 10. The flag 18 (218) is mounted on a halyard 32, (or on a flag arm assembly 300 and halyard 232). The flag 18 (218), when stored by the device 10, is located in a storage space 14 in the hollow flag pole 12 (212). The storage space 14 includes an aperture 16.
It will be understood that the flag pole 12 (212), the flag 18 (218), the halyard 32 (232), the storage space 14 and the aperture 16 of the storage space 14 do not necessarily comprise parts of the device 10.
It will be further understood that the flag pole 12 (212) may be disposed at many different orientations, for example, horizontally. It will be further understood that the device may be housed in other ways, for example, in a billboard for displaying banners.
Relative terms such as “upper”, “lower”, “rearwardly” or “forwardly” are used in the description of the embodiments to indicate relative positioning of features of the device 10. However, the relative terms apply to the described embodiments where the device 10 is located in a vertically disposed flag pole 12 (212). It will be understood that these relative terms may be changed mutandis mutandi for different applications and orientations of the device, for example, where the device 10 is used in a horizontally disposed flag pole.
The flag pole 12 is shown in
The flag 18 may be of various shapes and dimensions, which are suitable to be flown from the flag pole 12. It will be understood that the device 10 is suitable for use with other types of indicia, such as banners, pennants, standards, colors, jacks, ensigns, streamers, pennons, banderoles, gonfalons or the -like: The device 10 may also be used for other indicia, such as, for example, posters or bills.
The storage space 14 is located in, and toward an upper part, of the hollow flag pole 12. The storage space 14 is of a size and shape suitable for storing flags or other indicia. The space 14 may also be formed so as to be suitable for storing a plurality of flags, such as may be the case in, for example, marine applications.
The aperture 16 in this embodiment is formed by removing a portion of the tubular flag pole 12. The aperture 16 extends longitudinally from an upper end 16A to a lower end 16B and is located forwardly of the storage space 14.
The device includes a shutter 20, which may be deployed and retracted to, respectively, cover and uncover the aperture 16. In this embodiment the shutter is formed from a flexible material such that, when the shutter 20 is deployed to cover the aperture 16, it forms into a shape with a substantially arcuate transverse cross-section. The arc is curved outwardly with respect to the storage space 14. As a result, a part of the shutter 20, which covers the aperture 16, substantially complements the shape of the tubular flag pole 12.
The shutter 20 includes a shutter actuator 22, which operates to deploy and retract the shutter. In this embodiment the shutter actuator 22 includes a drive belt 21 (or shutter actuator belt), wherein the drive belt 21 and the shutter 20 form a loop 23. When the drive belt 21 of the shutter actuator 22 is moved in an anticlockwise direction in
The device 10 includes a yoke 26, which, in this embodiment is disposed within the loop 23. An upper part of the yoke 26 is joined to the shutter 20 at a first loop connection point 44 and a lower part of the yoke 26 is connected to the shutter actuator belt 21 at a second loop connection point 46. The yoke 26 is configured so as to assist with gathering the flag 18 into the storage space 14 when the shutter 20 is deployed. The yoke 26 may also include a cradle arm 58, wherein the second loop connection point 46 is disposed on the cradle arm 58 in a location relatively rearward of the yoke 26. The yoke may be configured such-that the yoke cradle arm 58 is substantially “U” shaped in cross-section. The top of each side of the cradle arm, represented by sides of the “U”, is connected, respectively, to a side of the yoke 26. The cradle arm 58 is connected to a lower part of the yoke 26.
In this embodiment, the device 10 includes a third loop connection point 48 between a second end of the shutter 20 and a second end of the drive belt 21.
The shutter 20 connects to the yoke 26 at the first loop connection point 44 via a mounting bar 45 at an upper part of the yoke. The part of the shutter 20 which connects to the yoke 26 at connection point 44, wraps around the mounting bar 45 and is fixed by any suitable means. Such means may include gluing, stapling, riveting or a combination of such means or any other suitable fixing.
The drive belt 21 connects to the cradle arm 58 at the second loop connection point 46, which may be effected by means such as, for example, a rivet 47.
The connection between the drive belt 21 and the shutter 20 at the third loop connection point 48 may be effected by a connection tube 49, wherein the second end of the shutter 20 and the second end of the drive belt 21 are inserted into the tube. The end of the shutter and the end of the drive belt may be fixed inside the tube 49 by gluing or by crimping the tube 49, where the tube 49 is formed from a material that will hold ends of the drive belt and the shutter when crimped, or by any other suitable means.
It will be understood that connections at the first loop connection point 44, the second loop connection point 46 and the third loop connection point 48 may be effected by any suitable means. The connections 44, 46 and 48 are not limited to the embodiments described herein.
The device 10 also includes a drive mechanism 28, including a drive roller 29 for causing the drive belt 21 to move and operate the shutter 20. The drive mechanism 28 may be manually operated, as shown in the embodiment of
It will be understood that, in an embodiment including a manually operated drive mechanism 28, such a drive mechanism may be located in a lower part of the flag pole for ready access by a person operating the device.
The device 10 may also include a second roller 30, which in this embodiment is disposed above the flag storage space 14 at an upper part of the flag pole 12. The shutter 20, when operated to retract or deploy, moves over the second roller 30, such that, when retracted, a portion of the shutter 20 is moved to a position rearward of the storage space 14. The shutter 20, in this embodiment, is formed from a flexible material, which substantially flattens when moving over the second roller 30. The flexible material may be, for example, a canvas or canvas-like material. The material may be laminated with a water resistant layer for protection.
The device 10 includes a first mounting block 38 for mounting the drive mechanism 28 and includes a second mounting block 36 for mounting the second roller 30.
The first mounting block 38 also includes two guides 60, each guide disposed at a side of the first mounting block 38. The guides 60 may be formed from substantially cylindrical tins and are for guiding the drive belt 21 so as to narrow the loop at and near the guides 60. The guides 60 may prevent the drive belt 21 from moving loosely when the drive mechanism 28 is operated. Such loose movement may result in damage to other parts of the flag device and/or damage to the flag and/or damage to other parts in the flag pole not included with the device 10.
In the embodiment shown in
The device 10 also includes a divider 24 for protecting the flag from other parts of the device 10, for example, the shutter actuator belt 21. The divider 24 also serves as a means to push the flag 18 forwardly toward or through the aperture 16 when the shutter 20 is retracted.
The divider 24, in this embodiment, includes a first part 24A and a second part 24B, with the second part 24B disposed rearwardly with respect to the first part 24A.
The divider 24 is formed from a folded over single piece of material. The divider 24 is flexible and may be formed from canvas or canvas-like material. The fold 55 is located at the upper end of the divider 24, between the first part of the divider 24A and the second part of the divider 24B.
A divider mount 54 is located on the second mounting block 36 for supporting the divider 24. The divider mount 54 is positioned in the crook of the fold 55 of the divider 24, such that the divider 24 rests on the divider mount. The divider mount 54 may be a substantially cylindrical bar, which is connected to the second mounting block 36, using any suitable means, by a divider mount connector 57.
A lower end of the first part of the divider 24A connects at or near the lower part of the aperture 16B. In this embodiment, the connection 50 is effected by a closed loop in the lower end of the first part of the divider 24A, the closed loop passing through two slots formed in the flag pole 12 at or near the lower part of the aperture 16B.
In an alternative embodiment, the lower end of the first part of the divider 24A may also connect at a lower point than shown in
A lower end of the second part of the divider 24B connects to the first mounting block 38. In this embodiment, the connection 52 is effected by a closed loop in the lower end of the second part of the divider 24B, the closed loop passing around a cylindrical bar 59.
The forward movement of the divider 24, which pushes the flag 18 forward through the aperture 16, is effected by the cradle arm 58 of the yoke 26. The cradle arm 58 is positioned such that, when the shutter 20 is retracted and the yoke 26 moves toward the upper end of the aperture 16A, the cradle arm 58 causes the first part divider 24A to move forwardly into the flag storage space 14, which impels the flag 18 toward or through the aperture 16.
The first part of the divider 24A is caused to move forwardly progressively, as the shutter 20 is retracted, from a lower part of the first part of the divider 24A to an upper part of the first part of the divider 24A. The first part of the divider 24A can also resist or substantially prevent contaminants such as water, dust, or the like, from entering into parts of the device 10. In this regard, parts of the device such as the drive belt 21, the shutter actuator 22, the drive roller 29, and various other parts of the device 10 are substantially protected from contamination by substances which may impair operation of the device, or degrade performance of the device over time. Accordingly, the divider may be formed from material which is substantially water-proof and/or dust-proof and/or substantially resistant to other contaminating substances. In this regard, the divider 24 may be formed from a canvas or canvas-like material with a plasticized coating.
The flag 18 is mounted on a halyard 32. The halyard 32, in this embodiment, is a cord which forms a loop. The loop is represented in
Parts of the halyard 32 are located inside and outside the hollow flag pole 12. A part of the halyard 32 passes from inside a lower part of the flag pole 12 through a halyard aperture 82 to outside a lower part of the flag pole. The halyard aperture 82 is located near the base of the flag pole 12. Another part of the halyard 32 passes through the aperture 16 of the storage space 14 so as to be in the storage space. Another part of the halyard 32 passes between a side of the first part of the divider 24A and an upper part of an inner side of the flag pole 12. Yet another part of the halyard passes between the drive belt 21 and a lower part of the inner side of the flag pole 12. A further part of the halyard 32 passes toward the previously-mentioned inside lower part of the flag pole, thus completing the halyard loop.
The halyard 32 is mounted on a halyard pulley 34, such that it can be readily moved in directions to raise and lower the flag 18. In this embodiment, the halyard pulley 34 is mounted to the second mounting block 36. In other embodiments, the pulley 34 may be mounted at another suitable location, which is not a part of the device 10. Furthermore, the halyard 32 is secured in a position on a cleat 56 to prevent unwanted movement of the halyard.
It will be understood that the halyard 32 is intended to operate substantially independently of the device 10.18
The yoke 26 is at or near the top part of the aperture 16A, wherein the yoke arm 58 is pushing forward a top part of the first section of the divider 24A. As the first part of the divider 24A is also connected to the flag pole 12, at or near the lower part of the aperture 16B, the lower section of the first part of the divider 24A is impelled to a forward position. The forward position of the lower section of the first part of the divider 24A is located at or near the aperture 16.
When the shutter 20 is deployed, the cradle arm 58 of the yoke 26 is moved toward the lower part of the first part of the divider 24A. As a result, the first part of the divider 24A is allowed to move rearwardly with respect to the storage space 14, such that the flag 18 is able to be stored in the storage space 14.
As the yoke 26 moves downwardly during; deployment of the shutter 20, the flag 18 is gathered and pushed into the storage space 14. Furthermore, the yoke 26 and/or the shutter 20 may push against the flag 18, which in turn may push against the first part of the divider 24A, such that the first part of the divider 24A is pushed in a rearward direction.
The aperture 16, in this embodiment, is formed by removing a part of the cylindrical flag pole 12, wherein the part removed to form the aperture 16 has an arcuate transverse cross-sectional shape. The sides of the aperture 16C and 16D are also shown in
The fold 55 in the divider 24 is located over the divider mount 54. The divider mount 54 is secured to the second mounting block 36 by the divider mount connection 57.
The second part of the divider 24B is shown in a location toward a rearwardly disposed inner wall of the hollow flag pole 12. Further, the second part of the divider 24B is located rearwardly of the first part of the divider 24A with respect to the storage space 14.
The flag 18 can be seen stored in the storage space 14, between the first part of the shutter 20A and the first part of the divider 24A.
The second part of the shutter 20B is located rearwardly of the storage space 14 and adjacent a rear inner wall of the flag pole 12. The second part of the divider 24B is located between the second part of the shutter 20B and the first part of the divider 24A.
It will be understood that the first part of the shutter 20A refers to that part of the shutter 20, whenever it is forwardly disposed with respect to the storage space 14, and the second part of the shutter 20B refers to that part of the shutter 20, whenever it is rearwardly disposed with respect to the storage space 14.
A lower section of the first part of the divider 24A is in a position at or near the aperture 16, such that it has pushed the flag 18 toward or through the aperture 16. As a result, the flag 18 is more readily exposed to any wind or breeze, which assists in unfurling and deploying the flag 18.
When the shutter 20 is substantially fully retracted, the yoke cradle arm 58 is located at or near the upper part of the aperture 16A and the cradle arm 58 pushes forward an upper part of the first part of the divider 24A. A lower part of the first part of the divider 24A is connected to the lower, part of the aperture 16B. As a result, the lower part of the first part of the divider 24A is also located in a position at or near the aperture 16. Thus, the lower section of the first part of the divider 24A, located between the connection 50 and the lower part of the yoke 26, is in a forwardly disposed position, which is at or near the aperture 16.
An upper part of the first part of the divider 24A is pushed forwardly by the cradle arm 58 of the yoke 26.
The flag 18 is deployed through the aperture 16, and a part of the flag 18 is located between the guides 62A and 62B of the yoke 26.
The first mounting block 38 is attached at a lower position in the flag pole 12 via an attachment means. In this embodiment, the first mounting block 38 is slidably mounted inside the flag pole 12. The slidable mounting allows for adjustable tensioning of the loop 23 formed by the shutter 20, the yoke 26 and the drive belt 21.
The slidable mount for the first mounting block 38 includes a slot 68 over which there is a cover 70. A securing means secures the cover 70 in place over the slot 68, wherein the securing means 72 is secured into a connection point 74 on the first mounting block 38. In this embodiment, the securing means 72 includes a screw, which is operable by an alien key.
When the securing means 72 is sufficiently loosened, the cover 70 and the first mounting block 38 are slidable in a direction corresponding with the slot 68, such that the loop 23 can be suitably tensioned.
When the securing means 72 is sufficiently tightened, the cover 70 and the first mounting block 38 are secured such that they do not move with respect to the slot 68.
In this embodiment, the screw securing means 72 screws into a threaded bore 74 in the first mounting block 38.
In
Furthermore, the drive mechanism 28 includes a connector 66 for the crank handle 40. The crank handle connector 66, in this embodiment, includes a hexagonal bore into which a hexagonal end 86 (refer to
The yoke 26 includes a yoke slot 27 formed between the yoke guides 62A and 62B. When the shutter 20 is deployed, the flag 18 is gathered by the yoke 26 in the yoke slot 27.
Also shown in
In the embodiment shown in
Further, in
Also shown in
The slot 68 is formed in the flag pole 12 close to the access aperture 64. The slot cover 70 includes two holes 80, through width screw securing means 72 are placed when securing the first mounting block 38. The lower screw securing means 72 goes through the lower hole 80 in the cover 70, and then through the slot 68 and into the lower threaded bore 74 in the first mounting block 38. This is shown by a dashed line in
In
The first part of the divider 24A includes 'a thinner upper section which is adjacent the fold 55. The first part of the divider 24A widen at a lower section, such that the width of the widened part of the divider is larger than the internal diameter of the hollow flag pole 12. As a result, the widened part of the first part of the divider 24A has a curved transverse cross-sectional shape.
A wind sensor 98 is located at or near the top of the flag pole 12. The wind sensor 98 is adapted to measure wind strength. When the wind strength or average wind strength over a preselected period, is deemed to be too high, the control 96 signals the motor 90 to operate the drive mechanism 28 in order to deploy the shutter 20 in order to protect the flag 18.
The wind sensor 98 may work in conjunction with the control 96 to measure instantaneous wind strength or average wind strength over a preselected time period. Wind strength may vary rapidly and so measuring average wind strength over a preselected time period prevents unnecessary deploying and retracting of the shutter. This may result in prolonging the operating life of the device 10 and/or minimize maintenance requirements for the device.
A precipitation sensor 106 is located at or near the top of the flag pole 12. The precipitation sensor 106 is for detecting rain and/or other types of precipitation that may cause damage to a flag 18. When such precipitation is detected, the precipitation sensor 106, working in conjunction with the control 96, operates the motor 90 to deploy the shutter 20 in order to protect the flag 18.
The precipitation sensor 106, operating with the control 96, may include logic for determining when precipitation has reached or surpassed a predetermined threshold. Furthermore, the precipitation sensor 106 and control 96 may measure 20 average precipitation over a predetermined time period, so as to minimize unnecessary operating of the device 10.
In an embodiment, the flag pole may be mounted on a swivel 102, such that it may rotate clockwise or anticlockwise about a longitudinal axis of the flag pole 12. A wind vane 100 is located at or near the top of the flag pole 12 and protrudes radially from the flag pole 12 in a direction which is forward of the aperture 16. In this way, the flag pole may be rotated such that the aperture faces a direction substantially corresponding to the direction of the wind.
In the embodiment shown in
The flag arm 302 is attached to a flag arm carriage 306 via a rotatable mount 308. The rotatable mount 308 allows the flag arm 302 to rotate from a substantially vertical position, for storage of the flag 18 in the storage space 14, to a substantially horizontal position, when the flag is deployed.
The flag arm carriage 306 includes flag arm carriage guides 307A and 307B, located on either side of the flag arm carriage. The guides 307A and 307B engage with sides of the aperture 16, such that the flag arm carriage 306 can slide up and down the aperture 16. In embodiments, the guides are configured in such a way to provide resistance against sliding up and down the sides of the aperture. In this way, unless a force is applied to the flag arm carriage 302, it should not slide along the aperture (where the flag arm carriage is to be moved downwardly, the force must be additional to the gravitational force).
In this embodiment, the flag pole 212 includes an upper section 212A and a lower section 212B. In this embodiment, the lower section 212B is of greater radius than the upper section 212A. Optionally, the tube of upper section 212A is made from a thinner material than the tube of lower section 212B.
The aperture 16 in upper section 212A extends from toward the top of upper section 212A to toward the bottom of the upper section 212A. As shown in
The flange 350 assists with securing the upper section 212A in a position when the upper section is inserted into the lower section 212B. Furthermore, the flange is configured to include a space 352 adjacent the aperture 16, such that the yoke 226 and the flag arm assembly 300 can move past the flange 350. In this way, the yoke 226 and the flag arm assembly 300 are able to move from a part of the upper section 212A of the flag pole 212 to a lower part of the upper section 212A of the flag pole 212, wherein the lower part is located within the lower section 212B of the flag pole 212.
In the embodiment shown in
Furthermore, in this embodiment, the halyard 232 is not formed as a movable loop, such as shown in earlier embodiments in
In
Furthermore, when the yoke 226 disengages from the flag arm 302, the flag arm rotates into a substantially vertical position with the flag inside the storage space.
It should be noted that a small part of the flag arm 302 is shown as if it is protruding through the shutter 20. However, when the shutter 20 is deployed, all parts of the flag arm 302 are inside the storage space 14 and covered by the shutter 20.
As shown in the embodiments in
In
Further in
The flag arm carriage 306 includes carriage guides 307A and 307B on either side of the flag arm carriage. The carriage guides engage with sides of the aperture 16. The guides 307A and 307B are configured for substantially non-frictional engagement with the sides of the aperture 16, such that only a small amount of force need be applied to move the flag arm carriage 306.
The flag arm 302 includes a flag arm lever 304, which is fixed to the flag arm so as to form an angle. The flag arm lever includes a lever hook 305 at an end of the flag arm lever 304.
The flag arm assembly 300 includes a flag arm carriage lock mechanism 310 for retaining the flag arm carriage 306 in a position toward the top end of the device 10. The lock mechanism 310 includes an aperture 312 in the flag arm carriage 306 and a locking arm 314 which may be located on the second mounting block 36. The locking arm 314 is formed from spring steel and include a barb at one end, which engages in the aperture 312, so as to retain the flag from assembly 300 in the position toward the top end of the aperture 16.
As shown in
The flag arm 302, when in the substantially horizontal position, has a downward force component acting on it due to its own mass and also due to the mass of the flag 18 under the influence of gravity. The downward force component on the flag arm 302 results in there being a horizontal component of force acting on the flag arm lever hook 305 via the flag arm lever 304. The flag arm lever hook 305 is configured such that at least a part of the horizontal component of force is transmitted to the flag arm engagement roller 316. Accordingly, the roller slot 318 can be configured so that the roller 316 is not forced out of the slot when the horizontal component of the force is acting on the roller.
Furthermore, the horizontal component of the force acting on the flag arm engagement roller 316 in turn causes a horizontal component of force to act on the yoke 226. As a result, the yoke guides 62A and 62B are pushed against the flag pole 12, at or near the sides 16C and 16D of the aperture 16.
As a result of the horizontal component of force being transmitted to the yoke guides 62A and 62B, the yoke 226 can resist sliding movement. As such, the yoke 226 is substantially prevented from sliding down the aperture 16 under the force of gravity.
The coupler 320 includes a coupler body 322, in which there is a bore 330. As perhaps better seen in
Another step in preparing the yoke 226 for the flag lowering procedure is to remove the flag arm engagement roller 316 from the roller slot 318.
When the coupler 320 has been attached to the yoke 226 and the flag arm engagement roller 316 has been removed from the roller slot 318, the operator 400 causes the shutter 20 to be retracted which raises the yoke 226 toward the upper part of the device 10.
The coupler also includes a flag arm carriage retainer 324 which is formed from flexible spring steel with a barb at one end. Further, the coupler 320 includes a disengagement arm 326 for disengaging the flag arm carriage lock mechanism 310.
In
Accordingly, as shown in
Other steps in the procedure before raising the new or different flag 18B include removing the coupler 320, so that the yoke 226 and the flag arm assembly 300 are no longer coupled, and re-inserting the flag arm engagement roller 316 into the roller slot 318.
The coupler 320 includes a retainer disengagement button 336, which disengages the retainer 324 from the lock mechanism aperture 312. The disengagement button 336, when pushed in direction toward the coupler 320, moves a shaft of the button through an aperture in the disengagement arm 326 and an aperture in a coupler protrusion 338, which protrudes from the coupler body 322. The shaft of the button 336 is fixed to the retainer 324 and pressing the button 336 causes the retainer 324 to flex outwardly so as to disengage from the lock mechanism aperture 312.
After the coupler 320 has been disengaged from the flag arm assembly 300, the flag arm assembly 300 may be manually pushed upwardly as shown in
Further, the coupler 320 can be removed from the yoke 226 by flexing the coupler retainer 334 on the yoke outwardly and, sliding the coupler 320 off the 25 protrusion 332.
When the coupler 320 has been removed, the flag arm engagement roller 316 has been re-inserted into the roller slot 318 and the flag has been replaced or substituted, the shutter actuator 22 can be operated to move the shutter 20 and the yoke 226 toward an upper position of the device 16. Moving the yoke 226 upwardly also causes the flag arm assembly 300 to move upwardly as the flag arm engagement roller forces against the flag arm lever hook 305 and the flag arm lever 304. When the flag arm assembly 300 moves toward the uppermost position in the device 10 the flag arm carriage causes the locking arm 314 to move outwardly until the barb of the locking arm 314 is located over the lock mechanism aperture 312 and the locking arm 314 move toward the flag arm carriage 306 so that the barb of the locking arm 314 engages into the lock mechanism aperture 312. In this way, the flag arm assembly is again retained at the uppermost position in the device 10. Furthermore, the yoke 226 can be raised and lowered whilst the flag arm assembly 300 remains in place at the uppermost position in device 10.
The access aperture 344, which is situated in the lower section 212B of the flag pole 212 may be located in a position which is accessible to the operator 400 while standing at ground level, where the bottom of the flag pole 12 is also at ground level. Alternatively, the access aperture 344 can be located at a position which is substantially inaccessible unless, for example, a ladder is used.
Furthermore, the access aperture 344 may include an access aperture cover 346, which can be open and closed with a cover latch 348. A further option is to have a lockable cover latch 348, so as to prevent unauthorized access to the access aperture 344.
Although parts of the flag arm assembly 300 (namely, a part of the flag arm lever 304, including the flag arm lever hook 305) are shown protruding outwardly beyond the shutter 20, it will be appreciated that this is merely a convenience to illustrate those parts in the figure. In this regard, all components of the flag arm assembly 300 may be behind the shutter 20 when it is deployed. Further, all parts of the flag arm assembly 300, when the flag arm 302, 302A is in a substantially vertical position, may be configured such that they do not protrude outwardly from the aperture 16, but remain substantially within the storage space 14.
In another embodiment, when the device 10, includes a flag arm 302 or 302A, it is possible to use a halyard 32 as shown in
Moreover, it will be understood that various optional embodiments which can be applied to
The invention is susceptible to variations, modifications and/or additions other than those specifically described, and it is to be understood that the invention includes all such variations, modifications and/or additions which fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2009904147 | Aug 2009 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2010/001112 | 8/27/2010 | WO | 00 | 3/21/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/022784 | 3/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
877967 | Taylor | Feb 1908 | A |
950867 | Ruggles | Mar 1910 | A |
960669 | Morgan | Jun 1910 | A |
1321837 | Mader | Nov 1919 | A |
2630779 | Mader | Mar 1953 | A |
3417732 | Platt | Dec 1968 | A |
3675615 | Stangarone et al. | Jul 1972 | A |
3675616 | McInnis | Jul 1972 | A |
3923001 | Murdock | Dec 1975 | A |
4972794 | Smyly | Nov 1990 | A |
5983825 | Nowak | Nov 1999 | A |
8539902 | Sanvik | Sep 2013 | B2 |
Number | Date | Country |
---|---|---|
863711 | Oct 2008 | KR |
2011105462 | Sep 2011 | KR |
WO 9709500 | Mar 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20120167815 A1 | Jul 2012 | US |