This invention relates to a motion measurement system for measuring changes in the motion of an animal. This invention further relates to a rodeo flag for selectively transmitting instructions to a rodeo event clock.
Traditionally, bull riding competitions, bareback bronco riding competitions, and saddle bronco riding competitions have employed a subjective rating system (usually a panel of judges with scoring criteria) to evaluate the performance of a particular bull or bronco. Judges typically look for drops in the front end of the animal, kicks in the back end of the animal, spin of the animal, and directional changes (forward, backward, or side-to-side) of the animal to assess the degree of difficulty encountered by the cowboy or cowgirl while riding the animal. The conventional process for evaluating the performance of a bull or bronco is depicted in Figure
Additionally, since the beginning of organized rodeo competitions, a person mounted on a horse (referred to as a “rodeo flagger”) has been positioned within the rodeo arena to serve as the referee during a particular rodeo event, such as, for example, bull riding, team roping, calf roping, steer wrestling (bulldogging), team penning, and barrel racing events. The rodeo flagger moves a flag in a certain movement pattern to signal when a rodeo event clock should be stopped or to signal when certain penalties should be applied. A person positioned outside the rodeo arena (referred to as the “time keeper”) watches the signals of the rodeo flagger and manually stops the rodeo event clock when he or she sees the appropriate signals of the rodeo flagger. The delay between the occurrence of the rodeo nagger's signals and the actual stopping of the clock by the time keeper can result in significant ors in the tunes assigned to rodeo event participants.
Further, in some rodeo competitions, a flag (referred to as a “barrier flag”) is mounted on a rope (referred to as a “barrier rope”) in front of the horse's starting box and is used to signal the time keeper to manually start the rodeo event clock when either the horses breaks through the barrier rope or the animal reaches its designated head start and the barrier rope is released by a mechanical mechanism. The time keeper, which is positioned outside the arena watches for the barrier rope to be released (or broken through) and the flag to drop, which signals the time keeper to manually start the rodeo event clock. The delay between the occurrence of the flag dropping and the actual starting of the clock by the time keeper can result in significant errors in the times assigned to rodeo event participants. A conventional method of timing rodeo events is depicted in
Given the increased value of prizes and the larger number of participants in rodeo events, the subjective evaluation of animals and the random timing errors described above can significantly impact the results of important high-stakes rodeo events. Thus, there is a need in the pertinent art for systems that quantitatively assess the performance of animals during rodeo events. There is also a need in the pertinent art for systems and methods that reduce or eliminate the random timing errors associated with the results of timed rodeo events.
Described herein, in one aspect, is a motion measurement system for measuring changes in the motion of the body of an animal. The motion measurement system has an animal instrumentation assembly and a computing assembly. The animal instrumentation assembly has a plurality of motion measurement sensors, a processor positioned in operative communication with the plurality of motion measurement sensors, and a wireless transmitter positioned in operative communication with the processor. Each motion measurement sensor is configured for operative coupling to a selected portion of the body of the animal and is further configured to produce a measurement signal indicative of the change in the motion of the animal. The processor is configured to receive the measurement signal from each motion measurement sensor, and the wireless transmitter is configured to selectively transmit at least one wireless signal corresponding to at least one measurement signal produced by the plurality of motion measurement sensors. The computing assembly has a wireless receiver, a processor, and a memory. The wireless receiver is positioned in operative communication with the wireless transmitter of the animal instrumentation assembly and configured to receive the at least one wireless signal from the wireless transmitter. The processor of the computing assembly is configured to convert the at least one wireless signal into at least one corresponding animal data element. The memory of the computing assembly is configured to store the at least one animal data element.
In another aspect, described herein is a method of measuring changes in the motion of the body of an animal. The method can include operatively coupling an animal instrumentation assembly as disclosed herein to the body of the animal. The method can also include using the plurality of motion measurement sensors to produce respective measurement signals indicative of the change in the motion of the animal. The method can further include using the processor to receive the measurement signals from the plurality of motion measurement sensors. The method can also include using the wireless transmitter to selectively transmit at least one wireless signal corresponding to at least one measurement signal produced by the plurality of motion measurement sensors. Additionally, the method can include receiving the at least one wireless signal using a wireless receiver of a computing assembly. The method can further include using the processor of the computing assembly to convert the at least one wireless signal into at least one corresponding animal data element. The method can still further include storing the at least one animal data element in the memory of the computing assembly.
In an additional aspect, described herein is a rodeo flag assembly for selectively transmitting instructions to a rodeo event clock. The rodeo flag assembly has a support element, a flag secured to the support element, at least one motion measurement sensor, a processor, and a wireless transmitter. The support element can be a handle or a rope. The at least one motion measurement sensor can be operatively coupled to the support element, and each motion measurement sensor can be configured to produce a measurement signal indicative of the change in the motion of the support element. The processor can be operatively coupled to the at least one motion measurement sensor, and the processor can be being configured to receive the measurement signal from each respective motion measurement sensor. The wireless transmitter can be operatively coupled to the processor, and the wireless transmitter can be configured to transmit at least one wireless signal to the rodeo event clock upon receipt by the processor of the measurement signal from each motion measurement sensor. Each wireless signal can correspond to a respective measurement signal.
Described herein, in a further aspect, is an automated control system for controlling a rodeo event clock. In this aspect, the automated control system can include a rodeo event clock and a rodeo flag assembly as disclosed herein.
In yet another aspect, described herein is a method of controlling a rodeo event clock. The method can include operatively coupling a rodeo flag assembly as disclosed herein to the rodeo event clock. The method can also include using each motion measurement sensor of the rodeo flag assembly to produce a measurement signal indicative of the change in the motion of the support element of the rodeo flag assembly during a rodeo event. Additionally, the method can include using the processor to receive the measurement signal from each respective motion measurement sensor. The method can further include using the wireless transmitter to transmit at least one wireless signal to the rodeo event clock upon receipt of the measurement signal by the processor. Each wireless signal of the at least one wireless signal can correspond to a respective measurement signal.
Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
These and other features of the preferred embodiments of the invention will become more apparent in the detailed description in which reference is made to the appended drawings wherein:
The present invention can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this invention is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description of the invention is provided as an enabling teaching of the invention in its best, currently known embodiment. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still Obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a sensor” can include two or more such sensors unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list.
As will be appreciated by one skilled in the art, the disclosed devices, methods, and systems may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the methods and systems may take the form of a computer program product on a computer-readable storage medium having computer-readable program instructions (e.g., computer software) embodied in the storage medium. More particularly, the present methods and systems may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.
Embodiments of the methods and systems are described below with reference to block diagrams and flowchart illustrations of methods, systems, apparatuses and computer program products. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create a means for implementing the functions specified in the flowchart block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including computer-readable instructions for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
Described herein with reference to
In other exemplary aspects, and with reference to FIGS. 2 and 7-13, it is contemplated that the motion measurement systems and methods can provide direct, real-time integration between a rodeo flag assembly and a rodeo event clock. Optionally, in some aspects, the motion measurement systems and methods can permit automatic detection and identification of unique flag movements, with each unique flag movement corresponding to a respective instruction that can be wirelessly and substantially instantaneously transmitted to the rodeo event clock. It is contemplated that this can permit a rodeo flagger to start and/or stop the rodeo event clock and/or apply scoring penalties in real time. It is further contemplated that the flag movement data can be stored in a memory. In other optional aspects, it is contemplated that the rodeo flag can be operatively connected with an actuator assembly, such as, for example and without limitation, a button and/or trigger assembly, with each respective actuation of the assembly corresponding to a command that is wirelessly communicated to the rodeo event clock. It is contemplated that the actuation data can be stored in a memory. It is still further contemplated that the motion measurement systems can be operatively connected with a Global Positioning System (GPS system) to precisely assign a time value to the flag movements and/or actuations recorded by the systems.
One skilled in the art will appreciate that provided herein is a functional description and that the respective functions can be performed by software, hardware, or a combination of software and hardware. In an exemplary aspect, the methods and systems can be implemented, at least in part, through a computing assembly 100, which can comprise a computer 101 as illustrated in
The present methods and systems can be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that can be suitable for use with the systems and methods comprise, but are not limited to, personal computers, server computers, laptop devices, and multiprocessor systems. Additional examples comprise set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that comprise any of the above systems or devices, and the like.
The processing of the disclosed methods and systems can be performed by software components. The disclosed systems and methods can be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers or other devices. Generally, program modules comprise computer code, routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The disclosed methods can also be practiced in grid-based and distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. a distributed computing environment, program modules can be located in both local and remote computer storage media including memory storage devices.
Further, one skilled in the art will appreciate that the systems and methods disclosed herein can be implemented through a computing assembly 100, which can comprise a general-purpose computing device in the form of a computer 101. The components of the computer 101 can comprise, but are not limited to, one or more processors or processing units 103, a system memory 112, and a system bus 113 that couples various system components including the processor 103 to the system memory 112. In the case of multiple processing units 103, the system can utilize parallel computing.
The system bus 113 represents one or more of several possible types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can comprise an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, an Accelerated Graphics Port (AGP) bus, and a Peripheral Component Interconnects (PCI), PCI-Express bus, a Personal Computer Memory Card Industry Association (PCMCIA), Universal Serial Bus (USB) and the like. The bus 113, and all buses specified in this description can also be implemented over a wired or wireless network connection and each of the subsystems, including the processor 103, a mass storage device 104, an operating system 105, control processing software 106, control processing data 107, a network adapter 108, system memory 112, an Input/Output Interface 110, a display adapter 109, a display device 111, and a human machine interface 102, can be contained within one or more remote computing devices 114a,b,c at physically separate locations, connected through buses of this form, in effect implementing a fully distributed system.
The computer 101 typically comprises a variety of computer readable media. Exemplary readable media can be any available media that is accessible by the computer 101 and comprises, for example and not meant to be limiting, both volatile and non-volatile media, removable and non-removable media. The system memory 112 comprises computer readable media in the form of volatile memory, such as random access memory (RAM), and/or non-volatile memory, such as read only memory (ROM). The system memory 112 typically contains data such as control processing data 107 and/or program modules such as operating system 105 and control processing software 106 that are immediately accessible to and/or are presently operated on by the processing unit 103.
In another aspect, the computer 101 can also comprise other removable/non-removable, volatile/non-volatile computer storage media. By way of example, a mass storage device 104 can provide non-volatile storage of computer code, computer readable instructions, data structures, program modules, and other data for the computer 101. For example and not meant to be limiting, a mass storage device 104 can be a hard disk, a removable magnetic disk, a removable optical disk, magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access memories (RAM), read only memories (ROM), electrically erasable programmable read-only memory (EEPROM), and the like.
Optionally, any number of program modules can be stored on the mass storage device 104, including by way of example, an operating system 105 and control processing software 106. Each of the operating system 105 and control processing software 106 (or some combination thereof) can comprise elements of the programming and the control processing software 106. Control processing data 107 can also be stored on the mass storage device 104. Control processing data 107 can be stored in any of one or more databases known in the art. Examples of such databases comprise, DB2®, Microsoft® Access, Microsoft® SQL Server, Oracle®, mySQL, PostgreSQL, and the like. The databases can be centralized or distributed across multiple systems.
In another aspect, the user can enter commands and information into the computer 101 via an input device (not shown). Examples of such input devices comprise, but are not limited to, a keyboard, pointing device (e.g., a “mouse”), a microphone, a joystick, a scanner, tactile input devices such as gloves, and other body coverings, and the like. These and other input devices can be connected to the processing unit 103 via a human machine interface 102 that is coupled to the system bus 113, but can be connected by other interface and bus structures, such as a parallel port, game port, an IEEE 1394 Port (also known as a Firewire port), a serial port, or a universal serial bus (USB).
In yet another aspect, a display device 111 can also be connected to the system bus 113 via an interface, such as a display adapter 109. It is contemplated that the computer 101 can have more than one display adapter 109 and the computer 101 can have more than one display device 111. For example, a display device can be a monitor, an LCD (Liquid Crystal Display), or a projector. In addition to the display device 111, other output peripheral devices can comprise components such as speakers (not shown) and a printer (not shown) which can be connected to the computer 101 via Input/Output Interface 110. Any step and/or result of the methods can be output in any form to an output device. Such output can be any form of visual representation, including, but not limited to, textual, graphical, animation, audio, tactile, and the like. The display 111 and computer 101 can be part of one device, or separate devices.
The computer 101 can operate in a networked environment using logical connections to one or more remote computing devices 114a,b,c. By way of example, a remote computing device can be a personal computer, portable computer, smartphone, a server, a router, a network computer, a peer device or other common network node, and so on. In exemplary aspects, a remote computing device can be an animal instrumentation assembly and/or a rodeo flag as disclosed herein, In other exemplary aspects, as shown in
For purposes of illustration, application programs and other executable program components such as the operating system 105 are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computing device 101, and are executed by the data processor(s) of the computer. An implementation of control processing software 106 can be stored on or transmitted across some form of computer readable media. Any of the disclosed methods can be performed by computer readable instructions embodied on computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example and not meant to be limiting, computer readable media can comprise “computer storage media” and “communications media,” “Computer storage media” comprise volatile and non-volatile, removable and non-removable media implemented in any methods or technology for storage of information such as computer readable instructions, data structures, program modules, or other data, Exemplary computer storage media comprises, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
The methods and systems can employ Artificial Intelligence techniques such as machine learning and iterative learning. Examples of such techniques include, but are not limited to, expert systems, case based reasoning, Bayesian networks, behavior based Al, neural networks, fuzzy systems, evolutionary computation (e.g. genetic algorithms), swarm intelligence (e.g. ant algorithms), and hybrid intelligent systems (e.g. Expert inference rules generated through a neural network or production rules from statistical learning).
The above-described system components may be local to one of the devices (e.g., an animal instrumentation assembly, a computing assembly, or a rodeo flag assembly as disclosed herein) or remote (e.g. servers in a remote data center, or “the cloud”). In exemplary aspects, as shown in
In exemplary aspects, and with reference to
Additionally, or alternatively, in some optional aspects, it is contemplated that the means for operatively coupling the plurality of motion measurement sensors 22 to the body of the animal can comprise conventional rodeo accessories or equipment that are positioned in operative contact with the animal during rodeo events. In these aspects, it is contemplated that the rodeo accessories or equipment can comprise at least one of a rider's handle, a flank strap, a bucking strap, a halter, and an ankle strap. For example, in one aspect, it is contemplated that a rider of the animal can be provided with a conventional rider's handle, while a flank strap and/or bucking strap can be positioned on the back of the animal, a halter can be positioned on the head of the animal, and ankle straps can be positioned on the legs of the animal. In this aspect, it is contemplated that a motion measurement sensor 22 can be secured to at least one of the rider's handle, the flank strap, the bucking strap, the halter, and an ankle strap. Optionally, it is contemplated that at least one motion measurement sensor 22 can be secured to each of the rider's handle, the flank strap (or bucking strap), the halter, and the ankle straps. It is contemplated that the at least one motion measurement sensor can be secured to the rider's handle, flank strap (or bucking strap), halter, and ankle straps using respective housings that are mounted to each respective piece of rodeo equipment or, alternatively, by direct mounting to the rodeo equipment. Optionally, it is contemplated that at least one motion measurement sensor 22 can be securely integrated into each respective piece of rodeo equipment.
It is further contemplated that each motion measurement sensor 22 of the plurality of motion measurement sensors can be configured to produce a measurement signal indicative of the change in the motion of the animal. In exemplary aspects, it is contemplated that the plurality of motion measurement sensors 22 can comprise at least one accelerometer. It is further contemplated that the plurality of motion measurement sensors 22 can comprise at least one gyroscope. It is further contemplated that the plurality of motion measurement sensors 22 can comprise at least one magnetometer. It is further contemplated that the plurality of motion measurement sensors 22 can comprise at least one altimeter configured to measure elevation changes. It is further contemplated that the plurality of motion measurement sensors 22 can comprise at least one Global Positioning System (GPS). It is still further contemplated that the plurality of motion measurement sensors 22 can comprise at least one strain gauge. However, it is contemplated that the plurality of motion measurement sensors 22 can comprise any conventional sensor that is capable of providing an output signal indicative of the motion of the body of the animal. In exemplary aspects, in combination, it is contemplated that the plurality of measurement sensors 22 can be configured to measure the change in motion and orientation of the animal with respect to at least three axes. In these aspects, the at least three axes can optionally comprise X-, Y-, and Z-axes, with the X-axis being perpendicular to both the Y- and Z-axes, the Y-axis being perpendicular to both the X- and Z-axes, and the Z-axis being perpendicular to both the X- and Y-axes. Optionally, in exemplary aspects, the plurality of measurement sensors 22 can be configured to measure the change in motion and orientation of the animal with respect to at least six axes. In these aspects, the at least six axes can comprise X, Y-, and Z-axes as described above, as well as pitch, roll, and yaw axes as are known in the art.
In another aspect, and with reference to
In an additional aspect, and with reference to
Optionally, in a further aspect, and with reference to
In another optional aspect, and with reference to
In one aspect, and with reference to
In another aspect, and with reference to
In a further aspect, and with reference to
In exemplary aspects, as further disclosed herein, it is contemplated that the computing assembly 100 can comprise a user interface 102 positioned in operative communication with the processor 103 of the computing assembly.
In additional exemplary aspects, and as shown in
In use, the disclosed animal instrumentation assembly can be used in a method of measuring changes in the motion of the body of an animal. In one aspect, the method can comprise operatively coupling the animal instrumentation assembly to the body of the animal. In another aspect, the method can comprise using the plurality of motion measurement sensors to produce respective measurement signals indicative of the change in the motion of the animal. in an additional aspect, the method can comprise using the processor to receive the measurement signals from the plurality of motion measurement sensors. In a further aspect, the method can comprise using the wireless transmitter to selectively transmit at least one wireless signal corresponding to at least one measurement signal produced by the plurality of motion measurement sensors. In yet another aspect, the method can comprise receiving the at least one wireless signal using a wireless receiver of the computing assembly. In a further aspect, the method can comprise using the processor of the computing assembly to convert the at least one wireless signal into at least one corresponding animal data element. In still another aspect, the method can comprise storing the at least one animal data element in the memory of the computing assembly.
As shown in
In further exemplary aspects, it is contemplated that the processor 103 of the computing assembly 100 of the motion measurement system can assign a score to the motion of the animal during a selected time period, such as, for example and without limitation, a ride of the animal by a rider. In these aspects, it is contemplated that the score assigned by the processor 103 of the computing assembly 100 can correspond to at least one of bucking intensity, riding difficulty, and animal value.
In exemplary aspects, and with reference to
Optionally, in some aspects, the rodeo flag assembly 220 can comprise at least one motion measurement sensor 228 operatively coupled to the support element (e.g., handle 222 or rope 224). In these aspects, the rodeo flag assembly 220 can comprise a processor 230 operatively coupled to the at least one motion measurement sensor 228 and a wireless transmitter 232 operatively coupled to the processor. In additional aspects, it is contemplated that the rodeo flag assembly 220 can further comprise a memory 236 positioned in operative communication with the processor 230. Optionally, in further aspects, it is contemplated that the rodeo flag assembly 220 can further comprise a precision timer 238 that is positioned in operative communication with the processor 230 and configured to provide the processor with precise time information that can be associated with inputs received by a user and/or measurement signals received from the motion measurement sensors 228. It is contemplated that each motion measurement sensor 228 can be configured to produce a measurement signal indicative of the change in motion of the support element. It is further contemplated that the processor 230 can be configured to receive the measurement signal from each respective motion measurement sensor 228. It is still further contemplated that the wireless transmitter 232 can be configured to transmit a wireless signal to the rodeo event clock 210 upon receipt of the measurement signal by the processor 230, with the wireless signal corresponding to (and being indicative of) the measurement signal. In exemplary aspects, it is contemplated that the at least one motion measurement sensor 228 can comprise at least one accelerometer. In other exemplary aspects, it is contemplated that the at least one motion measurement sensor 228 can comprise at least one gyroscope. In still other exemplary aspects, it is contemplated that the at least one motion measurement sensor 228 can comprise at least one strain gauge. In still other exemplary aspects, it is contemplated that the at least one motion measurement sensor 228 can comprise at least one optical detection sensor. In use, it is contemplated that movement of the flag 226 in a predetermined motion can generate a measurement signal corresponding to an instruction to automatically start the rodeo event clock 210, automatically stop the rodeo event clock, and/or automatically apply penalties.
Additionally or alternatively, in other aspects, it is contemplated that the rodeo flag assembly 220 can comprise an input assembly 234 operatively coupled to the support element (e.g., handle 222 or rope 224). In these aspects, the processor 230 of the rodeo flag assembly can be operatively coupled to the input assembly 234. it is contemplated that the rodeo flag assembly 220 can further comprise a wireless transmitter 232 operatively coupled to the processor 230. In additional aspects, it is contemplated that the input assembly 234 can be configured to receive an instruction input from a user. in these aspects, the processor 230 can be configured to receive the instruction input from the input assembly 234. It is further contemplated that the wireless transmitter 232 can be configured to transmit a wireless signal to the rodeo event clock 210 upon receipt of the instruction input from the input assembly 234, with the wireless signal corresponding to (and being indicative of) the instruction input. In exemplary aspects, the input assembly 234 of the rodeo flag assembly 220 can optionally comprise at least one penalty button 242. Optionally, in these aspects, the at least one penalty button can comprise a first penalty button and a second penalty button. In these aspects, it is contemplated that activation of the first penalty button can correspond to an instruction to award no time to and/or disqualify competitors from a particular rodeo event, such as, for example and without limitation, a riding event. It is further contemplated that the activation of the second penalty button can correspond to an instruction to apply a. time penalty to the competitors of a particular rodeo event, such as, for example and without limitation, a roping event. It is still further contemplated that as long as neither penalty button is activated, a time penalty will not be applied.
exemplary aspects, and as shown in
Optionally, in a further aspect, the rodeo flag assembly 220 can comprise a GPS receiver positioned in operative communication with the processor 230 of the rodeo flag assembly. In this aspect, it is contemplated that the GPS receiver can be configured to provide precise time information to the processor 230, and the processor can correlate precise time information with each respective measurement signal and/or instruction input produced by the rodeo flag assembly. It is further contemplated that the GPS receiver can be positioned in operative communication with a GPS satellite to receive precise time information. In exemplary aspects, it is contemplated that the processor 230 can be configured to assign a corresponding time value to each measurement signal and/or instruction input produced by the motion measurement sensors 228 and/or the input assembly 234 of the rodeo flag assembly 220.
In additional exemplary aspects, and as shown in
In use, the disclosed rodeo flag assembly can be used in a method of controlling a rodeo event clock. In one aspect, the method can comprise operatively coupling a rodeo flag assembly to the rodeo event clock. In another aspect, the method can comprise using each motion measurement sensor of the rodeo flag assembly to produce a measurement signal indicative of the change in the motion of the support element during a rodeo event. In an additional aspect, the method can comprise using the processor of the rodeo flag assembly to receive the measurement signal from each respective motion measurement sensor. In a further aspect, the method can comprise using the wireless transmitter of the rodeo flag assembly to transmit at least one wireless signal to the rodeo event clock upon receipt of the measurement signal by the processor. In this aspect, each wireless signal of the at least one wireless signal can correspond to a respective measurement signal. Optionally, when the rodeo flag assembly comprises an input assembly, the method can further comprise using the input assembly to receive an instruction input from a user, using the processor to receive the instruction input from the input assembly, and using the wireless transmitter to transmit a wireless signal to the rodeo event clock upon receipt of the instruction input from the input assembly, the wireless signal corresponding to the instruction input.
In many applications, it is contemplated that a single rodeo flag assembly 220 can be used to transmit instructions to a rodeo event clock 210. In some aspects, as shown in
In other aspects, as shown in
In further aspects, as shown in
As shown in
In exemplary aspects, as shown in
Although several embodiments of the invention have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific embodiments disclosed hereinabove, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
This application claims priority to U.S. Provisional Patent Application No. 61/914,580, filed Dec. 11, 2013, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61914580 | Dec 2013 | US |