Flame arrestor with reflection suppressor

Information

  • Patent Grant
  • 6644961
  • Patent Number
    6,644,961
  • Date Filed
    Wednesday, March 27, 2002
    22 years ago
  • Date Issued
    Tuesday, November 11, 2003
    21 years ago
Abstract
A combination of a flame arrestor with a reflection suppressor is provided which not only arrests an advancing flame front, but also suppresses or mitigates a reflection wave that is generated by a pressure wave that passes through the combination and continues on to a pipe restriction what generates a reflection wave that proceeds back to the combination. At the combination, the reflection suppressor suppresses and/or mitigates the reflection wave, thereby avoiding a heightened pressure in the combination that could cause a re-ignition and a new flame front and pressure front. The reflection suppressor has a tapered profile that permits a pressure wave to pass along and past the reflection suppressor as it leaves the combination but that impedes and mitigates a returning reflection wave produced by the pressure wave striking a pipe restriction and causing such a returning reflection wave.
Description




FIELD OF THE INVENTION




This invention relates to flame arrestors equipped with reflection suppressors.




BACKGROUND OF THE INVENTION




Flame arrestors are passive devices designed to prevent propagation of gas flames through pipelines. A flame arrestor incorporates a permeable barrier known as an element which is usually a matrix of metallic, ceramic or mixed materials that define a permeable barrier containing narrow channels. An element removes heat and free radicals from a flame at a rate which is fast enough to quench the flame and to prevent reignition of the hot gas on the protected side (downstream relative to the direction of flame propagation along a pipe) of the arrestor.




A flame arrestor is located in a pipeline carrying a flammable gas, and the design of a flame arrestor can vary greatly depending upon application, location and use conditions. For example, a best design for a particular installation may take into account flow resistance, maintainability and cost.




For purposes of evaluating efficacy of a particular flame arrestor for particular flame arrestor applications, various testing protocols have been developed that aim to address most adverse conditions encountered. In, for example, the case of marine vapor control systems in the United States, the testing and application of flame arrestors is regulated by the U.S. Coast Guard.




A flame arrestor can be used to arrest deflagrations and detonations. A deflagration is a combustion wave propagating at less than the speed of sound as measured in unburned gas immediately ahead of the flame front. Flame speed relative to unburned gas is typically 10-100 m/s (meters per second), but, owing to expansion of hot gas behind the flame, several hundred meters per second may be achieved relative to a pipe wall. Although the pressure peak coincides with the flame front, a marked pressure rise precedes it, so that the unburned gas is compressed as the deflagration proceeds, depending upon flame speed and available vent paths. The precompression of gas ahead of the flame front establishes the gas conditions in the arrestor when the flame enters it and hence affects both the arrestment process and the maximum pressure generated in the arrestor body.




As a deflagration travels through piping, its speed increases due to flow-induced turbulence and compressive heating of unburned gas ahead of the flame front. At a flame speed approaching sonic velocity, a deflagration-to-detonation transition (DDT) can occur with associated abnormally high velocities and pressures. At the instant of transition, a transient state of overdriven detonation is achieved and persists for a few pipe diameters. After the decay of such conditions, a stable detonation state is attained. A detonation is a combustion-driven shock wave propagating at the speed of sound, as measured in the burned gas immediately behind the flame front. Stable detonations propagate at sonic velocities relative to an external fixed point. A wave is sustained by chemical energy released by shock compression and ignition of unreacted gas. The flame front is coupled in space and time with the shock front, with no significant pressure rise ahead of the shock front.




The high velocities and pressures associated with detonations require special element design to quench the high-velocity flames plus superior arrestor construction to withstand the associated impulse loading. In practice, this entails narrower and/or longer element channels plus bracing of the element facing.




The problem of flame arrestment, either of deflagrations or detonations, depends on the properties of the gas mixture plus the initial pressure. Since gas mixture combustion properties cannot be quantified for direct use in flame arrester selection, flame arrester performance must be demonstrated by realistic testing.




A severe deflagration arrestment test involves placing a restricting orifice behind the arrestor (that is, upstream relative to the direction of wave propagation). Such a restriction produces a so-called reflection wave that travels back to the flame arrestor from the restriction and increases the degree of precompression. Such “restricted end” deflagration testing constitutes a severe deflagration arrestment test, yet such testing is believed to represent an operating environment that can exist in fact from various conditions, such as when, for example, a closed or partially closed valve in a pipe is located upstream from a functioning arrestor in the pipeline. Such testing has demonstrated that arrestors capable of stopping even overdriven detonations may fail under restricted end deflagration test conditions.




The art of flame arrestors needs improved apparatus and methods for achieving arrestment in environments where reflection waves can be generated upstream relative to the direction of wave propagation and be propagated back to a flame arrestor. The present invention provides such improvements.




SUMMARY OF THE INVENTION




More particularly, this invention is directed to a combination of a flame arrestor with a reflection suppressor, and to a process for using same.




The invention aims to control, including minimize and suppress, reflection waves produced in a pipeline.




The invention can be practiced with various types of flame arrestors, and is suitable for use in various flame arrestor applications. The reflection suppressor that is provided in accord with the present invention is located adjacent to an interior end region of an arrestor in a common housing. This end region is chosen so as to be an end of the arrestor that is downstream relative to the direction of flame and pressure wave propagation, but that is upstream relative to the direction of reflection wave propagation.




The flame arrestor can be either of the deflagration arresting type or of the anti-detonation (or so-called detonation arresting) type. A detonation flame arrestor may also be usable as a deflagration flame arrestor. Preferably, in the practice of this invention, the inventive combination employs a flame arrestor of the detonation type and that has opposite end portions that adapt the combination to be mounted in a pipeline.




Preferably, in the inventive combination, a reflection suppressor is provided adjacent each opposite end portion of the combination, whereby the combination is adapted to suppress a reflected wave that reaches either end portion of the combination.




The reflection suppressor employed in the combination is a body having tapered sidewalls. The body has a longitudinal length such that it is axially positionable in an end region of a housing that also holds the flame arrestor, and the body is centered and longitudinally adjacent to the flame arresting housing. The tapered body has an apex end portion and a base end portion that is longitudinally spaced from the apex end portion. In a housing, the base end portion has a substantially larger cross-sectional area than the apex end portion. The longitudinal length of the tapered body is preferably such that the base end portion is located approximately adjacent to an outlet aperture of the common housing while the apex end portion is located approximately adjacent to an end region of the flame arrestor. Preferably, the flame arrestor is located in a mid-region of the common housing.




Preferably the combination is easy to assemble and maintain.




Other and further aims, purposes, objects, features, advantages, embodiments and the like will be apparent to those skilled in the art from the present specification taken with the accompanying drawings and the appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS




In the drawings:





FIG. 1

is a longitudinal, medial, partial sectional view through an embodiment of the inventive combination of a flame arrestor with a reflection suppressor, some parts being broken away and some parts being shown in section;





FIG. 2

is a vertical sectional view taken along the line II—II of

FIG. 1

;





FIG. 3

is a view similar to

FIG. 1

but showing the combination with two reflection suppressors;





FIG. 4

is a diagrammatic view of another embodiment of a combination of a flame arrestor with a reflection suppressor; some parts being broken away and some parts being shown in section;





FIG. 5

is a side elevational view of the reflection suppressor such as employed in the embodiments of

FIGS. 1 and 4

;





FIG. 6

is an apex end elevational view of the reflection suppressor of

FIG. 5

;





FIG. 7

is a side elevational view similar to

FIG. 5

but showing an alternative embodiment of a reflection suppressor;





FIG. 8

is an apex end elevational view of the reflection suppressor of

FIG. 7

;





FIG. 9

is a side elevational view similar to

FIG. 5

but showing an alternative embodiment of a reflection suppressor;





FIG. 10

is an apex end elevational view of the reflection suppressor of

FIG. 9

; and





FIG. 11

is a diagrammatic, fragmentary vertical sectional view through an end region of an inventive combination that is similar to the

FIG. 1

embodiment but that illustrates an alternative embodiment that incorporates two reflection suppressors in an inward end region of the common housing.











DETAILED DESCRIPTION




Referring to

FIGS. 1 and 2

, there is seen an illustrative embodiment


50


of the inventive combination of a detonation flame arrestor


51


with a reflection suppressor


52


. The combination


50


is comprised of metal components, preferably steel or steel alloy. The combination


50


employs a common housing


53


for the flame arrestor


51


and for the reflection suppressor


52


.




The housing


53


is cross-sectionally circular and axially elongated, and has a generally circular aperture


55


and


56


defined at each respective opposite end thereof. The mid-region


57


of the housing


53


is diametrically enlarged, has a generally uniform diameter, and has side wall portions defined by a circumferentially extending sleeve


58


. Transversely across but within each respective opposite end


67


,


68


of sleeve


58


(and mid-region


57


) a circular, apertured retaining wall


59


and


60


, respectively, is located. The walls


59


and


60


are supported and connected by an axially extending elongated bolt


62


whose respective opposite ends are each threadably associated with a nut


63


.




The apertured walls


59


and


60


can be comprised of plate stock, but, preferably are alternatively fabricated of cross bars that are welded together at abutting and cross-over regions. Other constructions can be employed, as those skilled in the art appreciate.




Longitudinally adjacent each respective opposite end


67


,


68


of sleeve


58


is located a frusto-conical section


64


and


65


of housing


53


. Each section


64


and


65


provides a longitudinally tapered region that declines in cross-sectional area proceeding from each opposite end


67


,


68


of sleeve


58


to an adjacent aperture


55


,


56


, respectively. In the region of each aperture


55


,


56


, each section


64


,


65


defines a terminal cylindrical portion


69


,


70


, respectively, and each cylindrical portion


69


,


70


is joined at its outer end, by welding or the like, to a pipe connecting flange


72


,


73


, respectively. The sleeve


58


adjacent end portion of each frusto-conical section


64


,


65


terminates in an integrally associated, longitudinally short, cylindrical flange


74


,


75


, respectively. Outer surface portions of each flange


74


,


75


are joined preferably by welding to a sleeve abutting flange


76


,


77


, respectively.




During assembly of the combination


30


, each flange


76


,


77


is longitudinally abutted against an opposite end


67


,


68


of the sleeve


58


. In aligned relationship with one another, apertures (not shown) defined in the outstanding portions of each respective flange


76


,


77


have extended therethrough a plurality of circumferentially preferably equally spaced tie rods


80


. The respective opposite ends of the tie rods


80


are threadably associated with nuts


81


, so that longitudinal compressive force exerted by the rods


80


and their associated nuts


81


hold the housing components in assembled relationship.




Positioned between the walls


59


,


60


within the sleeve


58


is a fill of crimped steel plates or the like (not detailed but conventional). Various flame arrestor fill media are known to the prior art and can be employed, including fill structures having a honeycomb configuration (in cross section), packed steel or ceramic spheres (or other spherical media) parallel or stacked crimped metal plates, stacked wire mesh (such as disclosed in U.S. Pat. No. 4,909,730), and the like.




The walls


59


,


60


taken with the fill material can be considered to comprise the “element” of a flame arrestor, as those skilled in the art will readily appreciate. The element is porous and adapted for the passage of a gas therethrough that is flowing a rate within a predetermined range in the pipeline across which the inventive combination


50


is connected. The design of the element varies from one intended installation to another. Also, the element design may be influenced and sometimes controlled by the criteria specified in a test protocol to which the element has been subjected (or could be subjected) and passed. As those skilled in the art will appreciate, many variations in the design of a particular element are possible and are used. It is an important feature and advantage of the present invention that the reflection suppressor can be associated with a flame arrestor virtually without regard to the structure or operating characteristics of an element without detracting from the capacity of the reflection suppressor to reduce or eliminate the effect of a reflection wave upon the element.




In the frusto-conical section


65


of the housing


53


, the reflection suppressor


52


is located. The reflection suppressor


52


has side wall portions


86


that extend between a base portion


87


and an apex portion


88


thereof. The reflection suppressor


52


has a longitudinal or axial length


89


(see

FIG. 5

) that is shorter than the distance between the orifice or aperture


56


and the adjacent wall


60


of the element. Also, the reflection suppressor


53


has a cross-sectional area along its length between the base portion


87


and the apex portion


88


that generally declines with increasing distance from the base portion


87


. Further, the base portion


87


has a cross-sectional area that is less than the cross sectional area of the orifice or aperture


56


. While the reflection suppressor


52


has side wall portions


86


that are here conically tapered which is preferred, a reflection suppressor, as below described, can have other side wall configurations, if desired.




Mounting means is provided for mounting (including holding and supporting) the reflector suppressor


52


in the frusto-conical section


65


. The reflection suppressor


52


is preferably (and as shown) centrally positioned in the section


65


. The base portion


86


is located adjacent to the orifice


56


in section


65


. In embodiment


50


, the mounting means is achieved by mounting the apex portion


88


, by welding or the like, to the adjacent nut


63


and by positioning a spider


90


(shown in

FIGS. 1 and 2

) circumferentially about side wall portions


86


adjacent to the base portion


87


. The spider


90


is sized to fit in the neck region of the terminal cylindrical portion


65


. However, various convenient alternative mounting means may be employed for a reflection suppressor as those skilled in the art will readily appreciate.




Optionally, the housing


53


is provided with fittings


78


for drains, pressure taps, or temperature probes.




In the combination


50


, normal gas flow in a pipeline to which the combination


50


is connected can proceed in either direction (relative to the apertures


55


and


56


) through the housing


53


, including through the element as defined by walls


59


,


60


and the fill therebetween, and around the reflection suppressor


52


. However, when a flame front and associated pressure wave occur in the associated pipeline at a location at a distance from the combination


50


, the flame front and associated pressure wave propagate towards the combination


50


and reach the combination


50


through the input pipe


91


, the combination becomes operational. Owing to the design of the detonation flame arrestor


51


, the flame front is suppressed upon reaching and entering the arrester


51


owing to the relationship between the passageways through the element and the heat sink capacity of the element. However, the pressure wave passes through the element and the arrestor


51


and around the reflection suppressor


52


and moves into and onwards in the output pipe


92


. Upon reaching a restriction (not shown in

FIG. 1

) in the output pipe


92


, a reflection pressure wave is generated that moves in the opposite direction and so travels back in the output pipe


92


to the combination


50


.




As those skilled in the art will appreciate, and as the results of various studies and tests have ascertained and confirmed, a restriction in a pipe can be caused by various factors and pipe discontinuities, such as a bend in the pipeline, a coupling, a valve that perhaps is not fully closed or open, and other flow path changes. Theoretically, if the pressure wave encounters no restriction, then no reflection pressure wave is produced. When a reflection pressure wave is produced and enters a flame arrestor, a sudden pressure increase occurs therein causing a so-called over-pressure situation within the flame arrestor


51


, which can result in a re-ignition and propagation of a new flame front and pressure front outwardly from the region of the flame arrestor in the pipeline.




The reflection suppressor


52


, when the reflection wave reaches the combination


50


, restricts the flow of the high pressure reflection wave front back into the housing


53


of the combination


50


. The reflection wave is either reflected back harmlessly into the output pipe


92


or the pressure is absorbed by the reflection suppressor


52


and the adjacent portions of the housing


53


.




By retaining the base portion


87


in an open configuration, some energy of the reflection wave is resultingly absorbed by the open base upon reaching the reflection suppressor


85


.




Since it is not always possible to predict that a wave front and associated pressure wave will approach a combination


50


from only one direction along the associated pipeline, it is advisable and indeed preferred to provide a combination


100


that is similar to the combination


50


but that contains a second reflection suppressor


85


located in the frusto-conical section


64


, as illustrated in

FIG. 3

, where components similar to those in

FIGS. 1 and 2

are similarly numbered but with the addition of prime marks thereto for convenient identification purposes. The reflection suppressor


85


is similar to the reflection suppressor


52


, but is oriented in a reverse direction, and operates similarly but with gases moving in an opposite direction.




By suppressing or diverting a reflection wave, the reflection suppressor avoids potentially catastrophic results in the region of the combination


50


.




Another embodiment of a combination of flame arrestor


10


and reflection suppressor


30


is illustrated in

FIG. 4

, this arrangement being similar to that of

FIG. 1

, but is adapted for testing in accord with a test protocol.




This embodiment has the combination associated with an inlet pipe


12


and an outlet pipe


14


in a pipeline. The configuration shown in

FIG. 4

includes a restricted end


16


on outlet pipe


14


. It is understood, however, that flame arrestors such as flame arrestor


10


can be installed in multiple pipeline configurations. Restricted end


16


is depicted in

FIG. 4

for convenience in describing a reflective pressure front (below). Inlet pipe


12


is secured to the inlet side


18


of the flame arrestor


10


in a known manner. Likewise, outlet pipe


14


is secured to the outlet side


20


of the flame arrestor in a known manner.




The precise internal configuration of flame arrestor


10


varies with the type of fill media inserted which may be determined by the desired application. It is understood that known internal configurations for a flame arrestor


10


are acceptable for the present invention, such as for example, the flame arrestor apparatus disclosed in U.S. Pat. No. 5,415,233. Additional known flame arrestor fill media include structures having a honeycomb configuration (in cross section), packed steel or ceramic spheres (or other spherical media), parallel or stacked plates, stacked wire mesh (such as disclosed in U.S. Pat. No. 4,909,730) or the like. It is understood that flame arrestor


10


of FIG.


4


and of the present invention could be configured to include such fill media, and other known configurations, within its internal cavity


11


.




Flame arrestor


10


as depicted in

FIG. 4

includes a pair of perforated or apertured end plates, each


22


, which support a central bolt


24


secured by nuts


26


and


28


for the purpose of description herein. However, it is understood that the combination of the invention utilizes a common housing for the flame arrestor and the reflection suppressor. In place of end plates


22


, other apertured wall means can be used such as welded cross bars or the like. Also, in place of central bolt


24


, and nuts


26


and


28


other mounting and supporting arrangements can be used.




Flame arrestor


10


includes in the outlet end


20


of the common housing a reflection suppression device


30


of the present invention. Reflection suppressor


30


is positioned on the outlet side


20


of flame arrestor


10


between the fill media contained within internal cavity


11


and outlet pipe


14


. In a construction such as depicted in

FIG. 4

wherein the flame arrestor


10


includes a center bolt


24


, reflection suppressor


30


is fitted with a nut


28


which threads onto center bolt


24


in the same manner as bolt


26


threads onto the opposite end of center bolt


24


. In an embodiment where a center bolt is omitted, reflection suppressor


30


may be affixed to the outlet side


20


of flame arrestor


10


by other known means, most commonly welding.




Referring to

FIGS. 5 and 6

, views of the reflection suppressor


30


are provided. As shown, reflection suppressor


30


, in its preferred embodiment is of a conical or frusto-conical longitudinal geometry. The nut


28


is secured to the tapered end (vertex) of the reflection suppressor


30


. Nut


28


may be secured by any known means, but is preferably welded thereon. As stated above, it is understood that reflection suppressor


30


may be configured without nut


28


and welded directly to the end plate


22


on the outlet side of flame arrestor


10


or affixed directly to the fill media contained within internal cavity


11


.





FIGS. 7 and 8

show an alternate reflection suppressor


34


of the present invention. In this alternate preferred embodiment, reflection suppressor


34


has a pyramidal geometry. As with the embodiment


30


, the alternate embodiment


34


of

FIG. 4

is secured to nut


28


in the manner described above in embodiment


30


.





FIGS. 9 and 10

show an alternate reflection suppressor


35


which has a hemispherical geometry.




The geometries of the present embodiments of

FIGS. 5

,


7


and


9


can each be considered to include a vertex


32


, an altitude


36


, and a base


38


.




The side walls of a reflection suppressor


30


,


34


or


35


can be, if desired, porous or perforated. The bases of such reflectors can be continuous, porous, perforated or open.




A reflection suppressor in the inventive combination may incorporate, if desired, two successive, serially arranged and centrally positioned tapered bodies that are preferably each conically configured, such as the bodies


94


and


95


in the fragmentary alternative embodiment shown in FIG.


11


. Both bodies


94


and


95


are located in a single end region, such as in frusto-conical section


65


′ of the housing


53


′ combination


50


′ illustrated in FIG.


11


and both bodies are frusto-conically configured. The outward body


95


, against which an advancing reflection wave first impinges, preferably has smaller dimensions than the inward body


94


against which the advancing reflection wave secondarily impinges. To mount the bodies


94


and


95


, a plurality of spiders


90


′ are illustratively employed, with the apex of the body


95


being illustratively received in and mounted across the base of the body


94


; however, alternative arrangements can be employed.




The significance of the geometry of a reflection suppressor, such as suppressor


30


, is next described. Referring to FIG.


4


and as stated above, reflection suppressor


30


is positioned on the outlet side


20


of flame arrestor


10


such that vertex


32


is positioned adjacent the fill media contained within internal cavity


11


and base


38


is positioned toward outlet pipe


14


in the direction of flow within the pipeline. The configuration (shape) and position of reflection suppressor


30


is important. The shape of reflection suppressor


30


may be such that the vertex end


32


does not unduly impede the gas flow through and away from flame arrestor


10


in the direction of flow in the pipeline, yet restricts the flow in the opposite direction back into the flame arrestor


10


from the outlet side


20


.




In other words, the size of base


38


and the length of altitude


36


are such that reflective wave fronts traveling counter-flow relative to an initiating pressure wave within outlet pipe


14


are restricted from re-entering flame arrestor


10


through outlet side


20


. The shape, the reflection suppressor which is preferably conical preferably offers little or no flow restriction to a pressure wave leaving the flame arrestor but preferably offers a significant flow impediment or restarting effect on a reflection wave that would, but for the reflection suppressor enter the flame arrestor. As a reflection suppressor configured, a pressure front which may cause flame arrestor


10


to fail is restricted. Although the conical geometry of FIG.


5


and the pyramidal geometry of FIG.


7


and the hemispherical geometry of

FIG. 9

may be considered to be preferred embodiments of reflection suppressors, it is understood that other geometries are contemplated provided that flow in the desired direction on the outlet side


20


from flame arrestor


10


is not undesirably impeded while the reverse flow in the counter-direction into the outlet side


20


is desirably restricted. In order to accomplish this, a reflection suppressor such as suppressor


30


, should be configured to taper from base


38


down to vertex


32


along altitude


34


.




With reference to

FIG. 4

, the direction of flow within the pipeline is shown by arrow


40


within inlet pipe


12


. Arrow


40


depicts the direction of flow into the inlet side


18


of flame arrestor


10


. Flow continues through the internal cavity


11


of flame arrestor


10


containing the fill media and exits flame arrestor


10


through outlet side


20


past reflection suppressor


30


as shown by arrows, collectively


42


. Flow continues through outlet pipe


14


and impinges upon restricted end


16


.





FIG. 4

is depicted with restricted end


16


for convenience and for test protocol purposes in order to show a reflection directed back toward flame arrestor


10


as depicted by arrow


44


. The reflected wave front then travels counter-flow through outlet pipe


14


back toward the outlet side


20


of flame arrestor


10


. As shown by arrow


46


, the reflected pressure front contacts reflection suppressor


30


through base end


38


and is restricted from reentering the internal cavity


11


of flame arrestor


10


. Reflection suppressor


30


then re-deflects the pressure front back toward restricted end


16


.




In the case where the material within the pipeline is ignited and traveling through inlet pipe


12


, the fill media contained within internal cavity


11


of flame arrestor


10


, when acting correctly and as designed, extinguishes the flame in the manner described above. However, the heated combustion gases contained within internal cavity


11


of flame arrestor


10


will exit through outlet side


20


past reflection suppressor


30


creating a pressure head directed down the length of outlet pipe


14


. When the high pressure front is reflected by restricted end


16


back toward the outlet side


20


of flame arrestor


10


, the reflection suppressor


30


, positioned therein restricts the flow of the pressure front back into the internal cavity


11


and reflects it back harmlessly toward restricted end


16


within outlet pipe


14


. Reflection suppressor


30


restricts the flow of the high pressure front back into internal cavity


11


which has been otherwise known to cause an over-pressure situation within internal cavity


11


causing flame arrestor


10


to fail which may cause catastrophic results.




As stated above,

FIG. 4

depicts a restricted end


16


for the convenience of illustrating the reflection of the pressure front back toward flame arrestor


10


to illustrate the effectiveness of reflection suppressor


30


. It is understood, however, that in a pipeline design, reflected pressure wave fronts can be caused by a variety of discontinuities such as a bend in the pipeline, a coupling, a valve and many other such flow-path changes.




A combination of the invention can be used with a wide variety of pipes, for example with pipes having inside diameters ranging from about 2 to about 24 inches. Typically and preferably, the mid-region of the housing of a combination of the invention ranges from about 1.5 to about 4 times the average cross-sectional area of a pipeline with which the combination is associated although larger and smaller such ratios can be employed if desired.




Although the reflection wave suppression capability of a combination of this invention is very useful at relatively low pipe internal gas operating pressures, an inventive combination is particularly advantageous at relatively high pipe internal gas operating pressures, where elevated pressures of dangerous levels can be quickly attained when a flame front and associated pressure wave occur, and the necessity to dissipate or reduce such elevated pressures becomes necessary to avoid catastrophic consequences. So far as is known, no other passive device is known which has the pressure dissipating capacity of the present invention particularly at high operating pipe pressures.




EXAMPLES




A number of tests were conducted using a combination of a flame arrestor with a reflection suppressor in a configuration as illustrated in FIG.


4


.




The pipe diameter was 8 inches. The test protocol was as provided in 33 Code of Federal Regulations (CFR) Part 154-Appendix A—“Guidelines for Detonation Flame Arrestors” involving restricted outlet deflagration arrestor testing. The gas mixture was 7% ethylene plus air.




In each of the tests, a flame arrestor, including a crimped ribbon fill media design, was employed with the difference only being the use of the reflection suppressor in Tests 1-10. In these tests, a flame was generated at an ignition point located 20 feet from the inlet side of the flame arrestor. The results of the tests are depicted in Table I. In Table I, Po is the initial pressure, P2 is the maximum final explosion pressure and P2/Po is a calculated pressure ratio. All measured pressures were expressed in absolute psi values. As illustrated, Table I includes a total of seventeen (17) tests, ten (10) with the reflection suppressor of the present invention and seven (7) without. For each test, the pressure (P2) was measured at the inlet side of the flame arrestor.




As reflected in Table I (below), of the ten (10) tests of the flame arrestor including the reflection suppressor of the present invention, the flame arrestor passed. In contrast, as depicted in Tests 11-15, the flame arrestor without the reflection suppressor of the present invention failed in 3 out of 5 tests. In Tests 16 and 17, a different flame arrestor of the same design (as Tests 11-15) was employed in order to be certain that the flame arrestor of Tests 11-15 was not defective. As shown in Table I, Tests 16 and 17, the flame arrestor failed in each test.

















TABLE I













With/Without








Pressure at





Pass/




Reflection




Ignition






Test No.




arrestor (P2)




P2/Po




Fail




Suppressor




Point***




























 1




35




2




Pass




with




20






 2




51.42




3.49




Pass




with




20






 3




19.19




1.3




Pass




with




20






 4




28.7




1.95




Pass




with




20






 5




16




1.23




Pass




with




20






 6




27.83




1.89




Pass




with




20






 7




39.9




2.7




Pass




with




20






 8




39.7




2.7




Pass




with




20






 9




44.82




3.04




Pass




with




20






10




37.65




2.56




Pass




with




20






11




5.27




0.35




Fail




without




20






12




7.178




0.488




Fail




without




20






13




25.78




1.75




Pass




without




20






14




7.178




0.488




Fail




without




20






15




43.8




2.97




Pass




without




20






 16*




22




1.5




Fail




without




20






 17**




24




1.6




Fail




without




20











*Same design different arrestor










**Same design different arrestor










***Location 20 forward of this entrance to the flame arrestor/reflection suppressor combination













Other and further embodiments, applications, features and the like will be apparent to those skilled in the art.



Claims
  • 1. A process for arresting a flame in a pipe having a localized restriction therein, said pipe carrying a flammable but deflagratable gas, said process comprising the steps of:(a) centrally positioning a reflection suppressor in one selected opposite end region of a detonation flame arrestor, said reflection suppressor having—side wall portions that extend between a base portion and an apex portion thereof, a length that is shorter than the distance between an orifice and a matrix of elements in a selected one of said opposite end portions, a cross-sectional area along said length between said base portion and said apex portion that generally declines with increasing distance from said base portion, and said base portion having a cross-sectional area that is less than the cross sectional area of said selected one opposite end region; and (b) connecting each of said orifices across said pipe so that said detonation flame arrestor is located at a situs in said pipe that is between said restriction therein and a region thereof where ignition of said flammable gas could occur; said flame arrestor being oriented so that said reflection suppressor therein has said base thereof facing in the pipe direction of said restriction, whereby, when ignition occurs, and an advancing flame front with an associated pressure wave occurs in said region and propagates through said pipe, said flame front is suppressed upon reaching and entering said flame arrestor, but said pressure wave passes through said flame arrestor and around said reflection suppressor and travels in said pipe to said restriction, and a reflection pressure wave is produced at said restriction which propagates back through said pipe to said detonation flame arrestor, strikes said reflection suppressor, and is attenuated thereby.
  • 2. The process of claim 1 wherein said detonation flame arrestor is of the type having—a longitudinally elongated housing having orifices defined at opposite ends thereof, a mid-region in said housing holding a matrix of elements which define small channels that extend longitudinally therethrough, and a pair of opposite end regions in said housing, each said end region being located between a different one of said orifices and said matrix of elements.
  • 3. The process of claim 2 wherein said mid-region has a larger diameter than said pipe.
  • 4. The process of claim 2 wherein said mid-region has a larger diameter than either of said orifices.
  • 5. The process of claim 4 wherein each of said opposite end regions tapers from its associated orifice to said mid-region.
  • 6. The process of claim 1 wherein said reflection suppressor is conically shaped.
  • 7. The process of claim 1 wherein said reflection suppressor has smooth, continuously extending sides.
  • 8. The process of claim 1 wherein said detonation flame arrestor has a mid-region that has a larger diameter than said pipe.
  • 9. The process of claim 1 wherein a reflection suppressor is centrally positioned in each opposite end region of a detonation flame arrestor, thereby to enable achievement of flame arrestment from either direction along a so connected pipe.
PRIORITY CLAIM

This application claims priority of U.S. Provisional Patent Application Serial No. 60/279,213, filed Mar. 27, 2001.

US Referenced Citations (5)
Number Name Date Kind
1681698 Brooks Aug 1928 A
2420599 Jurs May 1947 A
3748111 Klose Jul 1973 A
4909730 Roussakis et al. Mar 1990 A
5415233 Roussakis et al. May 1995 A
Foreign Referenced Citations (1)
Number Date Country
1057187 Jun 1979 CA
Non-Patent Literature Citations (1)
Entry
Perry's Chemical Engineers' Handbook, 7th Ed. 1997 pp. 26-38 to 26-43.
Provisional Applications (1)
Number Date Country
60/279213 Mar 2001 US