The invention relates to a flame burner having a nozzle disposed in a head, wherein in addition to annularly disposed gas-supply passages the nozzle has a central gas-supply duct.
The invention further relates to a method for flame scarfing of a metallic surface by means of the stated flame burner.
In the known flame burners combustion gas is guided to a nozzle head via annularly disposed gas-supply passages and is mixed with the oxygen transported via the central gas supply, and forms the combustion flame. Flame burners are utilized for various application purposes. For example, during the cooling of slabs produced by means of casting, undesired tears often occur, which have to be removed by means of a surface treatment. The same is also true for ridges and burrs, which occur, for example, during cutting in the processing of the slabs. The flame burners are guided along the affected surfaces for removing the surface blemishes, which may be accomplished with a manually manipulated burner or an automatically guided burner where a flame burner is attached to a controllable robot arm.
The processing costs for surface treatment are substantially determined by the processing time and the gas consumption, an adequate surface quality being absolutely required.
The object of the present invention is to provide a flame burner and a method for flame scarfing, in which an optimum surface quality of the workpiece to be treated is attainable with an oxygen consumption and processing time that is as low as possible.
In order to attain this object, the invention provides the flame burner described in claim 1 and the method described in claim 9.
Further improvements of the invention are described in the sub-claims.
The flame burner according to the invention has a nozzle comprising multiple gas-supply passages annularly disposed around a central gas-supply duct. The central gas-supply duct has at least three successive regions, as viewed in the flow direction, that is a first region tapering in to a minimal inner diameter, a second region whose inner surface flares out to a larger diameter than the minimal inner diameter, and a third region of uniform cross-sectional profile, preferably a uniform cylindrical inner diameter. The important factor is the cross-sectional constriction of the inner diameter up to a critical measurement of the diameter, which is followed by flaring. As a stabilizing ring, the last third region having a uniform cross-sectional profile serves to maintain the produced gas flow profile. A pulsating gas flow can be created by means of this design, which has the speed of sound, or supersonic speed, at the nozzle outlet mouth. The ratio of the oxygen pressure upstream of the nozzle and the ambient pressure on one hand, and the ratio of the oxygen pressure at the nozzle outlet surface and the ambient pressure, determine the gas profile. If the pressure at the nozzle outlet surface is below ambient pressure, the exiting gas flow has a narrowing shape in the initial section downstream of the nozzle, whereas with reversed conditions the shape expands in a barrel-shaped manner. If the oxygen pressure upstream of the nozzle and at the exit from the nozzle is equal to the ambient pressure, a straight line envelope of the initial section of the exiting gas is created.
The pulse frequency achievable using the nozzle and the amplitude individually depend on the initial pressure, the degree of tapering, and the degree of expansion. The non-isobaric turbulent supersonic flow created is characterized by strong spatial inhomogeneities of the velocity and pressure fields, which lead to the creation of volatile state changes, that is the pulse-like shocks and layer displacements at high velocity gradients. This flow velocity and pressure pulsation leads to a pulsation spectrum. Starting with a certain value, the gas velocity locally reaches supersonic speed in the described nozzle at the smallest critical nozzle cross-section, upon exceeding of which pulse-like compressed and thinned regions occur as pulses. These types of pulse waves can form a barrel-shaped flow, the strung compressions of which depend on the ratio of the oxygen pressure in the nozzle to the ambient pressure, and on the so-called critical velocity ratio, which is the ratio of the gas velocity at the nozzle outlet surface to the speed of sound. In principle, the flame burner has a nozzle configured in the type of a Laval nozzle, which together with the third region as the “stabilizing ring” forms an oscillating resonator.
The present invention generally provides within its scope that the first and the second regions are disposed in succession, however, short partial parts may be contained in them where the minimal diameter does not change. The flow velocity is maintained in such a short partial part.
In the present invention the central gas-supply duct also ends slightly upstream of the level defined by the openings, in which the annularly disposed gas-supply passages end. Solutions within the scope of the present inventions are also incorporated, whereby multiple rings of coaxially extending gas-supply passages that end at different levels downstream of the outlet opening of the central pipe in a graduated manner.
For technical flow reasons, the length of the first region is preferably smaller than the length of the second region, and is preferably also smaller than the length of the third region. The third region may, depending on the desired pulse characteristics, be selected longer, of the same length, or even shorter than the total length of the first and second regions.
According to a further improvement of the invention the diameter of the third region is smaller than the maximum outlet diameter of the central gas-supply duct at an upstream end of the first region. In order to optimize the effect, the diameter and the lengths of these three regions are coordinated such that gas exits at the nozzle outlet mouth in the form of pulses, preferably having a pulse frequency of between 100 and 650 Hz. Preferably, a maximum gas flow velocity of 2 Ma should be present in the central gas-supply duct at predetermined values of the oxygen and combustion gas pressure.
The nozzle may have a round or concentric cross-section, wherein particularly the central gas-supply duct has an annular cross-section in order to elongate the at least one ring, or possibly two rings, on which additional gas-supply ducts are positioned for the combustion gas.
As generally known according to prior art, the nozzle head is preferably cooled, water in particular being suited as the coolant.
The method according to the invention for flame burning of a metallic surface, such as a slab, is characterized in that oxygen guided via a central nozzle of a flame burner is incited to oscillate such that a pulsating oxygen flow exits the nozzle outlet mouth at the speed of sound, or at supersonic speed. The pulsating oxygen flow consists of longitudinal waves, i.e. a periodic succession of pressure increases and decreases of the gaseous oxygen. Not only is the central oxygen flow made to pulsate by means of this measure, but the peripherally inflowing combustion gas is also made to oscillate. The result is a substantial savings of oxygen consumption and a smooth surface of the metal piece to be processed via flame scarfing. Preferably, the process parameters, particularly the oxygen application pressure by means of which the oxygen flow is entered into the nozzle, are selected as a function of the nozzle shape such that the oxygen flow is distributed into a central flow and peripheral flows. The ratio of the oxygen pressure upstream of the central nozzle to the ambient pressure N=po/pu is preferably between 1 and 200, whereas the ratio of the oxygen pressure pa at the nozzle outlet surface to the ambient pressure pu is between 0.1 to 100.
Further embodiment variants and details of the invention are illustrated in the drawings and described below. Therein:
a to d are cross-sections through the central gas-supply duct having different gas flow shapes.
The core of the flame burner according to
The central gas-supply duct 12 is subdivided into sections L1, L2, L4, L3, and LK, or L1, Lc, and LK, along its length L, the latter regions being of particular meaning. The gas-inlet region L1 corresponds to the inlet region used in nozzles known from the prior art. However, a Laval nozzle-like shape of the central first supply passage 12, extending along the length Lc, is novel. This nozzle shape is formed by a region in which the nozzle inner diameter tapers up to a minimum critical diameter dmin that is maintained along a length L4 (also see
The flame burner according to the invention may be configured either as a manual or an automatic device. The pressures utilized, by means of which the gaseous oxygen is pulled into the central opening, are between 5 and 20 bars. The natural gas utilized as the combustion gas is substantially comprised of methane, and is at a pressure of 1 to 5 bars. Methane is added via the nozzle inlets 111 and mixes with the oxygen entering via the nozzle inlets 112 such that an oxygen/methane mixture flows peripherally to the nozzle outlet mouth via the annular opening 11. The velocity aspired in the central line 112 at the stated application pressure of the oxygen flow should be within a range of supersonic speed, and should be up to 2 Mach at the predetermined values of the oxygen and combustion gas pressure.
The following results have been achieved in tests using flame burners:
Initially, a first flame burner having a common nozzle according to the prior art for flaming a slab was used. Oxygen was introduced via the central nozzle at a pressure of approximately 12×105 Pa, and combustion gas was introduced via the peripherally disposed nozzles at a pressure of 2×105 Pa.
Subsequently, a flame burner having a nozzle according to the invention was used. Due to the resultant pressure pulses, blowback was so great that manual flaming at an oxygen pressure of 12×105 Pa could not be performed. For this reason, the oxygen pressure was reduced to 8×105 Pa, whereas the combustion gas pressure remained unchanged.
Surprisingly, oxygen was in the first case during flaming work at amounts between 370 to 290 m3. For the same flaming work only 90 to 100 m3 was required by the nozzle according to the invention, which illustrates that an enormous gaseous oxygen savings can be achieved.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 034 014.0 | Jul 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE07/00901 | 5/18/2007 | WO | 00 | 12/17/2008 |