Flame detectors are in use in many environments, typically hazardous locations such as refineries, chemical plants, compressor stations, and fuel loading facilities. Flame detectors typically have an optical field of view, within which the detector has sensitivity to detect flames within range of the detector. The individual flame detectors are typically connected together to form a network of flame detectors configured to cover a larger area, as part of a detection system which in turn may be part of a fire suppression and/or alarm system. Flame detector coverage is critical because it determines the effectiveness of the system to fight a fire and to warn of the danger.
When a flame detector is unable to see an incipient fire, either because its optical field of view is blocked by an obstruction bigger than the fire, or because the incipient fire is at the periphery of the detector's optical field of view (where the detector's sensitivity is typically at its lowest), the flame detection system will not react with the planned fire mitigation action. In this case, the flame detection system is deemed less effective due to poor detection coverage.
The flame detection system may eventually react at a later stage when the incipient fire has grown in size and falls more into the detector optical field of view. But such a delay in response is typically undesired because the consequence of a larger fire is usually much greater. It is usually highly desired, that any fire breakout be detected as early as possible so that fire mitigation action can be triggered at an earlier stage, so that the fire is extinguished before it has the time to grow larger in size.
An exemplary embodiment of a flame detector coverage verification system includes an optical source for generating a light beam, and a light-path control unit coupled to the optical source and configured to direct the beam in a direction generally co-aligned with a center line of the flame detector and through a range of movement about the direction to visually demarcate an area that falls within the flame detector's field of view. A frame base system temporarily mounts the optical source and the control unit to an installed flame detector. In one embodiment, the control unit is configured to move the optical light source in a pan and tilt direction to achieve the desired range of movement of the light beam. In another embodiment, the control unit includes a mirror for reflecting the light beam and a mirror actuator mechanism configured to position the mirror to reflect the light beam through the range of movement.
Features and advantages of the disclosure will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawing wherein:
In the following detailed description and in the several figures of the drawing, like elements are identified with like reference numerals. The figures may not be to scale, and relative feature sizes may be exaggerated for illustrative purposes.
In accordance with aspects of the invention, exemplary embodiments of a flame detector coverage verification device are disclosed. The coverage verification device may be a simple mechanical device for attachment onto installed flame detectors. The attachment of an exemplary device is temporary; the device is attached only during detector orientation and aligning. The device will typically be removed after the detector is fixed into correct orientation and alignment. Preferably the coverage verification device is configured to fit multiple models/sizes of flame detectors. Embodiments of the device are lightweight, and easily attachable to a flame detector body, preferably by clamping-on without the need for fixation screws. If fixation screws are used to lock the device into a position, the tightening of these screws preferably does not require any hand tools such as screw-drivers or Allen-keys.
Embodiments of the device include a laser pointer and a laser light-path control unit. Referring to
In this exemplary embodiment, the control unit 34 is a device holding the laser and moving the laser to achieve the beam sweep. In another embodiment described below, the control unit includes a movable mirror to reflect the laser beam to achieve the desired beam coverage.
As shown in
In an exemplary embodiment, the control unit is configured to lock the laser beam direction at the respective positions at +α° and −α°. The laser beam directions at these angles, demarcate the leftmost and rightmost boundaries of the conical field of view at its widest angle away from the detector center-line.
Likewise, from the position of alignment with the detector center line, which center line may have a declination angle θ° to the ground plane, the light-path control unit is configured to sweep the laser beam in a tilt direction to point above (+) the detector center-line, i.e. in elevation, or to point below (−) the detector center-line, rotating around an axis that is perpendicular to the detector center-line and parallel with the ground plane, until the angle between the beam direction and the detector center-line reaches a maximum angle, β°.
In an exemplary embodiment, +β1° is the maximum angle above the detector center-line (laser at position E on
In an exemplary embodiment, the laser light-path control unit 34 is configured to lock the laser beam direction at the respective +β1° and −β2° beam directions. The laser beam directions at these angles demarcate the uppermost and lowermost boundaries of the conical field of view at its widest angle away from the detector center-line.
In an exemplary embodiment, the device may have angle markings on it so that it is possible for the field commissioning engineer to easily note the angles +α°, −α°, +β1° and −β2° with the flame detector locked into position.
In an exemplary embodiment, the power output of the laser pointer is preferably sufficient to illuminate a point on a physical surface at least 50 feet (15.2 meters) away from the detector. The spots marked by the laser point are preferably clearly visible under bright sun-light. Green and red colored lasers may be utilized under various light conditions.
In accordance with a further aspect, in an exemplary embodiment, the laser is preferably intrinsically safe and suitable for use in a classified Class 1 Division 2 or Zone 2 hazardous environment. This will allow the device to be used in an operating industrial environment. Exemplary laser pointers which comply with the intrinsically safe classification are commercially available.
In accordance with a further aspect, the device 30 includes a compass to indicate the angular orientation of the device relative to magnetic North, and a declination indicator to determine the angle of declination θ° referenced to the ground plane. The device may have angle markings on it so that it is possible for the field commissioning engineer to easily adjust and lock the detector tilt angle to a desired angle of declination θ°.
At a given detector mounting height (Y height in
The angle of declination θ° can also be applied into flame mapping software to determine the detection coverage area at various tilt angles and detector mounting heights.
Another exemplary embodiment of a flame detector coverage verification device 50 is illustrated in
The frame base system 60, shown in further detail in
The light-path control unit 70 is secured to the front cover 62A of the frame base system 60 by threaded fasteners, in this exemplary embodiment.
With the laser module secured in alignment to the main beam 74A, the laser module when activated will direct its light beam along the axis 82 (
A first angle gear 74K is also fitted onto the pin 74I. A second angle gear 74L is mounted on a pin 74R fitted through a bore in the top plate 74M, so that its teeth engage the first angle gear 74L. A vertical rotate knob 74P is fitted onto the pin 74R, and may be rotated by the device user to rotate the mirror 72 about the axis of pin 74I through a range of movement.
A horizontal rotate plate 74N is affixed to the top plate 74M, and may be turned manually by the device operator to rotate the sleeve within the support base 74C, in turn rotating the mirror horizontally through a range of motion.
The horizontal rotate plate 74N has formed thereon respective inner and outer scales 74N2 and 74N1 (
As used herein, e.g., with respect to the pins 74I and 74R, the terms “horizontal” and “vertical” are intended as a reference with the beam 74A mounted vertically. In an exemplary use, the device and beam will often be oriented at an angle θ° with respect to the ground plane, so the vertical pin is actually oriented away from the vertical.
The vertical position of the mirror 72 can be adjusted to accommodate different flame detector configurations or sizes. The vertical position of the rotate sleeve 74F within the support block 74C can be adjusted to one of several preset positions, in this exemplary embodiment. A thumbscrew 74E is threaded into a threaded bore in the side of support block 74C and protrudes into the opening to engage into one of a set of grooves formed in the outer periphery of the rotate sleeve. In
Referring now to
The exemplary device 50 further includes a compass 90 (
Although the foregoing has been a description and illustration of specific embodiments of the subject matter, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6150943 | Lehman et al. | Nov 2000 | A |
20100073926 | Kudoh | Mar 2010 | A1 |
20150371514 | Bonisch et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
102004035027 | Feb 2006 | DE |
2005077279 | Mar 2005 | JP |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International Application PCT/US2017/013432, dated Apr. 11, 2017. |
Instructions, “Cone of Vision Tester for X-series Flame Detectors,” Q1201C Laser Holder and Laser, Det-Tronics, with a copyright notice of 2006, by Detector Electronics Corporation, four pages. |
Assembly Diagram, Spectrex Inc., “IR3 Flame Detector Assy With Laser Aimer,” Detector 40/401-XXXX, Laser Aimer P/N: 777166, with dates Jun. 2, 2006 and Dec. 14, 2010 (one page). |
Diagram, Spectrex Inc., “Laser Aimer Assy,” OL-177166, dated Jun. 2, 2009. |
Number | Date | Country | |
---|---|---|---|
20170205278 A1 | Jul 2017 | US |