The present disclosure relates to a flame hole structure of a combustion apparatus. More particularly, the present disclosure relates to a flame hole structure of a combustion apparatus including a plurality of flame holes for forming a flame.
A gas combustion apparatus refers to an apparatus for burning a supplied fuel gas to generate heat. When the fuel gas is burned in the combustion apparatus, NOx (nitrogen oxide) is generated. NOx not only causes acid rain, but also irritates eyes and a respiratory organ and kills plants. Therefore, NOx is regulated as a main air pollutant. When a fuel gas with a relatively low fuel ratio (hereinafter, referred to as a lean gas) is used in the combustion apparatus, emission of NOx may be reduced. However, when the lean gas is used, the burning velocity is reduced so that the combustion stability is weakened, and emission of carbon monoxide (CO) is increased.
Accordingly, a lean-rich burner for reducing emission of NOx and enhancing combustion stability has been developed. The lean-rich burner refers to a burner configured such that a rich flame is located in an appropriate position around a lean flame. The rich flame refers to a flame generated when a fuel gas with a relatively high fuel ratio (hereinafter, referred to as a rich gas) is burned. In the lean-rich burner, a tertiary flame is formed while unburned fuel of the rich flame reacts with excess air of the lean flame, and therefore the combustion stability of the lean flame may be enhanced. This effect is called a flame stabilizing effect.
However, due to recent strict NOx regulation standards, it is difficult to satisfy the NOx regulation standards even through the lean-rich burner. When the fuel ratio of the rich gas in the lean-rich burner is decreased, emission of NOx may be reduced. However, in this case, the combustion stability of the rich flame is weakened.
Accordingly, to decrease the fuel ratio of the rich gas in the lean-rich burner to reduce emission of NOx and achieve a strong flame stabilizing effect, a combustion apparatus having a modified structure of a flame hole through which a lean gas and a rich gas are released has been developed in recent years.
However, according to the flame hole structures illustrated in
The present disclosure has been made to solve the above-mentioned problems. An aspect of the present disclosure provides a flame hole structure of a combustion apparatus for allowing a flame to be uniformly generated in substantially all regions of a flame hole, thereby reducing emission of NOx and enhancing a flame stabilizing effect.
In an embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part having at least one lean flame hole extending along a lengthwise direction that is a direction perpendicular to a release direction of a lean gas, as a flame hole to release the lean gas and a rich flame hole part having a pair of rich flame holes provided on opposite sides of the lean flame hole part with respect to a width direction that is a direction perpendicular to the release direction and the lengthwise direction, the pair of rich flame holes extending along a direction parallel to the lengthwise direction, as flame holes to release a rich gas. A reference region refers to a region defined at an upper end of each rich flame hole by first and second lines that are any virtual lines across the rich flame hole and a pair of rich flame hole walls that are spaced apart from each other along the width direction and that form a portion of the rich flame hole between the first and second lines, and the rich flame hole includes, between any reference regions having the same size, a region designed such that when a flame by the rich gas is generated, the sum of amounts of heat transferred to a pair of rich flame hole walls that form each reference region is substantially the same.
In another embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part having at least one lean flame hole extending along a lengthwise direction that is a direction perpendicular to a release direction of a lean gas, as a flame hole to release the lean gas and a rich flame hole part having a pair of rich flame holes provided on opposite sides of the lean flame hole part with respect to a width direction that is a direction perpendicular to the release direction and the lengthwise direction, the pair of rich flame holes extending along a direction parallel to the lengthwise direction, as flame holes to release a rich gas. The lean flame hole includes at least one bent lean flame hole portion bent toward the center of the lean flame hole part along the width direction and horizontal lean flame hole portions provided on opposite sides of the bent lean flame hole portion with respect to the direction parallel to the lengthwise direction and extending along the direction parallel to the lengthwise direction. The rich flame hole includes at least one protruding rich flame hole portion protruding toward the bent lean flame hole portion to correspond to the bent lean flame hole portion and horizontal rich flame hole portions provided on opposite sides of the protruding rich flame hole portion with respect to the direction parallel to the lengthwise direction and extending along the direction parallel to the lengthwise direction to correspond to the horizontal lean flame hole portions. In a region extending from at least any one horizontal rich flame hole portion to another horizontal rich flame hole portion through the adjacent protruding rich flame hole portion, the rich flame hole part is provided to be spaced apart from the lean flame hole part by substantially the same interval.
In another embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part extending along a lengthwise direction and having at least one lean flame hole that releases a lean gas and a rich flame hole part having a pair of rich flame holes provided on opposite sides of the lean flame hole part with respect to a width direction associated with the lengthwise direction, the pair of rich flame holes extending along a direction parallel to the lengthwise direction to release a rich gas. A reference region refers to a region defined at an upper end of each rich flame hole by first and second lines that are any virtual lines across the rich flame hole and a pair of rich flame hole walls that are spaced apart from each other along the width direction and that form a portion of the rich flame hole between the first and second lines, and between any reference regions having the same size, the rich flame hole is designed such that when a flame by the rich gas is generated, the sum of amounts of heat transferred to physical boundaries that define each reference region is substantially the same.
In another embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part extending along a lengthwise direction and having at least one lean flame hole that releases a lean gas and a rich flame hole part having a pair of rich flame holes provided on opposite sides of the lean flame hole part with respect to a width direction associated with the lengthwise direction, the pair of rich flame holes extending along a direction parallel to the lengthwise direction to release a rich gas. A reference region refers to a region defined at an upper end of each rich flame hole by first and second lines that are any virtual lines across the rich flame hole and a pair of rich flame hole walls that are spaced apart from each other along the width direction and that form a portion of the rich flame hole between the first and second lines, and between any reference regions having the same size, the rich flame hole is designed such that the sum of lengths of upper ends of a pair of rich flame hole walls that form each reference region is substantially the same.
In another embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part extending along a lengthwise direction and having at least one lean flame hole that releases a lean gas and a rich flame hole part having a pair of rich flame holes provided on opposite sides of the lean flame hole part with respect to a width direction associated with the lengthwise direction, the pair of rich flame holes extending along a direction parallel to the lengthwise direction to release a rich gas. A reference region refers to a region defined at an upper end of each rich flame hole by first and second lines that are any virtual lines across the rich flame hole and a pair of rich flame hole walls that are spaced apart from each other along the width direction and that form a portion of the rich flame hole between the first and second lines, and between any reference regions having the same size, the rich flame hole is designed such that when a flame by the rich gas is generated, a burning velocity of the rich gas in each reference region is substantially the same.
In another embodiment, a flame hole structure of a combustion apparatus having a plurality of flame holes for forming a flame includes a lean flame hole part having a lean flame hole formed in a spacing space between a plurality of lean plates as a flame hole to release a lean gas, the plurality of lean plates being disposed to be spaced apart from each other while facing each other along a width direction that is a direction that is perpendicular to a release direction of the lean gas and is also perpendicular to a lengthwise direction that is a direction perpendicular to the release direction and a rich flame hole part having rich flame holes provided on opposite sides of the lean flame hole part with respect to the width direction as flame holes to release a rich gas, each rich flame hole being formed in a spacing space between first and second rich plates disposed to be spaced apart from each other at a predetermined interval while facing each other along the width direction. The plurality of lean plates include at least one bent lean plate portion bent toward the center of the lean flame hole part along the width direction and horizontal lean plate portions extending from opposite sides of the bent lean plate portion with respect to a direction parallel to the lengthwise direction along the direction parallel to the lengthwise direction. The first and second rich plates include at least one first protruding rich plate portion and at least one second protruding rich plate portion protruding toward the bent lean plate portion to correspond to the bent lean plate portion and first and second horizontal rich plate portions extending from opposite sides of the first and second protruding rich plate portions with respect to the direction parallel to the lengthwise direction along the direction parallel to the lengthwise direction to correspond to the horizontal lean plate portions. A length of a vertical line drawn from any point of at least one first horizontal rich plate portion toward the second horizontal rich plate portion is designed to be substantially the same as a length of a vertical line drawn from any point of the adjacent first protruding rich plate portion toward the second protruding rich plate portion.
When the combustion apparatus including the flame hole structure according to the present disclosure is used, a stable flame may be maintained in substantially all regions of each flame hole, and thus a uniform flame stabilizing effect may be achieved, with a reduction in NOx.
Hereinafter, some embodiments of the present disclosure will be described in detail with reference to the exemplary drawings. In adding the reference numerals to the components of each drawing, it should be noted that the identical or equivalent component is designated by the identical numeral even when they are displayed on other drawings. Further, in describing the embodiment of the present disclosure, a detailed description of well-known features or functions will be ruled out in order not to unnecessarily obscure the gist of the present disclosure.
Through repeated experiments and studies for solving the above-mentioned problems, the inventors of the present disclosure have found the cause of the lifting phenomenon in the regions A and B of
Accordingly, in the case of the region A in
Furthermore, even in the case of the region B in
Accordingly, to solve the problems, the inventors of the present disclosure have derived the following flame hole structures of the combustion apparatus.
The flame hole structure according to embodiment 1 of the present disclosure includes a lean flame hole part 10 and a rich flame hole part 20.
The lean flame hole part 10 includes at least one lean flame hole 11 for releasing a lean gas. The lean flame hole 11 extends along a lengthwise direction x that is a direction perpendicular to a release direction z of the lean gas.
The rich flame hole part 20 includes a pair of rich flame holes 21 for releasing a rich gas. The rich flame holes 21 extend along a direction parallel to the lengthwise direction x. At this time, the pair of rich flame holes 21 are provided on opposite sides of the lean flame hole part 10 with respect to a width direction y that is a direction perpendicular to the release direction z and the lengthwise direction x.
The lean gas released from the lean flame hole 11 is burned to form a lean flame, and the rich gas released from the rich flame holes 21 is burned to form a rich flame. Further, a flame stabilizing effect may occur while the lean flame and the rich flame exchange heat with each other.
At this time, the rich flame holes 21 are designed such that the flame stabilizing effect between the lean flame and the rich flame effectively occurs.
For example, each of the rich flame holes 21 includes, between any reference regions having the same size, a region designed such that when the rich flame by the rich gas is generated in the rich flame hole 21, the sum of the amounts of heat transferred to a pair of rich flame hole walls that form each reference region is substantially the same. Alternatively, between any reference regions having the same size, the rich flame hole 21 may be designed such that when a flame by the rich gas is generated, the burning velocity of the rich gas in each reference region is substantially the same.
More specific description will be given with reference to
As illustrated in
When the sizes of the reference region S and the reference region S′ are the same, the rich flame hole 21 includes, between the reference regions, a region designed such that the sum of the amounts of heat transferred to the pair of rich flame hole walls b or b′, that is, the burning velocity of the rich gas in each reference region is substantially the same. In other words, when the sizes of the reference region S and the reference region S′ are the same, the rich flame hole 21 includes a region designed such that when a flame by the rich gas is generated, the sum Q of the amounts of heat transferred to the pair of rich flame hole walls b in the reference region S and the sum Q′ of the amounts of heat transferred to the pair of rich flame hole walls b′ in the reference region S′ are substantially the same.
In the reference regions S and S′ having the same size, the same amount of rich gas will be released at substantially the same release velocity, and substantially the same amount of heat will be generated when the rich gas is burned. Further, when the amounts of heat transferred from the reference regions S and S′ to the flame hole walls b and b′ are substantially the same, the burning velocities of the rich gas in the reference regions S and S′ will also be substantially the same, and therefore limit conditions in which lifting occurs in the reference regions S and S′ will be the same. Accordingly, when the rich gas is supplied to the reference regions S and S′ in an optimal condition capable of reducing emission of NOx, rich flames having substantially the same property will be generated in the reference regions S and S′.
Thus, unlike in the regions A and B of
Meanwhile, “substantially the same” does not mean “numerically exactly the same”, but means the sameness to a degree that substantially the same action is caused in this technical field even though there is a slight numerical difference.
At this time, there may be various means for adjusting the amounts of heat transferred to the flame hole walls that form each reference region.
For example, when the material and thickness of a pair of rich flame hole walls are constant, the rich flame hole 21 may be designed, between any reference regions having the same size, such that the sum of the lengths of upper ends of the pair of rich flame hole walls that form each reference region is substantially the same. That is, in
When the difference between the sum of the lengths of the upper ends of the pair of flame hole walls b that form the reference region S and the sum of the lengths of the upper ends of the pair of flame hole walls b′ that form the reference region S′ is within an error range of about 15%, the sum of the lengths of the upper ends of the pair of rich flame hole walls that form each reference region may be considered to be substantially the same. The lengths of rich flame hole walls actually manufactured may have a tolerance with design lengths, and even though there is a difference in the sum of the lengths of the upper ends of the pair of rich flame hole walls that form each reference region, the sum of the lengths of the upper ends of the pair of rich flame hole walls that form each reference region may be considered to be substantially the same within the tolerance range that occurs during manufacturing.
Accordingly, it may be considered that in each reference region, the limit condition in which lifting occurs is substantially the same and an equivalent flame stabilizing effect appears. Meanwhile, the numerical value of 15% does not have a special meaning and is an example for representing a range of a tolerance level that occurs during manufacturing.
In another example, even though the distances between the pair of flame hole walls that form the reference regions differ from each other or there is a difference in other properties of the flame hole walls, the thickness and material of the flame hole walls may be adjusted such that the amounts of heat transferred to the flame hole walls are the same.
In another example, when a physical object, such as a binding plate, which is capable of receiving heat exists around a rich flame hole as illustrated in
Referring again to
Furthermore, the rich flame hole 21 may include at least one protruding rich flame hole portion 213 and horizontal rich flame hole portions 211. The protruding rich flame hole portion 213 refers to a portion that protrudes toward the bent lean flame hole portion 113 to correspond to the bent lean flame hole portion 113. Further, the horizontal rich flame hole portions 211 refer to portions that are provided on opposite sides of the protruding rich flame hole portion 213 with respect to the direction parallel to the lengthwise direction x and that extend along the direction parallel to the lengthwise direction x to correspond to the horizontal lean flame hole portions 111.
As described above, the rich flame hole 21 includes the protruding rich flame hole portion 213 corresponding to the bent lean flame hole portion 113, thereby allowing the rich flame to be formed in a form surrounding the periphery of the lean flame, and an effect of increasing the area in which a flame stabilizing effect occurs may occur.
At this time, the rich flame hole 21 may include a communication region that is a region formed to extend from any one horizontal rich flame hole portion 211 to another horizontal rich flame hole portion 211 through the adjacent protruding rich flame hole portion 213. At this time, in the entire communication region, the rich flame hole 21 may be designed, between the reference regions having the same size, such that the sum of the amounts of heat transferred to the pair of rich flame hole walls that form each reference region is substantially the same.
As illustrated in
Meanwhile, the flame hole structure according to embodiment 1 of the present disclosure may further include a partitioning part 30. The partitioning part 30 refers to a part that is provided between the lean flame hole part 10 and the rich flame hole part 20 and through which the lean gas and the rich gas are not released. The partitioning part 30 may be designed such that the lean flame and the rich flame are formed with an appropriate interval therebetween and a flame stabilizing effect most effectively appears.
At this time, referring to
The plurality of lean/rich plates 13 and 23 may be disposed to be spaced apart from each other at a predetermined interval while facing each other along the width direction y. Further, the lean/rich flame holes 11 and 21 may be formed in spacing spaces between the lean/rich plates 13 and 23. Furthermore, the partitioning part 30 may be formed between a first lean plate 13a located at the outermost position with respect to the width direction y among the plurality of lean plates 13 and a first rich plate 23a located at the innermost position with respect to the width direction y among the plurality of rich plates 23.
At this time, the plurality of lean plates 13 may be bent at different angles to form the bent lean flame hole portions 113. Further, the plurality of rich plates 23 may also form the protruding rich flame hole portions 213.
At this time, the first lean plate 13a may include at least one first bent lean plate portion 133a and first horizontal lean plate portions 131a provided on opposite sides of the first bent lean plate portion 133a. The first bent lean plate portion 133a refers to a portion that is bent toward the center of the lean flame hole part 10 along the width direction y, and the first horizontal lean plate portions 131a refer to portions that extend along the direction parallel to the lengthwise direction x from the opposite sides of the first bent lean plate portion 133a with respect to the direction parallel to the lengthwise direction x.
Furthermore, the first rich plate 23a may include a first protruding rich plate portion 233a corresponding to the first bent lean plate portion 133a and first horizontal rich plate portions 231a corresponding to the first horizontal lean plate portions 131a. The first protruding rich plate portion 233a protrudes toward the first bent lean plate portion 133a, and the first horizontal rich plate portions 231a extend from opposite sides of the first protruding rich plate portion 233a along the direction parallel to the lengthwise direction x. Further, the second rich plate 23b may include a second protruding rich plate portion 233b and first horizontal rich plate portions 231b.
At this time, as illustrated in
That is, the rich flame hole part 20 may be provided to be spaced apart from the lean flame hole part 10 at substantially the same interval in a region extending from at least one horizontal rich flame hole portion 211 to another horizontal rich flame hole portion 211 through the adjacent protruding rich flame hole portion 213 (refer to
At this time, the same interval does not mean numerically exact sameness. For example, even though the rich flame hole part 20 and the lean flame hole part 10 are designed to be spaced apart from each other by a distance L, when the actual interval is within an error range of about ±30% of the distance L, the rich flame hole part 20 and the lean flame hole part 10 may be considered to be spaced apart from each other by substantially the same interval.
Because the distance between the rich flame hole part and the lean flame hole part in an actual burner structure is very small at the level of 1 mm unit, considering a tolerance generated during manufacturing, it may be considered that the limit condition in which lifting occurs is substantially the same within the error range of about ±30% and an equivalent flame stabilizing effect appears.
For example, when the distance between the actual rich flame hole part and the actual lean flame hole part is within a range of about 0.9 mm to about 1.35 mm, the distance may be considered to be substantially the same. At this time, ±30% or 0.9 mm to 0.35 mm does not have a special meaning as a numerical value itself and is only disclosed as an example for representing a range of substantially the same level, when a manufacturing tolerance is considered.
Accordingly, the interval between the lean flame and the rich flame generated from the bent lean flame hole portion 113 and the protruding rich flame hole portion 213 may be designed to be substantially the same as the interval between the lean flame and the rich flame generated from the horizontal lean flame hole portions 111 and the horizontal rich flame hole portions 211. In the entirety of the region designed in this way, an equivalent flame stabilizing effect may appear because the lean flame and the rich flame are separated from each other by the same interval in the entire region.
Accordingly, for all of the bent lean flame hole portion 113 and the protruding rich flame hole portion 213, the length of a vertical line drawn from any point of the first bent lean plate portion 133a toward the first protruding rich plate portion 233a corresponding thereto is more preferably designed to be substantially the same as the length of a vertical line drawn from any point of the adjacent first horizontal lean plate portion 131a toward the first horizontal rich plate portion 231a corresponding thereto. Here, when the lengths of the vertical lines or the intervals between the flames are substantially the same, numerically exact sameness is not required.
The flame hole structure according to embodiment 2 of the present disclosure includes a lean flame hole part 10 and a rich flame hole part 20, like the flame hole structure according to embodiment 1. The lean flame hole part 10 includes lean flame holes 11 formed by a plurality of lean plates 13 and rich flame holes 21 formed by first and second rich plates 23a and 23b.
Furthermore, the plurality of lean plates 13 include a bent lean plate portion 133 and a horizontal lean plate portion 131, and the first and second rich plates 23a and 23b also include first and second protruding rich plate portions 233a and 233b corresponding to the bent lean plate portion 133 and first and second horizontal rich plate portions 231a and 231b corresponding to the horizontal lean plate portion 131.
However, the flame hole structure according to embodiment 2 differs from the flame hole structure according to embodiment 1 in terms of the design structure of the rich flame holes 21. More specifically, as illustrated in
When the rich flame holes 21 are designed in this way, it may be considered that in the region where the lengths of the vertical lines m1, m2, and m3 identically extend in
Further, between any reference region defined in the region extending in a straight line shape and any reference region defined in the bending region, the amounts of heat transferred to flame hole walls may not be substantially the same when the sizes of the reference regions are the same. However, when the rich flame holes 21 are designed as in embodiment 2 of the present disclosure, the difference between the amounts of heat may be insignificant, and a flame stabilizing effect may be considered to substantially identically occur in the entirety of the rich region 21 designed as in embodiment 2 of the present disclosure.
The flame hole structure according to embodiment 3 of the present disclosure may further include a binding member 40 in the flame hole structures according to embodiments 1 and 2. The binding member 40 refers to a member that passes through a rich flame hole part 20 and a lean flame hole part 10 along the width direction y and binds the lean flame hole part 10 and the rich flame hole part 20 together. As the binding member 40 is provided, lean flame holes 11 and rich flame holes 21 may be prevented from being changed in size (widened) when flames are generated in the lean flame holes 11 and the rich flame holes 21.
At this time, the binding member 40 may be provided at a position spaced apart downward from upper ends of the lean flame hole part 10 and the rich flame hole part 20 at a predetermined interval (refer to
At this time, the interval at which the binding member 40 is spaced apart from the upper ends is not specially limited, and the binding member 40 is preferably spaced to a position where the binding member 40 does not hinder generation of a flame and is capable of most effectively preventing the lean flame holes 11 and the rich flame holes 21 from being changed in size.
Furthermore, the type and the binding method of the binding member 40 are also not specially limited, and as illustrated in
Hereinabove, although the present disclosure has been described with reference to exemplary embodiments and the accompanying drawings, the present disclosure is not limited thereto, but may be variously modified and altered by those skilled in the art to which the present disclosure pertains without departing from the spirit and scope of the present disclosure claimed in the following claims. Therefore, the exemplary embodiments of the present disclosure are provided to explain the spirit and scope of the present disclosure, but not to limit them, so that the spirit and scope of the present disclosure is not limited by the embodiments. The scope of the present disclosure should be construed on the basis of the accompanying claims, and all the technical ideas within the scope equivalent to the claims should be included in the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0120538 | Sep 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/010852 | 9/14/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/059592 | 3/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5318438 | Sugahara et al. | Jun 1994 | A |
6746236 | Kuriyama | Jun 2004 | B2 |
6786717 | Shimazu | Sep 2004 | B2 |
9091436 | Homma | Jul 2015 | B2 |
9115888 | Wada et al. | Aug 2015 | B2 |
9228742 | Akiyama | Jan 2016 | B2 |
9927143 | Naitoh | Mar 2018 | B2 |
20030143507 | Kuriyama | Jul 2003 | A1 |
20030148241 | Shimazu et al. | Aug 2003 | A1 |
20080160467 | Shimazu et al. | Jul 2008 | A1 |
20110053105 | Kim | Mar 2011 | A1 |
20110297059 | Shimizu | Dec 2011 | A1 |
20120244482 | Homma | Sep 2012 | A1 |
20120308945 | Wada et al. | Dec 2012 | A1 |
20130149653 | Fukunishi | Jun 2013 | A1 |
20130171576 | Akiyama | Jul 2013 | A1 |
20130247844 | Cheng et al. | Sep 2013 | A1 |
20150184849 | Akagi | Jul 2015 | A1 |
20150253035 | Naitoh | Sep 2015 | A1 |
20150369478 | Akagi | Dec 2015 | A1 |
20180031230 | Naitoh | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
101233365 | Jul 2008 | CN |
101603687 | Dec 2009 | CN |
101910725 | Dec 2010 | CN |
102338383 | Feb 2012 | CN |
103185339 | Jul 2013 | CN |
103277812 | Sep 2013 | CN |
104033927 | Sep 2014 | CN |
07-332618 | Dec 1995 | JP |
09-042616 | Feb 1997 | JP |
2003-269705 | Sep 2003 | JP |
2003-269707 | Sep 2003 | JP |
2003-329220 | Nov 2003 | JP |
3671922 | Jul 2005 | JP |
2006-170594 | Jun 2006 | JP |
2008-185240 | Aug 2008 | JP |
2010-261615 | Nov 2010 | JP |
2011-127863 | Jun 2011 | JP |
2011-191037 | Sep 2011 | JP |
2012-127595 | Jul 2012 | JP |
2012-202585 | Oct 2012 | JP |
5300579 | Sep 2013 | JP |
2013210164 | Oct 2013 | JP |
2015-166660 | Sep 2015 | JP |
6174450 | Aug 2017 | JP |
10-2020-0002592 | Jan 2020 | KR |
2020-004829 | Jan 2020 | WO |
Entry |
---|
Office Action dated Mar. 28, 2023 in U.S. Appl. No. 17/255,936. |
Number | Date | Country | |
---|---|---|---|
20200278113 A1 | Sep 2020 | US |