The present invention relates to a flame simulator with a movable light beam.
Prior examples of flame simulators are disclosed in the following U.S. Pat. Nos.:
The flame simulators disclosed in some of the foregoing patents include a flame silhouette upon which a beam of light is projected. The illuminated portion of the flame silhouette (i.e., the beam spot) simulates a flame. The flame silhouette is forced to move by an actuator mechanism (e.g., electro-magnetic). This movement of the flame silhouette causes changes in position and shape of a light spot on the flame silhouette and simulates a flame flicker. However, the entire flame silhouette moves—not just the portion that is illuminated by the beam of light. The unlit portions of the flame silhouette, especially its edges, are noticeable when the ambient lighting of a room allows it to be seen. The movement of the unlit portions and edges make the flame silhouette even more noticeable and more distracting (and more artificial-looking) than would be the case if the flame silhouette remained stationary. A stationary flame silhouette is less noticeable and distracting than a moving one. A need therefore exists for a flame simulator that simulates dancing of a flame but does not require the flame silhouette to move.
Another example of a flame simulator in the aforementioned patents uses multiple light sources to illuminate different surfaces of a flame silhouette and simulate movement of the flame by independently varying the intensity of light provided be each source. This approach, however, cannot be implemented using a single light source and the flame simulation is not as realistic as when a single spot of light moves and changes shape.
A flame simulator comprises a light beam source, a flame screen, a light beam mover and a range limiter. The light beam source is adapted to project a movable beam of light. The flame screen is arranged with respect to the light beam source so that, when the light beam source projects the movable beam of light, at least a portion of the movable beam of light strikes the flame screen. The light beam mover is operatively associated with the light beam source and adapted to impart movement to at least part of the light beam source. The range limiter is operatively associated with the light beam source and adapted to limit movement of the light beam source and the movable beam of light so that the movable beam of light, when being projected, strikes at least a portion of the flame screen and causes illumination of the flame screen by the beam of light to resemble a flame.
The light beam mover and the range limiter can be configured so that movement of the light beam by the light beam mover causes changes in an angle of illumination and a position of illumination of the flame screen and/or so that the changes in angle and position of illumination result in changes to the shape of the illumination of the flame screen.
The light beam source can comprise a light source adapted to produce light and at least one light conditioner adapted to act on the light from the light source to produce the beam of light with a color, size and shape that mimics a flame when the beam strikes the flame screen. The light beam mover can be configured to move the light source while at least one light conditioner remains stationary, can be configured to move at least one light conditioner while the light source remains stationary, or can be configured to move the at least one light conditioner and the light source.
The shape of the flame screen and a range of angles of the beam with respect to the flame screen can be configured so that the illumination of the flame screen by the beam results in rounded, flame-shaped light projection on the flame screen.
The light beam mover and the range limiter can be configured so that movement of the beam in response to the light beam mover causes changes in the shape and position of illumination of the flame screen by the beam which mimic movement of a flame exposed to ambient air currents.
The light beam source can be adapted to produce a yellowish beam of light with a shape, intensity and color that result in a candle flame-mimicking illumination of the flame screen. The light beam source can be adapted to produce the beam of light with a correlated color temperature in a range between 1,800 Kelvin and 1,900 Kelvin, or with a correlated color temperature in a range between 1,650 Kelvin and 2,300 Kelvin.
The flame screen can be adapted to remain stationary when the light beam mover imparts movement to the at least part of the light beam source.
The flame simulator can further comprise a housing that resembles a candle. The flame screen can project upwardly from an upper surface of the housing. The light beam source can be located in the housing and no higher than the upper surface of the housing so that the light beam source is not visible when the housing is viewed from a location that is laterally separated from the housing.
The light beam mover can comprise a magnetic field generator adapted to produce a magnetic field that varies and causes at least part of the light beam source to move.
The light beam mover can comprise an air mover adapted to generate at least one air current that causes movement of at least part of the light beam source.
The light beam mover can comprise a motor and a mechanical coupling from the motor to at least part of the light beam source.
The light beam source can include a light source adapted to generate light and at least one light conditioner adapted to produce the beam of light using light from the light source and to direct the light at the flame screen, and the light beam mover can be operatively associated with the light source to impart movement to the light source. The at least one light conditioner can be adapted to remain stationary when the light beam mover imparts movement to the light source. The light beam mover, alternatively, can be operatively associated with the light beam source and adapted to impart movement to the light beam source.
The flame simulator can further comprise a flame simulator body and an anchor fixed to the flame simulator body. The flame simulator can further comprise a ball-and-socket coupling between the light beam source and the anchor. The ball-and-socket coupling can constitutes at least part of the range limiter. The anchor can extend downwardly from an upper wall of the flame simulator body.
The flame simulator can further comprise a connector adapted to connect the light beam source to the anchor, wherein the connector and anchor constitute at least part of the range limiter.
An imitation candle comprises a candle body and at least one flame simulator. The candle body, when resting upright on a surface, can visually resemble a wax candle. The at least one flame simulator can be located partially inside the candle body. Each flame simulator can comprise a light beam source, a flame screen, a light mover, and a range limiter. The light beam source can be adapted to project a movable beam of light. The flame screen can be arranged with respect to the light beam source so that, when the light beam source projects the movable beam of light, at least a portion of the movable beam of light strikes the flame screen. The light beam mover can be operatively associated with the light beam source and adapted to impart movement to at least part of the light beam source. The range limiter can be operatively associated with the light beam source and adapted to limit movement of the light beam source and the movable beam of light so that the movable beam of light, when being projected, strikes at least a portion of the flame screen and causes illumination of the flame screen by the beam of light to resemble a flame.
The candle body can comprise an upper surface, and each flame screen can be located at the upper surface and extend upwardly from the upper surface. The imitation candle can further comprise at least two of the at least one flame simulator arranged so that the flame screen of one flame simulator is laterally spaced apart from each other flame screen, to simulate a candle having multiple burning wicks. Each light beam mover and each range limiter can be configured so that movement of each movable beam of light in response to a corresponding one of the light beam movers causes changes in a corresponding illumination of a corresponding one of the flame screens that mimic movement of a flame exposed to ambient air currents.
Each light beam mover and each range limiter can be configured so that movement of each movable beam of light in response to a corresponding one of the light beam movers causes changes in shape and position of a corresponding illumination of a corresponding flame screen by the corresponding beam of light.
Each light beam source can be adapted to produce a yellowish beam of light with a shape, intensity and color that result in a candle flame-mimicking illumination of a corresponding flame screen.
An imitation candle can comprise a candle body, a candle holder, a power supply circuit, and at least one flame simulator. The candle body can visually resemble a wax candle. The candle holder can be adapted to support the candle body. The power supply circuit can be housed at least partially inside at least one of the candle holder or the candle body, and can be adapted to provide electrical power to the at least one flame simulator. The at least one flame simulator can be located partially inside the candle body and can comprise a light beam source, a flame screen, a light beam mover, and a range limiter. The light beam source is adapted to project a movable beam of light. The flame screen can be arranged with respect to the light beam source so that, when the light beam source projects the movable beam of light, at least a portion of the movable beam of light strikes the flame screen. The light beam mover can be operatively associated with the light beam source and can be adapted to impart movement to at least part of the light beam source. The range limiter can be operatively associated with the light beam source and adapted to limit movement of the light beam source and the movable beam of light so that the movable beam of light, when being projected, strikes at least a portion of the flame screen and causes illumination of the flame screen by the beam of light to resemble a flame.
The power supply can include a solar panel adapted to convert light energy into electrical energy, and an energy storage battery adapted to store electrical power from the solar panel and supply the electrical power to the at least one flame simulator when the at least one simulator is activated. The solar panel can be located on the candle holder.
As shown in the block diagram of
The light source 120 can be implemented using a light emitting diode (“LED”), an incandescent bulb, or any other source of light capable of emitting light with a quality, intensity, shape and/or color that the light conditioner(s) 122 can convert into a beam 116 that mimics a flame (e.g., a candle flame) when the beam 116 strikes the flame screen 114. Alternatively, the light beam source 104 can be implemented using a light source 120 that, without utilizing any distinct light conditioners 122, is configured to generate the beam 116 with a suitable quality, intensity, and color of light and with a round cross-sectional shape.
The flame screen 114 is arranged with respect to the light beam source 104 so that, when the light beam source 104 is turned on and projects the movable beam 116 of light, at least a portion of the movable beam 116 strikes the flame screen 114. The shape of the flame screen 114 and the angle of the beam 116 with respect to the flame screen 114 are selected so that the illumination provided by the beam 116 results in rounded, flame-shaped light projection on the flame screen 114.
The light beam mover 108 can be operatively associated with the light beam source 104 and adapted to impart movement to at least part of the light beam source 104. This movement causes movement of the beam 116. This movement of the beam 116, in turn, causes changes in the angle of illumination and the position of illumination of the flame screen 114, and as a result of those changes, the shape of the illumination of the flame screen 114 and its position on the flame screen 114 changes. The light beam mover 108 can be configured to move the light source 120 while one or more of the light conditioners 122 remain stationary, can be configured to move one or more of the light conditioners 122 while the light source 120 remains stationary, or can be configured to move the entire light beam source 104 to effect movement of the beam 116.
A range limiter 106 can be operatively associated with the light beam source 104 and adapted to limit movement of the light beam source 104 (or movement of the light source 120 or light conditioners 122 thereof) and the movable beam 116 so that the beam 116 of light, when projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 to resemble a flame. The light beam mover 108 and the range limiter 106 can be configured so that movement of the movable beam 116 in response to the light beam mover 108 causes changes in the shape and position of the illumination of the flame screen 114 by the beam 116. Such changes in the illumination of the flame screen 114 can be made to mimic movement of a flame exposed to ambient air currents. The light beam mover 108 can generate the beam movement and the range limiter 106 can limit the range of movement so that the beam 116 stays mostly on the flame screen 114 in a region bounded by the typical range of movement of the flame being simulated (e.g., a candle flame moving in response to ambient air currents). The light beam mover 108 can cause the illumination provided by the beam 116 to dance on the flame screen 114 with variations in position and shape that mimic a dancing flame (e.g., a candle flame being blown about by air currents).
The variations in illumination that mimic a dancing flame also can be controlled by providing the flame screen 114 with a concave surface that faces the beam 116. The curvature of the concave surface can be determined based on the range of the beam's 116 motion and based on the cross-sectional shape and size of the beam 116, to result in an illumination spot that looks like a flame (e.g., a candle flame). The flame screen 114 can be fixedly mounted so that it remains stationary while the beam 116 of light moves in response to the light beam mover 108.
The light beam source 104 can be adapted to produce a yellowish beam of light with a shape, intensity and color that result in a candle flame-mimicking illumination of the flame screen 114. The shape, intensity and color can be provided by the light source 120 itself, or by a combination of the light source 120 and the light conditioner(s) 122. For example, the light source 120 can be configured to emit unfocussed light with a color that is whiter than the color of a candle flame. The light conditioners 122 can cooperate to impart a yellowish color (e.g., using color filtering in one light conditioner 122) and focus (or otherwise shape) the light (e.g., using one or more other light conditioners 122) into the beam 116 so that the beam's illumination of the flame screen 114 resembles a flame. The light beam source 104 alternatively can be configured to have a single light conditioner 122 that imparts the desired color, shape and quality to the light beam 116 so that the beam's illumination of the flame screen 114 resembles a flame.
According to one embodiment of the invention, the light beam source 104 is adapted to produce the beam 116 of light with a correlated color temperature in a range between 1,800 Kelvin and 1,900 Kelvin. According to another embodiment, the light beam source 104 is adapted to produce the beam 116 of light with a correlated color temperature in a range between 1,650 Kelvin and 2,300 Kelvin.
The light beam mover 108 can be implemented using any suitable mechanism for moving the light beam 116. The light beam mover 108, for example, can comprise a magnetic field generator adapted to produce a magnetic field that varies over time and causes at least part of the light beam source 104 to move. A magnetically responsive element (e.g., an earth magnet) can be connected to (or otherwise associated with) the light beam source 104 so that, when the magnetic field varies, a force is applied to the magnetically responsive element and causes the magnetically responsive element to move. By providing a suitable coupling between the magnetically responsive element and the light beam source 104, this movement of the magnetically responsive element can be transferred directly or indirectly to the light beam source 104 and cause the light beam source 104 or a component thereof (e.g., the light source 120, one or more of the light conditioners 122, or both) to move. This movement, in turn, causes the beam 116 to move.
According to another embodiment of the invention, the light beam mover 108 comprises an air mover (e.g., a fan) adapted to generate at least one air current that impinges upon the light beam source 104 (or a component of the light beam source 104) and/or impinges on an air current-responsive element that moves in response to the air current. The air current-responsive element can be coupled directly or indirectly to the light beam source 104 (or part of the light beam source 104) so that movement of the air-current-responsive element causes the light beam source 104 or a component thereof (e.g., the light source 120, one or more of the light conditioners 122, or both) to move. This movement, in turn, causes the beam 116 to move.
According to another embodiment of the invention, the light beam mover 108 comprises a motor and a coupling from the motor directly or indirectly to at least part of the light beam source 104. The coupling moves in response to activation of the motor and causes the light beam source 104 or a component thereof (e.g., the light source 120, one or more of the light conditioners 122, or both) to move. This movement, in turn, causes the beam 116 to move.
The coupling to the motor can be implemented using any coupling structure that converts the mechanical motion of the motor into movement of the light beam source 104 or a component thereof (e.g., the light source 120, one or more of the light conditioners 122, or both) with a frequency, speed and range (limited by the range limiter 106) that causes the illumination of the flame screen 114 by the beam 116 to resemble a flame moving in response to air currents. The coupling can include flexible components, rigid components, or a combination of flexible and rigid components. The coupling also can be implemented using one or more non-mechanical couplings (e.g., one or two magnets that are rotated or otherwise moved by the motor and that impart motion onto a magnetically responsive element coupled directly or indirectly to the light beam source 104, or a component of the light beam source 104). The coupling also can be implement using an intermittent coupling, which exerts a movement force on the light beam source 104 (or a component thereof) momentarily, releases it momentarily so that the light beam source 104 (or a component thereof) moves back toward a previous orientation, and repeatedly applies and releases the force so that the beam 116 appears to dance like a flame on the surface of the flame screen 114.
In the embodiment of
The coupling 406 to the motor 402 includes a rotatable actuator 408 configured to rotate with the output shaft 404 of the motor 402. The rotatable actuator 408 includes several pushers 410 (e.g., pegs, teeth or other projections). As the actuator 408 rotates, the pushers 410 sequentially come into contact with a beam source extension 412. The beam source extension 412 is connected to the light beam source 104 and causes movement of the light beam source 104 when the extension 412 moves. Each pusher 410 sequentially pushes the extension 412, moves past the extension 410, and thus releases the extension 410 so that it can swing back (e.g., in response to gravitational force) toward a starting orientation. The starting orientation can be an orientation that centers the beam 116 laterally on the flame screen 114. The coupling 406 thereby converts the mechanical motion of the motor 402 into movement of the light beam source 104 or a component thereof (e.g., the light source 120, one or more of the light conditioners 122, or both) with a frequency, speed and range (limited by the range limiter 106) that causes the illumination of the flame screen 114 by the beam 116 to resemble a flame moving in response to air currents.
The coupling 406 can include flexible components, rigid components, or a combination of flexible and rigid components. In this regard, the actuator 408, the pushers 410 and/or the extension 412 can be flexible, rigid or a combination of flexible and rigid. The determination of which aspects of the coupling 406 are flexible or rigid and how flexible and rigid they are, can be made based on whether that combination causes the beam's movement to realistically simulate flame movement in response to the rotational speed of the actuator 408.
If the motor's speed of rotation is too fast for direct mounting of the actuator 408 to the shaft 404, the output shaft 404 can be connected to gearing that converts the fast rotation of the shaft 404 into rotation of the actuator 40 at a speed slow enough to provide the aforementioned a frequency, speed and range (limited by the range limiter 106) of beam source 104 movement that causes the illumination of the flame screen 114 by the beam 116 to resemble a flame moving in response to air currents. Another technique for controlling movement of the beam source 104 is by selecting suitable number of pushers 410, suitable spacing and sizes of the pushers 410, suitable dimensions of the actuator 408 and the extension 412, and suitably configuring the range limiter 106.
The magnetic field generator 602 can comprise an electrical coil 604 which is electrically connected to a source of varying electrical voltage. Alternatively, multiple coils can be utilized. The varying electrical voltage creates variations in electrical current in each coil 604, and the varying current produces a varying magnetic field. The varying magnetic field acts on the magnetically responsive element 626 and forces the extension 612 to move (e.g., wiggle). This causes the light beam source 104 (or alternatively, a component thereof) to move (e.g., wiggle). This movement, in turn, causes the beam 116 to move (e.g., wiggle). The number of windings in the coil 604 and the magnitude and variations of the voltage are selected so that the variations and strength of the magnetic field cause the extension 612 to move (e.g., wiggle) with a frequency, speed and range (limited by the range limiter 106) that causes the illumination of the flame screen 114 by the beam 116 to resemble a flame moving (or dancing) in response to air currents.
Circuitry for producing the varying electrical voltage can be housed in a circuit housing 632 or alternatively can be placed on an exposed circuit board inside the housing 600. The varying electrical voltage can be cyclic (repeating) or can be random. The varying electrical voltage can be a sinusoidal voltage, a square wave, a pulse-modulated voltage, an amplitude-modulated voltage, a frequency-modulated voltage or other output voltage variations that produce a suitable variation in magnetic field and that result in suitable wiggling of the light source 104 (or a component thereof). U.S. Pat. No. 8,789,986 to Li, which is incorporated herein by reference, discloses examples of circuitry that can be used to move a movable flame sheet. The same or similar circuitry can be modified or otherwise adapted to provide the varying electrical voltage as part of the power controller 112.
The base 634 of the housing 632 can include a battery compartment which holds one or more batteries that store electrical power (and can serve as the power supply 110) for the flame simulator 100 and its power controller 112. The batteries can be rechargeable, or alternatively, can be disposable.
Alternatively, the base 634 of the housing 632 can include a power converter which receives AC household power via a power cord (not shown) and converts it to: (1) a DC voltage to power the light source 120 and (2) a suitable AC or varying DC voltage to power the light beam mover 108. In some embodiments, the coil 604 can be configured to generate the desired magnetic field variations using household AC power, without any switching or conversion of the AC signal (other than to provide DC power to the light source 120).
Insulated wires or other suitable electrical conductors 640 can extend from the base 634 to the light beam source 104 and can electrically connect the power supply 110 and/or power converter 112 to the light source 120 of the light beam source 104. The conductors 640 can be flexible so as to allow movement (e.g., wiggling) of the entire light beam source 104 (or one or more components thereof). If the conductors 640 are rigid and the light source 120 is fixedly mounted in the housing 600 so as to remain stationary, movement (e.g. wiggling) of the light beam 116 can be achieved by allowing other aspects of the light beam source 104 to move (e.g., wiggle). One or more of the light conditioners 122, for example, can be coupled to the extension 612 (or otherwise coupled to the light beam mover 108 or magnetic field generator 602 thereof) so that the light conditioner(s) moves (e.g., wiggles) even when the light source 120 remains stationary.
Other embodiments (e.g., the embodiments shown in
In the example of
The extension 412, 512, 612 can be implemented as a single unit with a rigid connection to the light beam source 104, or one or more of them can be implemented as shown in the example of elements 712 in
The range limiter 106 of
The range limiter 106 also can comprise a connector 438, 538, 638 or 738 as shown in
As shown in
The connector 438, 538, 638, 738 and/or 838 can include one or more barbs 438B, 538B, 638B, 738B and/or 838B that resist or prevent removal of the connector 438, 538, 638, 738 and/or 838 from the light beam source 104 after the connector 438, 538, 638, 738 and/or 838 has been snap-fit across the crossbar 430C, 530C, 630c, 730C and/or 830C and into light beam source 104. The barbs 438B, 538B, 638B, 738B and/or 838B can be flexible or rigid.
The connector 438, 538, 638, 738 and/or 838 and anchor 430, 530, 630, 730, 830 of the range limiter 106 are configured (shape, size, placement, and arrangement) to limit movement of the light beam source 104 (or movement of the light source 120 or light conditioners 122 thereof) and the movable beam 116 so that the beam 116 of light, when projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 to resemble a flame. The light beam mover 108, the connector 438, 538, 638, 738 and/or 838 and the anchor 430, 530, 630, 730, 830 can be configured so that movement (e.g., wiggling) of the movable beam 116 in response to the light beam mover 108 causes changes in the shape and position of the illumination of the flame screen 114 by the beam 116. Such changes in the illumination of the flame screen 114 can be made to mimic movement of a flame exposed to ambient air currents. The light beam mover 108 can generate the beam movement and the connector 438, 538, 638, 738 and/or 838 and anchor 430, 530, 630, 730, 830 can limit the range of movement so that the beam 116 stays mostly on the flame screen 114 in a region bounded by the typical range of movement of the flame being simulated (e.g., a candle flame moving in response to ambient air currents). The light beam mover 108 can cause the illumination provided by the beam 116 to dance on the flame screen 114 with variations in position and shape that mimic a dancing flame (e.g., a candle flame being blown about by air currents).
To facilitate the limited movement (e.g., wiggling) of the light beam 116, the crossbar 930C of the anchor 930 can be configured with an upwardly projecting nub 930N that bears against an inside surface 938S of the connector 938. Alternatively, or in addition, the inside surface 938S of the connector 938 can be provided with a downwardly project nub (not shown) to engage an upper surface of the crossbar 930C and/or the nub 930N thereof.
As shown in
The connector 938 can include one or more barbs 938B that resist or prevent removal of the connector 938 from the light beam source 104 after the connector 938 has been snap-fit across the crossbar 930C and into light beam source 104. The barbs 938B can be flexible or rigid.
The connector 938 and anchor 930 of the range limiter 106 are configured (shape, size, placement, and arrangement) to limit movement (e.g., wiggling) of the light beam source 104 and the movable beam 116 so that the beam 116 of light, when projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 to resemble a flame. The light beam mover 108, the connector 938 and the anchor 930 can be configured so that movement (e.g., wiggling) of the movable beam 116 in response to the light beam mover 108 causes changes in the shape and position of the illumination of the flame screen 114 by the beam 116. Such changes in the illumination of the flame screen 114 can be made to mimic movement of a flame exposed to ambient air currents. The light beam mover 108 can generate the beam movement and the connector 938 and anchor 930 can limit the range of movement so that the beam 116 stays mostly on the flame screen 114 in a region bounded by the typical range of movement of the flame being simulated (e.g., a candle flame moving in response to ambient air currents). The light beam mover 108 can cause the illumination provided by the beam 116 to dance on the flame screen 114 with variations in position and shape that mimic a dancing flame (e.g., a candle flame being blown about by air currents).
With reference to the embodiment shown in
With reference to
To facilitate the limited movement (e.g., wiggling) of the light beam 116 and reduce friction in the ball-and-socket coupling 1048, the ball 1050 can be configured with an upwardly projecting nub 1050N that bears against an inside surface 1052S of the socket 1050. Alternatively, or in addition, the inside surface 1052S of the socket 1052 can be provided with a downwardly project nub (not shown) to engage an upper surface of the ball 1050.
Although
As shown in
The ball 1050 and socket 1052 of the range limiter 106 are configured (shape, size, placement, and arrangement) to limit movement of the light beam source 104 (or movement of the light source 120 or light conditioners 122 thereof) and the movable beam 116 so that the beam 116 of light, when projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 to resemble a flame. The light beam mover 108, the ball 1050, and socket 1052 can be configured so that movement (e.g., wiggling) of the movable beam 116 in response to the light beam mover 108 causes changes in the shape and position of the illumination of the flame screen 114 by the beam 116. Such changes in the illumination of the flame screen 114 can be made to mimic movement of a flame exposed to ambient air currents. The light beam mover 108 can generate the beam movement and the ball-and-socket coupling 1048 can limit the range of movement so that the beam 116 stays mostly on the flame screen 114 in a region bounded by the typical range of movement of the flame being simulated (e.g., a candle flame moving in response to ambient air currents). The light beam mover 108 can cause the illumination provided by the beam 116 to dance on the flame screen 114 with variations in position and shape that mimic a dancing flame (e.g., a candle flame being blown about by air currents).
The embodiment of the flame simulator shown in
The ball-and-socket coupling 1348 can comprise a ball 1350 associated with the anchor 1330 and a socket 1352 associated with the light beam source 104. The ball-and-socket coupling 1348 is configured with enough play (e.g., “wiggle room”) between the ball 1350 and the socket 1352 to permit the aforementioned movement (e.g., wiggling) of the light beam source 104 (or one or more components thereof). The amount and directions of play are selected to provide the aforementioned limits on movement (e.g., wiggling) of the light beam 116 in response to the light beam mover 108.
The ball-and-socket coupling 1350 can be implemented using the configuration illustrated in
The ball-and-socket coupling 1348 can include a neck 1354 between the ball 1350 and the anchor 1330. The neck 1354 is configured to interfere mechanically with a rim 1356 of the socket 1352. This mechanical interference imposes a limit on the vertical tilt of the beam 116. By suitably configuring the shape and size of the neck 1354 and rim 1356, the tilt limit can be selected so that the beam 116 (when projected) does not stray completely off of the flame screen 114 vertically, or alternatively, so that the beam 116 remains completely within the top and bottom edges of the flame screen 114 (or within some other range that coincides with the vertical range across which a candle flame might dance). The configuration of the ball-and-socket coupling 1348 thereby can limit the beam's vertical range of movement and can serve as part of the range limiter 106.
Although
As shown in
The ball 1350 and socket 1352 of the range limiter 106 are configured (shape, size, placement, and arrangement) to limit movement of the light beam source 104 (or light conditioners 122 thereof) and the movable beam 116 so that the beam 116 of light, when projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 to resemble a flame. The light beam mover 108, the ball 1350, and socket 1352 can be configured so that movement (e.g., wiggling) of the movable beam 116 in response to the light beam mover 108 causes changes in the shape and position of the illumination of the flame screen 114 by the beam 116. Such changes in the illumination of the flame screen 114 can be made to mimic movement of a flame exposed to ambient air currents. The light beam mover 108 can generate the beam movement and the ball-and-socket coupling 1048 can limit the range of movement so that the beam 116 stays mostly on the flame screen 114 in a region bounded by the typical range of movement of the flame being simulated (e.g., a candle flame moving in response to ambient air currents). The light beam mover 108 can cause the illumination provided by the beam 116 to dance on the flame screen 114 with variations in position and shape that mimic a dancing flame (e.g., a candle flame being blown about by air currents).
An additional (or alternative) aspect of the range limiter 106 can be implemented by providing a protrusion 1560 on the ball 1550 and hole 1562 in at least one of the socket portions 1552P. During assembly of the light beam source 104, the protrusion 1560 can be inserted in the hole 1562. After assembly, the protrusion 1560 can mechanically interfere with the walls of the hole 1562. This mechanical interference imposes limits on the beam's 116 range of movement. By suitably configuring the shape and size of the protrusion 1560 and hole 1562, the range limit can be selected so that the beam 116 (when projected) does not stray completely off of the flame screen 114, or alternatively, so that the beam 116 remains completely on the flame screen 114 (or within some other range that coincides with the range across which a candle flame might dance). The configuration of the protrusion 1560 and hole 1562 thereby can limit the beam's range of movement and can serve as part of the range limiter 106. Although
The invention is not limited to the foregoing embodiments of the range limiter 106. To the contrary, other embodiments of range limiters 106 can be utilized based on other techniques for providing a suitable form on mechanical interference or otherwise limiting the range of beam movement.
Any of the housings (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300) can be made of a material that is translucent and/or constitutes or resembles wax. In addition, the light source 120 can be configured to direct some light toward an upper portion of the housing (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300) so that the upper portion of the housing glows in a manner that resembles a real candle glowing as a result of light from its flame. The flame screen 114 also can be configured with translucent properties that allow some of light from the beam 116 to pass through the flame screen and provide a glow to the candle housing and/or other objects behind the candle screen. The translucent properties can be selected so that this glow resembles the glow that a real candle's flame would provide.
The aforementioned glow of the housing (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300) can be facilitated by using translucent and/or transparent materials in the construction of the light beam source 104 and/or by providing one or more light conditioners 122 that reflect, spread and/or diffuse some of the light from the light source 120 in addition to providing the light beam 116 with a round cross-sectional shape and the aforementioned quality, intensity, and color of light. Alternatively, or in addition, the aforementioned glow of the housing (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300) can be facilitated by providing one or more additional sources of light (in addition to the light source 120) in the housing and directing light from those additional sources toward an upper portion of the housing (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300).
The range limiter 106 also can include mechanical interference between: (1) a top (or other feature) of the light beam source 104 and (2) a ceiling inside the housing (e.g., housing 300, 400, 500, 600, 700, 800, 900, 1000, 1100 and/or 1300) and/or a support ring (e.g., support ring 431, 531, 631, 731, 1131 or 1331 of
The embodiment of
Inside the candle body/housing 1600, each light beam mover 108 (examples of which are shown in the previous drawings) and each range limiter 106 (examples of which are shown in the previous drawings) of the flame simulators 100 are configured so that movement of each movable beam 116 of light in response to a corresponding one of the light beam movers 108 causes changes in a corresponding illumination of a corresponding one of the flame screens 114 and so that those changes mimic movement of a flame exposed to ambient air currents. Each light beam mover 108 and each range limiter 106 are configured so that movement of each movable beam 116 of light in response to a corresponding one of the light beam movers 108 causes changes in shape and position of the corresponding illumination of the corresponding flame screen 114 by the corresponding beam 116 of light.
Each light beam source 104 (examples of which are shown in the previous drawings) is adapted to produce a yellowish beam of light with a shape, intensity and color that result in a candle flame-mimicking illumination of a corresponding flame screen 114.
Each flame simulator 100 in
In some examples, it is also possible to implement the flame simulators 100 independently of one another so that each flame simulator 100 has its own light beam mover 108, range limiter 106, power controller 112 and power supply 110.
The embodiment of
The user interface 1860 can provide one or more inputs to the power controller 112, each input being indicative of a user-selected mode of operation. The light sensor 1864 can be configured to detect light and provide an input to the power controller 112 indicating whether the light sensor 1864 is exposed to light and/or how much light is impinging on the light sensor 1864. The input from the light sensor 1864 allows the power controller 112 to determine, based on the ambient light conditions and/or the user-selected operating mode, whether to turn on and/or off the flame simulator 100. In addition, or alternatively, the input from the light sensor 1864 can be used by the power controller 112 to determine whether to charge the energy storage element 1862 using power from the solar panel 1866.
The energy storage element 1862 and the power controller 112 can be interconnected and configured so that the power controller 112 can be powered by the energy storage element 1862, so that the power controller 112 can charge the energy storage element 1862 using power from the solar panel 1866, and/or so that the power controller 112 can be powered at least partially by the solar panel (e.g., when the energy storage element 1862 lacks enough power to operate the flame simulator 100 but the solar panel is exposed to light).
The power controller 112 of
Each flame simulator 100 is located partially inside the candle body 1900 and comprises a light beam source 104, a flame screen 114, a light beam mover 108, and a range limiter 106. The light beam source 104 can be adapted to project a movable beam of light 116. Examples of light beam sources 104 are shown in the previous drawings and disclosed in the above description.
The flame screen 114 is arranged with respect to the light beam source 104 so that, when the light beam source 104 projects the movable beam of light 116, at least a portion of the movable beam 116 of light strikes the flame screen 114. The light beam mover 108 is operatively associated with the light beam source 104 and adapted to impart movement to at least part of the light beam source 104. Examples of light beam movers 108 are shown in the previous drawings and disclosed in the above description. Those light beam movers 108, or alternatives thereto, can be configured to fit within a housing 1900 that resembles a narrow candle stick. The light beam mover 108 of
The extension 412, 512, 612 and/or 712 of
The range limiter 106 can be operatively associated with the light beam source 104 and adapted to limit movement of the light beam source 104 and the movable beam 116 of light so that the movable beam 116 of light, when being projected, strikes at least a portion of the flame screen 114 and causes illumination of the flame screen 114 by the beam 116 of light to resemble a flame.
The power supply 1903 can include a solar panel 1966 (e.g., the solar panel 1866 of
The energy storage battery of the power supply 1903 can be adapted to store electrical power from the solar panel 1966 and supply the electrical power to each flame simulator 100 when each flame simulator is activated.
The light beam source 104 can include a light source (e.g., any of the light sources 120 shown in the previous drawings and disclosed in the above description) adapted to generate light and at least one light conditioner (e.g., any of the light conditioners 122 shown in the previous drawings and disclosed in the above description) adapted to produce the beam 116 of light using light from the light source 120 and to direct the light at the flame screen 114. The light beam mover 108 can be operatively associated with the light source 120 to impart movement to the light source 120. The light conditioner(s) 122 can be adapted to remain stationary when the light beam mover 108 imparts movement to the light source 120.
Alternatively, the light beam mover 108 can be operatively associated with the light beam source 104 and adapted to impart movement to part of the light beam source 104 or the entire light beam source 104.
The flame simulator of
In some examples, the outer body 2002 can comprise at least one of paraffin wax, plastic, silicon, or other material that can cause the candle to resemble a conventional candle that includes a flame. The outer body 2002 can be shaped such that at least a portion of its top edge can extend at least as high (e.g., higher) in a vertical direction than the flame screen 2001 when the imitation candle is assembled.
In the embodiment shown in
The light beam source 2018 is positioned within or between two complementary structures 2004 that, when combined, form a light beam housing body. In some examples, the light beam housing body can include range limiter structures 2017 operatively associated with the light beam source 2018. The range limiter structures 2017 can include a pair of circular torsion springs adapted to limit movement of the light beam source 2018. The range limiter structures 2017 can be arranged in openings 2020 (only one shown) in each complementary structure 2004 so that the range limiter structures 2017 engage the respective complementary structure 2004 and the structure 2006 in such a way that they limit movement of complementary structure 2004 with respect to structure 2006 (e.g., via spring biasing). In some cases, the light beam housing body includes projections or protrusions that provide an abutment or physical structure that obstructs or prevents the light beam source 2018 from moving in a particular direction, for example, limits the amount of rotation of the light beam source 2018 around an axis defined by elements 2005. Other range limiter structures described herein can also be used in order to ensure that the movable beam of light, when being projected, strikes at least a portion of the flame screen 2001 and causes illumination of the flame screen 2001 by the beam of light to resemble a flame.
Elements 2005 define an axle that can be used to facilitate movement of the light beam source 2018. Elements 2005 can extend through respective ones of the complementary structures 2004 of the light beam source housing and be operatively connected to light beam source 2018. The elements 2005 can be coupled to the light beam source 2018 such that the light beam source 2018 and/or light beam source housing can rotate around the axle created by elements 2005 in response to a change in a magnetic field, as described below. The elements 2005 can be housed in the structures 2006 which can be configured to serve as a base for anchoring the light beam source 2018 to a printed circuit board 2007 or other structure.
A magnetically responsive element 2016 (e.g., an earth magnet) can be connected to or otherwise associated with the light beam source 2018 (e.g., mounted to the light beam source housing) so that when the magnetic field varies, a force is applied to the magnetically responsive element 2016 and causes the magnetically responsive element 2016 to move. By providing a suitable coupling between the magnetically responsive element 2016 and the light beam source 2018, movement of the magnetically responsive element 2016 can be transferred directly or indirectly to the light beam source 2018 and cause the light beam source 2018 or a component thereof to move (e.g., wiggle or rotate). This movement, in turn, causes the beam emitted from light beam source 2018 to move (e.g., wiggle).
In some cases, the magnetic field generator can comprise an electrical coil 2022 which is electrically connected to a source of varying electrical voltage. Alternatively, multiple coils can be utilized. The varying electrical voltage creates variations in electrical current in each coil, and the varying current produces a varying magnetic field. The varying magnetic field acts on the magnetically responsive element 2016 and forces the light beam source 2018 or a component thereof to move (e.g., wiggle). This movement, in turn, causes the beam emitted from the light beam source 2018 to move (e.g., wiggle). The number of windings in the coil and the magnitude and variations of the voltage are selected so that the variations and strength of the magnetic field cause the light beam source 2018 to move (e.g., wiggle) with a frequency, speed and range (limited by the range limiter) that causes the illumination of the flame screen 2001 by the beam to resemble a flame moving (or dancing) in response to air currents.
Circuitry for producing the varying electrical voltage can be housed in printed circuit board 2007 (and/or 2009) or alternatively can be placed on other logic devices exposed on printed circuit board 2007 (and/or 2009) or other structure inside the housing 2003. The varying electrical voltage can be cyclic (repeating) or can be random. The varying electrical voltage can be a sinusoidal voltage, a square wave, a pulse-modulated voltage, an amplitude-modulated voltage, a frequency-modulated voltage or other output voltage variations that produce a suitable variation in magnetic field and that result in suitable wiggling of the light beam source 2018 (or a component thereof). The circuitry can comprise the logic and source code to provide the signals and direction to perform at least one of the following steps: turning the power on and off to the light beam source 2018 or magnetic field generator, controlling oscillators, controlling a timer (e.g., for automatic cut-off after a defined period of time), directing and varying the intensity of the beam emitted from the light beam source 2018, directing and varying the color of the beam emitted from the light beam source 2018, directing and varying the projection of the beam emitted from the light beam source 2018, directing and varying the voltage supplied to the magnetic field generator; directing voltage supplied in response to external stimulus (e.g., blowing into a microphone), and other actions. The printed circuit board 2007 (and/or 2009) can include varied configurations of pins, circuits, and connectors necessary to carry out the different functions of the flame simulator.
The base of the housing 2003 can include a battery compartment which holds one or more batteries 2011 that store electrical power (and can serve as the power supply) for the flame simulator. The battery compartment can comprise the housing 2010, elements 2012, 2008, and 2015 that provide the respective leads to facilitate the extracting of power from the batteries 2011. The batteries 2011 can be rechargeable, or alternatively, can be disposable and can include all conventional sized shaped batteries, e.g., A, AA, AAA, C, D, and others. The batteries 2011 are operatively (e.g., electrically) coupled to a printed circuit board 2007 (and/or 2009) and light beam source 2018 to provide power to the printed circuit board 2007 (and/or 2009) and light beam source 2018 to produce the varying electrical voltage and corresponding flame effects described above.
Alternatively, the base of the housing 2003 can include a power converter which receives AC household power via a power cord (not shown) and converts it to: (1) a DC voltage to power the light source 2018 and (2) a suitable AC or varying DC voltage to power the light beam mover. In some embodiments, the printed circuit board 2007 (and/or 2009) and magnetically responsive element 2016 can be configured to generate the desired magnetic field variations using household AC power, without any switching or conversion of the AC signal (other than to provide DC power to a light source).
Insulated wires or other suitable electrical conductors 2008, 2012, 2015 can extend from the base and power switch 2014 to the light beam source 2018 and can electrically connect the power supply 2011 to the light beam source 2018. The wires can be flexible so as to allow movement (e.g., wiggling) of the entire light beam source 2018 (or one or more components thereof).
The flame simulators disclosed above are not limited to stand-alone candles. They can be incorporated into other structures that benefit from the appearance of a simulated flame and which can be battery-powered or powered by household AC power. Examples of such structures include lanterns, coach lights, dock lights, deck lights, patio lights, candelabra, chandelier, lights surrounding a swimming pool or spa, and/or into a simulated light bulb. The examples of candle bodies/housings shown in the drawings are somewhat cylindrical and candle-like, but other shapes of candle bodies/housings can be implemented to mimic candles having other shapes or other flame-bearing objects.
In addition, any of the foregoing flame simulators 100 or others can be provided with remote control circuitry that receives user inputs (wirelessly or otherwise) from a remote controller and controls the flame simulator based on those inputs. The remote control circuitry and remote controller can be configured to implement any one or more of the modes of operation described above in connection with a user interface, or other modes of operation.
The foregoing flame simulators also can be combined with one or more scent emitters and/or replaceable scent cartridges. Each scent emitter can be configured to emit a desired scent whenever the flame simulator 100 is operating, or can be configured to emit a scent independently of the on-or-off status of the flame simulator 100.
In some cases, the flame simulators also can include a sensor that can be configured to detect whether a person is blowing into the sensor to mimic the blowing out of a candle. In some cases, the sensor comprises a microphone. The sensor can be operatively connected to the power supply of the flame simulator such that upon detection of an air current of sufficient magnitude, e.g., a person blowing into the sensor, the sensor can transmit or otherwise interrupt a signal disconnecting the power to the light beam source and as a result, turning off the candle. In some embodiments, the sensor can be configured such that different responses by the light source are shown on the flame screen based on the magnitude of the air current directed at the sensor. For example, a forceful, burst of air like one uses to blow out traditional candles can be a first magnitude that is sufficiently high to cut the light beam source off (mimicking blowing out a candle). A slow, more drawn out stream of air of a second magnitude, which is lower than the first magnitude, may provide a signal to the flame simulator that causes the light beam source and/or light beam mover to adjust and provide a more intense flickering of the light beam, for example, to simulate a person blowing a conventional candle's flame that is not hard enough to put out the candle.
Although the illustrated examples of the flame simulator 100 include a flame screen 114 that can be kept stationary, it is understood that the flame simulator can be implemented with a movable flame screen 114. Examples of movable flame screens are described in some of the patents identified in the Background of the Invention.
Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation application of U.S. patent application Ser. No. 16/817,405, which is a continuation of U.S. patent application Ser. No. 16/036,601, filed Jul. 16, 2018, now issued U.S. Pat. No. 10,619,811, issued Apr. 14, 2020, which is a divisional of U.S. patent application Ser. No. 15/415,214, filed Jan. 25, 2017, now issued U.S. Pat. No. 10,030,831, issued Jul. 24, 2018, which application claims the benefit of U.S. Provisional Patent Application No. 62/286,555, filed Jan. 25, 2016, the entire contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6926423 | Bucher et al. | Aug 2005 | B2 |
7261455 | Schnuckle et al. | Aug 2007 | B2 |
7350720 | Jaworski et al. | Apr 2008 | B2 |
7360935 | Jensen et al. | Apr 2008 | B2 |
7503668 | Porchia et al. | Mar 2009 | B2 |
7837355 | Schnuckle | Nov 2010 | B2 |
8070319 | Schnuckle et al. | Dec 2011 | B2 |
8132936 | Patton et al. | Mar 2012 | B2 |
8342712 | Patton et al. | Jan 2013 | B2 |
8408746 | Lauer | Apr 2013 | B1 |
8534869 | Patton et al. | Sep 2013 | B2 |
8550660 | Patton et al. | Oct 2013 | B2 |
8646946 | Schnuckle et al. | Feb 2014 | B2 |
8696166 | Patton et al. | Apr 2014 | B2 |
8721118 | Patton et al. | May 2014 | B2 |
8727569 | Schnuckle et al. | May 2014 | B2 |
8789986 | Li | Jul 2014 | B2 |
8926137 | Li | Jan 2015 | B2 |
9033553 | Li | May 2015 | B2 |
9068706 | Fournier et al. | Jun 2015 | B2 |
9664349 | Hurduc et al. | May 2017 | B1 |
10030831 | Baeza | Jul 2018 | B2 |
10054276 | Li | Aug 2018 | B1 |
10619811 | Baeza | Apr 2020 | B2 |
11131436 | Baeza | Sep 2021 | B2 |
20080129226 | DeWitt et al. | Jun 2008 | A1 |
20080130266 | DeWitt et al. | Jun 2008 | A1 |
20110019422 | Schnuckle et al. | Jan 2011 | A1 |
20110127914 | Patton et al. | Jun 2011 | A1 |
20130003385 | Chartrand et al. | Jan 2013 | A1 |
20130070446 | Chen | Mar 2013 | A1 |
20140098532 | Chiang | Apr 2014 | A1 |
20140177212 | Li | Jun 2014 | A1 |
20140218903 | Sheng | Aug 2014 | A1 |
20140254148 | Fournier | Sep 2014 | A1 |
20140268652 | Li | Sep 2014 | A1 |
20150204530 | Lee | Jul 2015 | A1 |
20150354769 | Patton et al. | Dec 2015 | A1 |
20160109083 | Li | Apr 2016 | A1 |
20160153630 | Dong | Jun 2016 | A1 |
20160290579 | Au et al. | Oct 2016 | A1 |
20160312969 | Patton | Oct 2016 | A1 |
20170167677 | Patton et al. | Jun 2017 | A1 |
20170211767 | Baeza | Jul 2017 | A1 |
20170234496 | Wang | Aug 2017 | A1 |
20190063703 | Hurduc | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
101865413 | Oct 2010 | CN |
204513249 | Jul 2015 | CN |
204962604 | Jan 2016 | CN |
2899452 | Jul 2015 | EP |
2015021066 | Feb 2015 | WO |
2015061623 | Apr 2015 | WO |
2017132224 | Aug 2017 | WO |
Entry |
---|
U.S. Appl. No. 15/415,214 , Notice of Allowance, dated Mar. 28, 2018, 11 pages. |
U.S. Appl. No. 15/415,214 , “Restriction Requirement”, dated Dec. 20, 2017, 6 pages. |
U.S. Appl. No. 16/036,601 , Non-Final Office Action, dated Aug. 14, 2019, 15 pages. |
U.S. Appl. No. 16/036,601 , Notice of Allowance, dated Dec. 11, 2019, 8 pages. |
U.S. Appl. No. 16/817,405 , Final Office Action, dated Feb. 5, 2021, 15 pages. |
U.S. Appl. No. 16/817,405 , Non-Final Office Action, dated Aug. 10, 2020, 6 pages. |
U.S. Appl. No. 16/817,405 , Notice of Allowance, dated May 28, 2021, 9 pages. |
Application No. CA3,011,599 , Notice of Allowance, dated Apr. 1, 2020, 1 page. |
Application No. CA3,011,599 , Office Action, dated May 7, 2019, 4 pages |
Application No. CN201780019609.5 , Office Action, dated Dec. 19, 2019, 10 pages. |
Application No. CN201780019609.5 , Office Action, dated Jun. 17, 2019, 14 pages. |
Application No. CN201780019609.5 , Office Action, dated Nov. 2, 2020, 7 pages. |
Application No. CN201780019609.5 , Office Action, dated Apr. 20, 2020, 8 pages. |
Application No. PCT/US2017/014879 , International Preliminary Report on Patentability, dated Aug. 9, 2018, 9 pages. |
Application No. PCT/US2017/014879 , International Search Report and Written Opinion, dated Mar. 24, 2017, 14 pages. |
Application No. CN202110187776.9 , Office Action, dated Sep. 8, 2021, 40 pages. |
Number | Date | Country | |
---|---|---|---|
20210372581 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62286555 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15415214 | Jan 2017 | US |
Child | 16036601 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16817405 | Mar 2020 | US |
Child | 17404359 | US | |
Parent | 16036601 | Jul 2018 | US |
Child | 16817405 | US |