This invention relates to devices configured to dispense a treatment agent in vapor phase into a local environment and at an enhanced rate compared to surface evaporation from a quantity of the treatment agent in liquid phase at room temperature in undisturbed air.
Several ways are known to treat a local environment with a dispersed treatment fluid. One way to treat a local environment is to simply spray aerosol scent or mosquito repellant into the air. Devices such as perfumed or scented candles are available to create a pleasing smell in a local environment. Citronella candles are commercially available for insect abatement, and may be burned when treatment of a local area is desired. For mosquito relief, various machines may be employed to burn propane and emit a fog of repellant or poison. Some machines attract mosquitos and employ suction to capture them in a bag. Other devices attract insects, and kill them with a spark of electricity. These currently available products either lack sufficient efficacy, are cumbersome to use, or are too costly to gain wide acceptance. It would be an improvement to provide an effective product that is simple to use and sufficiently low cost to permit its disposal after a single use.
Embodiments typically includes an emanator element, a treatment agent associated with the emanator, and an energizing source to enhance emanation of the treatment agent in vapor phase. An emanator element typically has a surface area disposed in operable association with a volume in which to hold a quantity of treatment agent. A preferred emanator has a vapor-emitting surface area in excess of about 1000 mm2. Treatment agent volatizes, sublimates, or evaporates from the surface area to broadcast treatment agent in vapor phase. A workable emanator element may include a material selected from cotton, paper, cellulose, woven or nonwoven textile or random mat or sheet or 3-dimensional structure comprising natural or synthetic fibers, natural or synthetic open or closed cell sponge, high surface area (HSA) materials having a surface area greater than 10 m2/gm, diffusion membrane, porous metal, metallized fabric, and the like.
The flameless energizing source may be disposed in a variety of operable configurations with the volume to apply heat energy to the treatment agent therein. Certain embodiments may include a treatment agent-holding volume that is directly bounded in part or in whole by the surface area. In one such case, a flameless heat source may be partially or fully surrounded by the volume to dispose the volume between the heat source and the evaporating surface area. Sometimes, the entire quantity of treatment agent contained in an assembly is disposed to simultaneously receive heat from the heat source. A workable embodiment may include an agent storage volume that is configured to receive energizing input on a portion of its volume-defining boundary area. Sometimes, the volume-defining boundary area may include the vapor-discharging surface area. For non-limiting example, certain embodiments may include a bulk storage volume from which a wicking element draws treatment agent for evaporation of the treatment agent from a surface area of the wick. Other operable arrangements will occur to one of ordinary skill.
A workable treatment agent may be selected from scented oil, medicament, and insect repellant or insecticide. In some cases, treatment agent may be in fluid phase. Sometimes, the treatment agent may be provided in a solidified form to resist spills and mess. In one such case, treatment agent fluid may be uptaken by a high surface area material from which treatment agent vapor may be released. Sometimes, the treatment agent may be provided in solid phase at room temperature. Heat energy may be applied to a treatment agent that is in liquid phase, solid phase, or solidified form to enhance broadcast of treatment agent in vapor phase to a local environment.
Desirably, the assembly includes a housing configured to contain the emanator and the heat source. An exemplary housing includes a plurality of apertures to permit migration of treatment agent in vapor state from the surface area to a local environment. A housing can be configured to define a safety perimeter. For example, a housing may be configured to resist contact of the emanator with a child's tongue or fingers. A housing may sometimes be configured to resist user contact with a heated portion. A preferred housing includes a base configured to support the energized assembly on top of a surface under the influence of gravity. Certain housings may include an upstanding wall to hold apertures through which vapor may pass to the local environment. One housing may also include a cap to cover a volume defined inside the housing. It is within contemplation that the housing and cap may be configured to cooperate upon assembly of the emanating assembly to resist nondestructive disassembly and unauthorized access to the emanator element. In some cases, the housing can include a hook configured to support the assembly from a cooperating perch.
A workable heat source may include one or more of: chemicals arranged to generate an on-demand exothermic reaction; structure or mechanism configured to absorb solar radiation (e.g., CuO coating); and an electrical circuit comprising a dry or wet cell battery disposed in a heat-generating configuration to generate heat within the battery. A workable heat source may include one or more commercially available battery from AAA to D cell size, or larger.
Certain embodiments may include a removable gas barrier arranged to resist initiation of an exothermic chemical reaction associated with the energizing heat source. Embodiments may include a time-delay mechanism to delay activation of the heat source until after a period of time subsequent to first deployment of the assembly to treat a local environment. An embodiment may include a heat conducting element disposed between the heat source and the volume to facilitate heat transfer from the energizing heat source toward the volume. Sometimes, the heat conducting element may also operate to resist migration of treatment agent toward the heat source. One workable heat conducting element is metallic foil.
Embodiments may optionally include a termination mechanism configured to resist further emanation of treatment agent in vapor state from the assembly to permit reuse of the apparatus at a subsequent time. Sometimes, an embodiment may include a trigger mechanism configured to initiate an exothermic reaction associated with the heat source. Embodiments may include a safety mechanism to resist undesired operation of the trigger mechanism. Embodiments may include an alternative safety mechanism to resist user access to a harmful component of the assembly. An exemplary safety mechanism to resist unauthorized access includes closely spaced apart louvers disposed around a perimeter of a tamper-proof housing.
One preferred embodiment includes an emanator element configured as a shell of revolution about an open core, a volume of the shell to hold a treatment agent, the open core to hold a flameless heat source. A quantity of the treatment agent can conveniently be disposed in the shell's volume. Treatment agent may sometimes be stored in the volume as a solid or solidified fluid. The currently preferred embodiment includes a heat source disposed in the open core, the heat source comprising an exothermic mixture of chemicals arranged for on-demand production of heat. A heat conducting element is disposed between the chemicals and the emanator element to facilitate an even temperature profile applied to the treatment agent. The preferred embodiment also includes a housing with a plurality of spaced apart rails to provide a plurality of discharge apertures for a vapor of the treatment agent, the housing being configured to resist disassembly and unauthorized access to the emanator element. Further, an air-tight packaging envelope is disposed to resist combination of oxygen from a local atmosphere with the exothermic chemicals.
An exemplary and substantially fully loaded embodiment includes an emanator element defining a volume in which to hold a treatment agent. Treatment agent can be a fluid. A quantity of the treatment agent is disposed in solidized form within the volume. A flameless heat source is disposed in operable association with the emanator, the heat source including an exothermic mixture of chemicals arranged for on-demand production of heat. A heat conducting element is disposed between the chemicals and the emanator element to promote application by the heat source of a uniform temperature profile onto the emanator. A housing is included to hold the emanator element in operable association with the heat source.
The housing of this fully loaded embodiment also includes a plurality of discharge pores or apertures for a vapor of the treatment agent, and can also be configured to resist disassembly and unauthorized access to the emanator element. A trigger mechanism may be provided to cause the heat source to generate heat on-demand. A safety mechanism can also be provided to resist undesired operation of the trigger mechanism. A gas generating element may be disposed to enhance flow of treatment agent in vapor phase from the apertures. A termination mechanism may be provided to interrupt generation of heat by the heat source to permit reuse of the apparatus at a subsequent time. Sometimes, a sequestering arrangement holds a first ingredient out of contact with a second ingredient prior to actuation of the trigger mechanism. The assembly is typically packaged inside an air-tight packaging envelope to resist combination of oxygen from a local atmosphere with the exothermic chemicals prior to placement in service to treat a local environment.
In the drawings, which illustrate what are currently considered to be the best modes for carrying out the invention:
Reference will now be made to the drawings in which the various elements of the illustrated embodiments will be given numerical designations and in which the invention will be discussed so as to enable one skilled in the art to make and use the invention. It is to be understood that the following description is only exemplary of certain principles of the present invention, and should not be viewed as narrowing the claims which follow.
An energized emanator assembly according to certain principles of the invention is illustrated generally at 100 in
Embodiments 100 may be used, for nonexclusive examples, to treat a local atmosphere with a pleasing scent, beneficial treatment agent, or insect repellant. A local atmosphere may be stationary (e.g., due to an embodiment sitting on a table), or mobile (e.g., a user may wear an embodiment). Examples may be discussed below with reference to a particular fluid, such as insect repellant, but no limitation to any particular fluid is intended. Certain embodiments may be disposable after a single-use. Other embodiments may be recharged, or regenerated, to operate a plurality of times in succession. An emanator assembly 100 according to certain principles of the invention may operate for a period of several hours, one or more days, weeks, months, or even longer. One preferred emanator assembly 100 may be constructed to operate for a period of between about four and eight hours, and then be discarded. It is within contemplation that part or all of an emanator assembly 100 may be structured to facilitate its biodegradability.
An assembly 100 includes an emanator 110, a quantity of treatment fluid 120, and a flameless heat source 130 or other mechanism to energize the assembly and cause enhanced emanation of a treatment substance. An exemplary heat source 130 is configured and arranged to facilitate volatization of the treatment fluid. Consequently, treatment fluid 120 is dispensed in vapor form 135 to a local environment at an enhanced rate compared to evaporation from the surface of a quantity of that treatment fluid at room temperature in undisturbed air. In certain cases, a housing, generally indicated at 140, is provided to maintain the heat source 130 in operable association with the treatment fluid 120.
An exemplary emanator element 110 may be manufactured from, or include, material capable of uptaking treatment fluid for storage of treatment fluid inside a storage volume of, or associated with, the emanator element 110. In any case, a workable emanator material permits migration of treatment fluid from the storage volume to a surface area from which the treatment fluid may volatize (or evaporate), to dispense treatment fluid as a vapor into the local environment. By “uptaking” it is intended to mean a process including one of more of absorbing, adsorbing, diffusing, and chemically reacting. Workable emanator material nonexclusively includes cotton, paper, cellulose, woven textile or random mat or 3-dimensional structure comprising natural or synthetic fibers, natural or synthetic open or closed cell sponge, high surface area (HSA) materials having a surface area greater than 10 m2/gm, diffusion membrane, porous metal, metallic textile or fabric, and the like. An emanator 110 may be configured to resemble a paper cup, balloon, cylinder, cube, shapeless mass, or any other desired shape. Preferred emanator elements 110 provide a vapor-emitting surface area of at least 1000 mm2.
A workable treatment fluid 120 may encompass one or more of scented oil, medicament, and insect repellant or insecticide. Volatile treatment fluid 120 within contemplation broadly include insect control chemicals, pest control chemicals, essential oils, and medicant chemicals. More specifically, operable insect control chemicals may include one or more of Deet, Picardine, Icaradin, IR3535, Metofluthrin, 1-methylpiperazine, or Permethrine, as well as Natural chemicals such as citriodiol and Oil of Lemon Eucalyptus. It is within contemplation that any volatizable fluid may be used in an assembly 100 as a treatment fluid 120 for application of the fluid's vapor 135 to a local environment.
A currently preferred fluid 120 is in a solidified form to reduce potential for spills and creation of a mess. By “solidified form” or “solidified fluid” it is intended to mean that the subject fluid is substantially confined in a medium to resist free-flowing fluid. Exemplary solidified fluid may be adsorbed or uptaken into a media such as a high surface area material. A workable fluid-holding media includes a material selected from the group including adsorbent high-surface area ceramic, Alumina, γ-form Alumina, Silica, activated carbon, carbon black, molecular sieves, zeolite, biopolymers such as cellulose sponge, absorbent fabric including cotton, cellulose, and the like. A workable adsorbent material may also include a material selected from the group including bitumen, wood dust, paper mäché, plastic clay, earth clay, cotton dust, ash, and cement powder. For purpose of this disclosure, a high-surface area material provides an available surface area that is greater than about 10 m2/g of material.
The resulting combination of fluid and media to produce a solidified fluid provides the fluid in usable form (e.g., for broadcast to a local environment, or to cause a chemical reaction), but does not present free flowing liquid. Consequently, solidified fluid will not cause a mess if the media providing the solidified fluid is spilled.
A flameless heat source 130 according to the instant invention is distinguished from a source of heat that is produced by conventionally burning a fuel in a flame (e.g., burning propane, butane, white gas, paraffin, oil, wood, paper, and the like). One currently preferred heat source 130 includes an arrangement of chemical ingredients that can react on-demand in a flameless exothermic chemical reaction. An exemplary such arrangement is found in commercially available hand or body warmers, such as hand warmers sold under the trade name “HOT and HOT”. A workable flameless heat source 130 includes an electrical circuit configured to create heat. For example, a battery or capacitor may be placed in circuit to discharge through a resistor or heater element. A quickly-discharged battery itself may constitute a flameless heat source 130. Another flameless heat source includes solar radiation, which may be harnessed to impart heat energy to volatize a treatment agent. For example, a heat transferring portion of an assembly according to certain principles of the invention may be coated with a substance such as copper oxide (CuO).
As is known, air-activated hand warmers can be made from Iron Fe, Cellulose C6H10O5, Activated carbon C, Water H2O, Polypropylene sack C3H6, Salt NaCl, and Vermiculite (MgFeAl)3(AlSi)4O10(OH)24H2O. Iron and Oxygen react producing heat. Water is the medium in which the Iron and the Oxygen react. Salt is a catalyst through the water speeding up the reaction. Activated carbon acts like charcoal in a BBQ grill and disperses the heat around the hand warmer. Vermiculite insulates the reaction in the hand warmer so it lasts longer. Cellulose takes up space/sometimes replaced with saw dust. Polypropylene sack keeps the moisture within the hand warmer.
In general, it is within contemplation to use some sort of self-heating chemical system using one or more primary components for exothermic reactions (such as calcium oxide), one or more porous components that can serve as a heat sink and conductor of heat as well as undergoing chemical transformations that release heat (zeolite), a weak acid (citric acid) for sustained modulation of temperature and pH. Exothermic reactions, mixing of some chemicals, sorption of certain chemicals, phase changes in chemicals, and dissolution of some chemicals in solvents release heat during these operations. The rate of heat generation coupled with mass and energy transfer rates to or from system(s) allows modulation of the temperature of systems. The modulation can be further enhanced by controlled release and availability of some of the components. This method provides with a class of self-heating product applications and focuses on the modulation of temperature through sequestering of reactions with different rates, heat release through dissolution, heat release through mixing, heat release through sorption, heat release through phase change as well as controlling mass and heat transfer rates.
Heat from the source 130 facilitates volatization of the treatment fluid 120. Consequently, a housing 140 may be provided to hold the heat source 130 in operable association with the treatment fluid 120. A workable housing 140 provides an avenue through which vaporized treatment fluid may be broadcast from stored or bulk treatment fluid to the local environment. For example, a housing 140 may include one or more aperture, generally 145, to permit passage of vapor from inside to outside of the housing. A workable aperture includes a pore in a diffusion membrane, space between fibers in a mat or cloth, window, door, gap, hole, louver, or other opening, and the like.
Sometimes, a housing 140 may also provide a protective or safety function. In one example, a housing 140 can be configured to resist access to stored treatment fluid 120 that is confined inside the housing. For example, a housing 140 may provide a protective physical barrier to resist placing a portion of an emanator 110 in a child's mouth, or to resist access of a child's tongue to a harmful chemical. One preferred housing 140 includes a closure element that resists nondestructive disassembly, and thereby, resists undesired access by a user to any potentially harmful contents inside the housing.
Assembly 100 may include a removable or openable gas barrier 150. A gas barrier 150 may operate to resist undesired initiation of an exothermic chemical reaction. An air barrier 150 may sometimes resist broadcast of vapors of treatment fluid prior to the time that a user places the assembly 100 into operation. An exemplary gas barrier 150 may be made from a sealed foil or plastic membrane. Location of a workable barrier 150 may be selected depending on its desired function. In one case, a barrier 150 may protectively envelop only a heat source 130 to restrict ingress of oxygen to an exothermic combination of ingredients. In another case, a barrier 150 may envelop the entire assembly 100, and can even function as packaging for sale. In certain cases, a volume inside barrier 150 may be evacuated, or filled with an inert gas during manufacture.
A trigger mechanism 160 may be included in certain embodiments of an assembly 100. When present, a trigger mechanism 160 may be operated to permit or cause flameless heat source 130 to generate heat. Many forms of an operable trigger mechanism 160 may be envisioned. A first exemplary trigger mechanism 160 can be constructed to pierce the wall of a container to combine ingredients for an exothermic reaction. A second exemplary trigger mechanism 160 may be constructed to release treatment fluid from confinement operably to place treatment fluid in contact with a heat source. Sometimes, a safety mechanism 170 may be included to resist undesired operation of a trigger mechanism 160.
Certain assemblies 100 may include a gas generating element 180. A workable gas generating element 180 can be disposed in association with treatment fluid 120 to facilitate evaporation of the treatment fluid by way of gas flow. Gas generators within contemplation nonexclusively include a fan and chemicals to cause effervescent chemical reactions.
One or more thermally conducting element 190 may be included in an assembly 100. Desirably, the thermally conductive element 190 is arranged to facilitate transmission of heat from the heat source 130 to the treatment fluid 120. A workable heat conducting element 190 includes a metallic element, such as Aluminum foil. A heat conducting element 190 may also function as a barrier to confine one or more element, fluid, or vapor. In certain embodiments, a thermally conductive element 190 may be perforated or provide access openings to facilitate transmission of treatment fluid in vapor form 135.
In certain cases, an energized emanator assembly 100 may be constructed to place treatment fluid 120 (and/or sometimes, a constituent material of a heat source), in a solidized form. By “solidized” it is intended to mean that the treatment fluid 120 is in condition to resist spilling or otherwise leaking from the assembly 100. Free-flowing fluid is distinguished over solidized fluid. Exemplary solidized treatment fluid may be formed by a process including adsorption or uptake of treatment fluid into one or more high surface area material, diffusion or adsorption of treatment fluid into a rubber or rubber-like material, or sufficiently complete absorption of treatment fluid into a substrate. A workable solidized water source includes water-jello or water beads.
Sometimes, an emanator assembly 100 may include a termination mechanism 210 to stop the enhanced rate of emanation. An exemplary termination mechanism 210 may nonexclusively include: structure configured to permit sealing or resealing part or all of an emanator inside an air-tight envelope; structure configured to permit removal of the volatile fluid from an energizing environment of the emanator; structure configured to stop an exothermic reaction in a heat source 130, and the like.
It is currently preferred to provide an air-tight barrier element 220 to resist undesired emanation of treatment fluid from an assembly 100. In certain cases, a barrier 220 may function to resist access of oxygen from the atmosphere to combine with one or more material of the assembly 100. In other cases, a barrier 220 may simply confine treatment vapors 135 inside a volume. A workable barrier 220 may also function as unit packaging, including display packaging for sale of an assembly 100.
Certain embodiments 100 may include a sequestering arrangement, generally 225, for initial isolation of the treatment fluid from operable association with an emanator or heat source. For example, treatment fluid 120 may be stored in assembly 100 separately from an emanator 110. A user may then take action to place the operable ingredients together or create a working combination.
Further, an embodiment 100 may include a time-delay mechanism, generally 230. It is within contemplation that a time-delay mechanism 230 may function in various useful ways. One way can be to delay peak energization of the assembly 100 for an extended period of time subsequent to placement of the assembly into service and compared to timed energy release rate from a device lacking the delay mechanism. A workable time-delay mechanism 230 can be based on fundamental effect of one or more material properties, or may employ an actual digital, electronic, or mechanical timer.
The embodiment 100 illustrated in
The embodiment 100 illustrated in
A hook 260 exemplifies a structure to conveniently hold the emanator 100 for emanation of treatment fluid in vapor form 135 in a local environment. Illustrated hook 260 may be considered as generally representing an element configured to support the apparatus from a cooperating perch. As will be understood, a perch may be embodied as a stick, rod, upstanding plate edge, or other support structure arranged to cooperate with the hook 260. A cooperating hook and perch may function to associate an embodiment with a mobile or stationary local environment. For purpose of this disclosure, a hook specifically encompasses a spring loaded clip, and a perch specifically encompasses an article of clothing or a personal item such as a backpack or purse. Alternative holding or support structure within contemplation includes a simple base to support assembly 100 on a flat surface, such as a table top.
The embodiment 100 illustrated in
A workable cage 264 may include louvers, generally 268, or other aperture structure to permit emanation of vapor 135 from the emanator element 110 to a local environment. Humidity in ambient air may be used in combination with removal of the packaging envelope 266 as a triggering mechanism to start an exothermic reaction. The illustrated emanator element 110 is directly coupled in thermally operable registration with exothermic material confined inside the heat source 130. Activated thermal material energizes the treatment fluid 120 that is embedded or dispersed in the emanator 110, and a vapor 135 is emanated through a louver 268 to the local atmosphere.
The embodiment 100 illustrated in
The embodiment 100 illustrated in
The embodiment 100 illustrated in
The emanator assembly 100 illustrated in
The emanator assembly 100 illustrated in
The emanator assembly 100 illustrated in
The emanator assembly 100 illustrated in
With reference to
Still with reference to
The energized emanator assembly 100 illustrated in
Still with reference to
The energized emanator assembly 100 illustrated in
The embodiment 100 illustrated in
The embodiment 100 illustrated in
One workable boundary element can include walls of cellulose sponge that are impregnated with treatment fluid. Another workable boundary includes encapsulating walls of high surface area material, such as ceramic, which are loaded with treatment fluid. Air may pass through a workable boundary material and into the exothermic mixture after a sufficient amount of treatment fluid 120 has evaporated, and a path for air ingress opens up.
In the embodiment 100 illustrated in
The embodiment of assembly 100 illustrated in
The carrier material 378 is desirably disposed for good thermal communication with the energy storing element or heat source 372. Broadly, a carrier material 378 may be considered as an absorber/emitter, because the carrier material 378 is loaded by treatment fluid 120 during manufacture of the assembly 100, then emits treatment in vapor form 135 during operation of the device 100. Workable materials of construction for a carrier material 378 include porous polymers, cotton and other fabric, felt, and the like.
In the assembly 100 illustrated in
The energized assembly 100 illustrated in
Still with reference to
The embodiment 100 illustrated in
A workable housing 140 may be manufactured by injection molding from an inexpensive plastic material. Sometimes, a housing may be treated to provide, or its constituent material(s) may be inherently of, enhanced biodegradability. Certain housings 140 can form part of an assembly 100 that is regarded as disposable after a single use. For purpose of this disclosure, enhanced biodegradability means decompose in a landfill within 5 years.
With continued reference to
An optional heat conducting element 190 may be included in the assembly 100 of
Still with reference to
Like elements in
The heat source 130 in
Table 1 below presents experimental data obtained by measuring the surface temperature of a variety of commercially available hand warmers after operation for one hour of exposure to 25° C. still ambient air. Individual hand warmers were removed from their respective packages, and simply suspended from a string in ambient (still) air. The hand warmers were exposed to air on all sides (uninsulated). No attempt was made to change their shape from the conventional “flat” shape as removed from their air-tight packaging. Temperatures were measured by thermocouple and laser thermometer.
As noted above, a chimney can increase the operating temperature of a commercially available hand warmer due to increasing oxygen availability for the chemical reaction. The surface temperature of one prototype reached 63° C. after one hour of operation. This prototype included a rolled-up commercially available hand warmer that was wrapped in a foil cylinder, and then wrapped in a cylindrical paper emanator, still air, 25° C. ambient air temperature.
Dissection of commercially available hand warmers indicates that the bag material used to confine the exothermic mixture of chemicals is nonporous to the naked eye. Further, the material appears to be coated on the inside bag surface, logically reducing the porosity and permeability to oxygen or air. It is believed that a bag or ingredient-housing having low permeability to air is desired to provide a longer time increment for operation at a mild temperature as a hand warmer. In general, hand warmers operate at less than 65° C. to avoid burning the user. In fact, the large 156 g hand warmer in Table 1 is a “super” model, intended for use at extreme low temperatures. Consequently, the hand warmer's surface temperature realized during its conventional use at a lower ambient temperature (where heat is extracted from the hand warmer at a faster rate by the lower temperature) would logically be lower than that measured at room temperature.
With reference again to
Porosity of certain commercially available bags was contrasted to comparably shaped cloth bags using water as a test media. 100 cc of water passed through a hand woven cheese cloth bag in less than 2 seconds. 100 cc of water passed through a machine woven cotton bag (purchased on-line from Amazon) in about 12 seconds. The empty bag from a Thermahand™ hand warmer was also tested with 100 cc of water. After 120 seconds, only a trace amount of moisture was visible on the outer surface of the hand warmer's bag.
Certain embodiments may include one ore more portion of a bag 418 that is of enhanced porosity compared to commercially available hand warmers. It is within contemplation that apertures of porous material may be provided in opposite ends of an elongate bag 418 to function cooperatively as a chimney. A draft effect somewhat equivalent to that from a chimney may be provided by an embodiment having a bag 418 that is entirely porous. It is further within contemplation that a bag, itself, may provide the volume in which to hold a quantity of treatment agent. A workable bag may be made from porous metal, or metallized fabric.
With reference now to
In the preferred configuration illustrated in
An emanator 438 typically surrounds the housing 282 to facilitate heat transfer from the confined and reacting exothermic materials to a treatment fluid contained in the emanator 438. Sometimes, the housing includes a portion of metallic construction to facilitate heat transfer. Other times, a separate metallic element may be disposed between the housing 282 and the emanator 438 to enhance conveyance of heat. Packaging 266 may provide a barrier to resist undesired release of treatment agent into a local environment, or to resist initiation of the exothermic reaction.
Table 2 below lists a few examples of workable combinations of anodes, cathodes, and their cooperating electrolytes. Electrolytes listed in Table 2 are broken down into their salt and a cooperating solvent. Typically, the solvent is the sequestered element. However, workable embodiments 100 may be constructed wherein the sequestered element may be an anode, a cathode, or the entire electrolyte.
An embodiment may be constructed to harness heat released from hot water for use to energize an emanator. A user may heat a quantity of water to, or near, boiling, and associate the heated water with an emanator that carries a treatment agent. For example, an emanator may be wrapped around a metal container. The user may use the container to hold the heated water for transfer of heat from the water to the agent disposed inside the emanator.
An embodiment according to certain aspects of the instant invention may be encompassed in a method to manufacture a device for dispensing vapor of a treatment agent. One such method includes the step of providing an emanator having a surface area disposed in operable association with a volume. That method further includes the step of disposing a quantity of liquid treatment agent inside the volume to permit emanation of treatment fluid in vapor phase from the surface area. A further step includes disposing a quantity of an exothermic chemical mixture as a heat source in operable association with the volume to apply heat energy to the treatment agent therein to volatize the fluid and cause the enhanced emanation of treatment fluid in vapor phase from the surface. A preferred exothermic reaction is air-activated. Desirably, the quantity is configured and arranged to exothermically react for a period of time in excess of four hours subsequent to exposure to air. A further step may optionally include disposing a metallic thermally conductive element between the emanator and the heat source. A further step includes disposing the emanator, heat source, and conductive element inside of a housing comprising an aperture configured to dispense treatment vapor to a local environment. Sometimes, the housing may be configured to resist unauthorized contact with the emanator. A final step may include disposing the housing inside an air-tight envelope to delay production of heat until a user-selected instance in time.
While aspects of the invention have been described in particular with reference to certain illustrated embodiments, such is not intended to limit the scope of the invention. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. For one example, one or more element may be extracted from one described or illustrated embodiment and used separately or in combination with one or more element extracted from one or more other described or illustrated embodiment(s), or in combination with other known structure. The described embodiments are to be considered as illustrative and not restrictive. Obvious changes within the capability of one of ordinary skill are encompassed within the present invention. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation-in-part of U.S. Utility patent application Ser. No. 17/322,849, filed May 17, 2021, for “FLAMELESS ENERGIZED EMANATOR”, and claims the benefit under 35 U.S.C. 119(e) of the filing date of Provisional Applications Ser. No. 63/120,664, filed Dec. 2, 2020, for “ENERGIZED EMANATOR”; and Ser. No. 63/133,686, filed Jan. 4, 2021, for “ENERGIZED EMANATOR”, the entire disclosures of which are all hereby incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
63120664 | Dec 2020 | US | |
63133686 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17322849 | May 2021 | US |
Child | 17353742 | US |