The present invention relates generally to smoke pots, and, more particularly, to a flameless smoke pot and method of operating the flameless smoke pot.
Smoke pots are typically used as ground-to-ground or ground-to-air signaling devices, target or landing zone marking devices, or as screening devices for military unit movements. Prior art and experimentation teach that obscuration efficiency is a function of particulate size, refractive index and concentration in the atmosphere. Conventional pyrotechnic obscurant compositions are, therefore, based on materials which generate a dense primary particulate, such as inorganic oxides, or compounds which easily form atmospheric aerosols, such as hydrochloric acid, polyphosphates, or phosphoric acid.
Chemicals in the category of screening smokes are those which, when dispersed in air, produce a cloud of finely divided particles of solid, liquid, or both. These are used to shield tactical operations or disrupt the movements of the enemy. Outstanding examples of such materials are: fuel oil used in “artificial fog” generators, white phosphorus, sulfur trioxide, titanium tetrachloride, and so called zinc chloride smokes. Each of the above-listed smoke-generating compositions is characterized by certain advantages and disadvantages in military operations, depending upon the importance of such factors as mobility of the smoke producing apparatus, toxicity, logistical considerations, and the total obscuring power of the composition employed.
According to the present invention, there is disclosed a flameless smoke pot. The smoke pot includes a casing having a side wall with air inlet openings containing a plurality of perforated tubes containing red phosphorous pellets. A heat generating pyrotechnic composition is disposed at a first end of the casing. A perforated flame arrester disposed above a second end of the casing. An igniting device is arranged in contact with the heat generating pyrotechnic composition.
According to the present invention, there is disclosed a flameless smoke pot including an elongated cylinder having an inlet opening at a first end, an outlet opening at a second end and a side wall with air inlet openings. A plurality of perforated tubes containing red phosphorous pellets disposed within the elongated container. A heat generating pyrotechnic composition is disposed within a container having an outlet opening mounted below the inlet opening at the first end of the elongated container. A perforated flame arrester having an open first end and a closed second end wherein the open first end is disposed above the second end of the elongated container.
Still further according to the present invention, a method of generating aerosol smoke with a flameless smoke pot is disclosed. Heat and oxygen generated with a heat generating pyrotechnic composition are directed through one or more perforated tubes containing red phosphorous pellets to produce white phosphoric acid clouds of smoke. The white phosphoric acid clouds of smoke are combined with atmospheric air and water to generate the white phosphoric acid clouds of aerosol smoke. The white phosphoric acid clouds of aerosol smoke are directed through a perforated flame arrester whereby visible flame is prevented from being created.
The structure, operation, and advantages of the present invention will become further apparent upon consideration of the following description taken in conjunction with the accompanying figures (FIGs.). The figures are intended to be illustrative, not limiting. Certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines which would otherwise be visible in a “true” cross-sectional view, for illustrative clarity.
In the drawings accompanying the description that follows, both reference numerals and legends (labels, text descriptions) may be used to identify elements. If legends are provided, they are intended merely as an aid to the reader, and should not in any way be interpreted as limiting.
In the description that follows, numerous details are set forth in order to provide a thorough understanding of the present invention. It will be appreciated by those skilled in the art that variations of these specific details are possible while still achieving the results of the present invention. Well-known processing steps are generally not described in detail in order to avoid unnecessarily obfuscating the description of the present invention.
In the description that follows, exemplary dimensions may be presented for an illustrative embodiment of the invention. The dimensions should not be interpreted as limiting. They are included to provide a sense of proportion. Generally speaking, it is the relationship between various elements, where they are located, their contrasting compositions, and sometimes their relative sizes that is of significance.
In the drawings accompanying the description that follows, often both reference numerals and legends (labels, text descriptions) will be used to identify elements. If legends are provided, they are intended merely as an aid to the reader, and should not in any way be interpreted as limiting.
The present embodiment, as shown in
In operation, the chemical reaction of the red phosphorous smoke material and the heat generating pyrotechnic composition is as follows:
Red phosphorus smoke material (54) reacts with oxygen and water to produce “smoke.”
4 P (red)+heat→P4 (gas)
P4 (gas)+5 O2→2 P2O5 (solid)+heat
As indicated directly below, the resulting phosphorus pentoxide (P2O5) is highly hygroscopic and attracts enough water to produce dense white phosphoric acid clouds.
P2O5+3 H2O→2 H3 PO4+heat
The hygroscopic phosphorus acid vapor P2O5 adds water from the atmosphere to produce, a dense white cloud of an aerosol smoke.
The present invention relates to a smoke-producing device 10 which produces a flame that is barely visible. The difficulties in promoting the reactions without flaming are: 1) achieving a reaction rate that produces acceptable smoke generation; and 2) achieving complete phosphorus conversion. If the red phosphorus and the oxidizer with fuel are not mixed together, they can be located so as to optimize the arrangements for their interactions. The low flame concept of the present embodiment is achieved by physically separating the smoke material (the red phosphorus pellets 54) and the heat source material (the heat generating pyrotechnic composition 14). The heat source material must supply the smoke material with just the amount of energy needed for generating the smoke. If more energy were provided, flaming of the red phosphorus would result as with the currently used phosphorus compositions that produce a yellow flame which identifies the location of the smoke pot location, such as to the enemy and is therefore a safety hazard for those using the prior art smoke pot.
As seen in
The open bottom end 30a of a casing or container 30, such as an elongated cylinder, is secured at end 30a by any means such as welding to the support plate 28. The elongated cylinder 30 is positioned so that it is centered atop the opening 26 through the support plate 28. The elongated cylinder 30 has air inlets 31 disposed therethrough in its side wall 30c. Support plate 28 and four holes 29a-29d corresponds to the shape and location of holes 21a-21d in bottom base plate 20. As seen in
As shown in
A central perforated or woven wire container, such as a tube 40, as shown in
Atop second support plate 32 is a perforated metal flame arrester 50, which is typically a hollow, perforated metallic canister, such as cylindrically shaped canister of any suitable dimensions. The flame arrester 50 can be constructed of any casing material, such as for example steel. The perforated metal flame arrester 50 sits atop the third support plate 32 and is centered over the opening 35 in support plate 32 so as to cool the exiting gas flowing through the red phosphorous pellets provided in perforated cylinders 38 to below flame temperature as described in more detail hereinafter. The perforated metal flame arrester 50 is held in place by a solid, fourth support plate 52 having four holes 52a, 52b, 52c, and 52d (52a-52d) in each corner which corresponds to the shape and location of holes 21a-21d in bottom base plate 20, holes 29a-29d in first support plate 28, and holes 32a-32d in second support plate 32. When the smoke pot 10 is assembled with rods 22a-22d, the perforated metal flame arrester 50 is held in place between support plate 32 and sold support plate 52.
Located within each of the cylindrically shaped, perforated or woven wire tubes or containers 38 are red phosphorous pellets 54, preferably having a right circular cylindrical shape. However, it is within the terms of the preferred embodiment to use red phosphorous pellets of any desired shape. Note that although the pellets 38 “touch” each other, they are not pressed into the wire tubes or containers because there must be space between the cylindrical sides of adjacent pellets to allow smoke to exit. The phosphorous pellets 54 in perforated cylinders 38 are smoke generating and designed from red phosphorus powder and a binder permitting a right circular cylinder pellet shape, such as those from L8AI grenades. These red phosphorous pellets are nominally 0.25 inch in diameter by 0.25 inches long and can be made, for example, from red phosphorus and a 5% uncured butyl rubber binder.
In general, the perforated or woven wire tubes 38 are designed with a relatively small diameter to expose more of the surface of pellets 54 to the heat and oxygen generated by the heat and oxygen pyrotechnic composition 14. The greater the exposure of the surface of pellets 54 to the heat and oxygen generated, the greater the red phosphorus reaction rate and smoke formation.
As illustrated in
In operation, the heat and oxygen pyrotechnic composition 14 in container 12 are ignited by a conventional igniting device 24. The generated heat and oxygen gas passes out of outlet opening 19 of container 12, through the opening 26 in support plate 28, through central perforated tube 40 and into the perforated or woven wire tubes 38 where it engulfs the red phosphorous pellets 54. Atmospheric air and water enters into the elongated cylinder 30, such as though air inlet openings 31 in the wall of elongated cylinder 30 as shown in
The white phosphoric acid clouds of an aerosol smoke exits from the opening 38b at the top of the tubes 38 and from spaces between tubes 38 and casing 30, flows through opening 35 in support plate 32 and into the perforated metal flame arrester 50, which is typically a hollow, cylindrical shaped perforated metallic canister. The resulting dense white phosphoric acid cloud flows through the sides of the flame arrester 50 and around the sides of the support plate 52. Being that the perforated metal flame arrester 50 sits atop the third support plate 32 and is centered over the opening 35 in support plate 32 any visible flame from the white phosphoric acid cloud is prevented from being created. This is because the exiting smoke, formed by the white phosphoric acid cloud, is cooled by the perforated metal flame arrester 50 to below flame temperature.
That is, the flame arrester 50 functions by forcing a flame front created by heating the red phosphorous pellets 54 to flow through channels, i.e., the openings through the perforated or woven wire of the flame arrester 50, which are too narrow to permit the continuance of a flame.
By separating the red phosphorus pellets 54 from the heat generating pyrotechnic composition 14, the quantities and the reaction rates of the independent compositions can be optimized so that the resulting smoke is produced without or substantially without flame.
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, certain equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, etc.) the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiments of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several embodiments, such feature may be combined with one or more features of the other embodiments as may be desired and advantageous for any given or particular application.
The invention described herein may be manufactured, used and licensed by or for the United States Government.
Number | Name | Date | Kind |
---|---|---|---|
2119697 | Anderson | Jun 1938 | A |
3110259 | Dersarl | Nov 1963 | A |
3730093 | Cummings | May 1973 | A |
4291629 | Kezer | Sep 1981 | A |
4697521 | Espagnacq et al. | Oct 1987 | A |
4833993 | Garcia-Garcia | May 1989 | A |
6666143 | Collins | Dec 2003 | B1 |
7337724 | Sibum et al. | Mar 2008 | B2 |