The present invention relates generally to coaxial connectors.
Traditional high frequency coaxial connector designs similar to those referenced in IEEE-STD-287 utilize a threaded outer conductor and pin/socket center conductor design. The threaded outer conductor allows two connectors to be securely mated together and slotted contacts allow a reliable and repeatable connection. Higher frequency coaxial connectors must reduce in size to prevent higher order modes from propagating. However, when machining smaller size connectors, features such as slotted contacts cannot be machined and are impractical. Furthermore, reducing the size of threaded outer conductors 1) enforces a minimum connector length increasing the mechanical torque sensitivity on the connector system and 2) reduces the connectors overall strength.
Alternative coaxial connector designs use conductive elastomers on the coaxial outer conductor to electrically connect signal ground as described in U.S. Pat. No. 9,685,717. At the contact location, it is desired to have a constant impedance over the structures length and at the point where the mating connector is making contact with the conductive elastomers. However, with this approach, it is difficult to maintain a constant coaxial impedance by the presence of the mechanical stops and ground elastomers mounted on the coaxial cable's dielectric and outer conductor edge, respectively.
Other alternative coaxial connector assemblies have been used that require metal retaining tabs (attached around the pin) to be inserted in a catch formed into a housing as described in U.S. Pat. Nos. 9,680,245 and 9,153,890. However, with these attributes, the structure cannot support high frequencies since the connector's impedance changes over its length (due to metal tab and change in housing diameter) causing significant signal reflections.
Accordingly it would be desirable to provide new high frequency coaxial connector designs which overcome the problems observed in the prior art, In particular it would be desirable to provide coaxial connector designs which can be manufactured at small size with high strength, have low torque sensitivity, have constant and repeatable coaxial impedance, and which support high frequencies.
Accordingly it is an object of the present invention to provide new high frequency coaxial connector designs which overcome the problems observed in the prior art, In particular the present invention provides a flange-mount coaxial connector system which can be manufactured at small size with high strength, have low torque sensitivity, have constant and repeatable coaxial impedance, and which support high frequencies.
These and other objects and advantages of the present invention will become apparent to those skilled in the art from the following description of the various embodiments, when read in light of the accompanying drawings.
The following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout.
In the following description, numerous specific details are set forth to provide a thorough description of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.
In accordance with an embodiment, a flange mount, frequency and mechanically scalable, DC coupled, millimeter wave coaxial broadband transmission line structure is provided which easily adapts from its native coaxial structure to waveguide. This connector system can be used, for example, in a VNA system such as the Broadband ME7838 VNA system offered by ANRITSU®.
In accordance with an embodiment, the coaxial connector system uses a flange mating system and a conducting elastomer center conductor contact. Precision guiding pins and screws axially align and secure the mating flanges together. The coaxial center conductors are electrically connected to each other through an electrically conductive, compressed elastomer. Additional flanges can be connected against the elastomer to transition to band limited waveguide interfaces.
In accordance with an embodiment, a connector system comprises a cylindrical conductive elastomer to electrically connect two center conductors of the same diameter to form a continuous impedance TEM transmission line structure with minimum signal reflection.
In accordance with an embodiment, a coaxial connector system using a precision pin guided flange mount mating interface ensuring precise axial alignment between connectors and ensuring mode free operation.
In accordance with an embodiment, a connector system comprises mating flanges which provide a continuous ground between both a coaxial-to-coaxial connection, and a coaxial-to-waveguide connection.
In accordance with an embodiment, a coaxial connector flange system allows attachment of single piece, waveguide transition flanges to convert from native coaxial transmission line structure to band-limited waveguide interfaces.
In accordance with an embodiment, the elastomer coaxial assembly is a removable adapter and not permanently mounted to the system. The adapter can be replaced as necessary without impact to system.
In the embodiment of
The center conductor assembly with the single, machined center conductor 324 provides a fully captivated center conductor assembly. The two Polyimide beads 325, 326 capture and position the center conductor in the center of the central bore 310 of the flange 300 while ensuring that the central conductor is electrically isolated from flange 300.
The coaxial center conductors are electrically connected to each other through an electrically conductive, compressed elastomer.
During assembly, part of the center connector is honed off using a fixture. The first Polyimide bead is slid over center conductor. The center conductor and bead is inserted into the middle flange. The bead seats in a counter bore of middle flange. The second bead is then slid over center conductor on the other side of the middle flange. Again, the bead seats in a counter bore of middle flange. The middle flange, center conductor and beads are placed in in a compression fixture. The outer flanges are connected to the middle flange using dowel pins to align the flange layers with each other. The elastomer pads are secured to the ends of the center conductor using silver epoxy. Four short 4-40 screws and nuts are used to secure the three flanges together. Epoxy is applied around the outer rim and interior holes 510 to secure the three flange layers together. Once the epoxy has cured the connector is complete and ready for use.
When two flanges are fastened together, the elastomer is compressed to a precise percentage of its uncompressed length. Compressing the elastomer increases its diameter equal to the diameter of the center conductor producing a constant impedance over its length. Unlike threaded outer conductor coaxial connector systems, the flange mount coaxial connector system flange provides a robust, mechanically stable mount which minimizes electrical performance changes with mechanical torque (torque sensitivity) due to heavy devices under test (DUTs) attached to the connector system.
The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the embodiments of the present invention. While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
The present application claims priority to U.S. Provisional Application 62/732,252 entitled FLANGE MOUNT COAXIAL CONNECTOR SYSTEM filed Sep. 17, 2018 which application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4426127 | Kubota | Jan 1984 | A |
4672342 | Gartzke | Jun 1987 | A |
5134364 | Karpman | Jul 1992 | A |
5141444 | Redmond | Aug 1992 | A |
5801525 | Oldfield | Sep 1998 | A |
5812039 | Oldfield | Sep 1998 | A |
5909192 | Finch | Jun 1999 | A |
5977779 | Bradley | Nov 1999 | A |
6049212 | Oldfield | Apr 2000 | A |
6291984 | Wong | Sep 2001 | B1 |
6316945 | Kapetanic | Nov 2001 | B1 |
6331769 | Wong | Dec 2001 | B1 |
6496353 | Chio | Dec 2002 | B1 |
6504449 | Constantine | Jan 2003 | B2 |
6509821 | Oldfield | Jan 2003 | B2 |
6525631 | Oldfield | Feb 2003 | B1 |
6529844 | Kapetanic | Mar 2003 | B1 |
6548999 | Wong | Apr 2003 | B2 |
6650123 | Martens | Nov 2003 | B2 |
6665628 | Martens | Dec 2003 | B2 |
6670796 | Mori | Dec 2003 | B2 |
6680679 | Stickle | Jan 2004 | B2 |
6700366 | Truesdale | Mar 2004 | B2 |
6700531 | Abou-Jaoude | Mar 2004 | B2 |
6714898 | Kapetanic | Mar 2004 | B1 |
6766262 | Martens | Jul 2004 | B2 |
6832170 | Martens | Dec 2004 | B2 |
6839030 | Noujeim | Jan 2005 | B2 |
6882160 | Martens | Apr 2005 | B2 |
6888342 | Bradley | May 2005 | B2 |
6894581 | Noujeim | May 2005 | B2 |
6917892 | Bradley | Jul 2005 | B2 |
6928373 | Martens | Aug 2005 | B2 |
6943563 | Martens | Sep 2005 | B2 |
7002517 | Noujeim | Feb 2006 | B2 |
7011529 | Oldfield | Mar 2006 | B2 |
7016024 | Bridge | Mar 2006 | B2 |
7019510 | Bradley | Mar 2006 | B1 |
7054776 | Bradley | May 2006 | B2 |
7068046 | Martens | Jun 2006 | B2 |
7088111 | Noujeim | Aug 2006 | B2 |
7108527 | Oldfield | Sep 2006 | B2 |
7126347 | Bradley | Oct 2006 | B1 |
7173423 | Buchwald | Feb 2007 | B2 |
7284141 | Stickle | Oct 2007 | B2 |
7304469 | Bradley | Dec 2007 | B1 |
7307493 | Feldman | Dec 2007 | B2 |
7509107 | Bradley | Mar 2009 | B2 |
7511577 | Bradley | Mar 2009 | B2 |
7521939 | Bradley | Apr 2009 | B2 |
7545151 | Martens | Jun 2009 | B2 |
7683602 | Bradley | Mar 2010 | B2 |
7683633 | Noujeim | Mar 2010 | B2 |
7705582 | Noujeim | Apr 2010 | B2 |
7746052 | Noujeim | Jun 2010 | B2 |
7764141 | Noujeim | Jul 2010 | B2 |
7872467 | Bradley | Jan 2011 | B2 |
7924024 | Martens | Apr 2011 | B2 |
7957462 | Aboujaoude | Jun 2011 | B2 |
7983668 | Tiernan | Jul 2011 | B2 |
8027390 | Noujeim | Sep 2011 | B2 |
8058880 | Bradley | Nov 2011 | B2 |
8145166 | Barber | Mar 2012 | B2 |
8156167 | Bradley | Apr 2012 | B2 |
8159208 | Brown | Apr 2012 | B2 |
8169993 | Huang | May 2012 | B2 |
8185078 | Martens | May 2012 | B2 |
8278944 | Noujeim | Oct 2012 | B1 |
8294469 | Bradley | Oct 2012 | B2 |
8305115 | Bradley | Nov 2012 | B2 |
8306134 | Martens | Nov 2012 | B2 |
8410786 | Bradley | Apr 2013 | B1 |
8417189 | Noujeim | Apr 2013 | B2 |
8457187 | Aboujaoude | Jun 2013 | B1 |
8493111 | Bradley | Jul 2013 | B1 |
8498582 | Bradley | Jul 2013 | B1 |
8538350 | Varjonen | Sep 2013 | B2 |
8593158 | Bradley | Nov 2013 | B1 |
8629671 | Bradley | Jan 2014 | B1 |
8630591 | Martens | Jan 2014 | B1 |
8666322 | Bradley | Mar 2014 | B1 |
8718586 | Martens | May 2014 | B2 |
8760148 | Bradley | Jun 2014 | B1 |
8816672 | Bradley | Aug 2014 | B1 |
8816673 | Barber | Aug 2014 | B1 |
8884664 | Bradley | Nov 2014 | B1 |
8903149 | Noujeim | Dec 2014 | B1 |
8903324 | Bradley | Dec 2014 | B1 |
8942109 | Dorenbosch | Jan 2015 | B2 |
9103856 | Brown | Aug 2015 | B2 |
9103873 | Martens | Aug 2015 | B1 |
9153890 | Warwick | Oct 2015 | B2 |
9176174 | Bradley | Nov 2015 | B1 |
9176180 | Bradley | Nov 2015 | B1 |
9210598 | Bradley | Dec 2015 | B1 |
9239371 | Bradley | Jan 2016 | B1 |
9287604 | Noujeim | Mar 2016 | B1 |
9331633 | Robertson | May 2016 | B1 |
9337941 | Emerson | May 2016 | B2 |
9366707 | Bradley | Jun 2016 | B1 |
9455792 | Truesdale | Sep 2016 | B1 |
9560537 | Lundquist | Jan 2017 | B1 |
9571142 | Huang | Feb 2017 | B2 |
9588212 | Bradley | Mar 2017 | B1 |
9594370 | Bradley | Mar 2017 | B1 |
9606212 | Martens | Mar 2017 | B1 |
9680245 | Warwick | Jun 2017 | B2 |
9685717 | Warwick | Jun 2017 | B2 |
9696403 | Elder-Groebe | Jul 2017 | B1 |
9733289 | Bradley | Aug 2017 | B1 |
9753071 | Martens | Sep 2017 | B1 |
9768892 | Bradley | Sep 2017 | B1 |
9860054 | Bradley | Jan 2018 | B1 |
9964585 | Bradley | May 2018 | B1 |
9967085 | Bradley | May 2018 | B1 |
9977068 | Bradley | May 2018 | B1 |
10003453 | Bradley | Jun 2018 | B1 |
10006952 | Bradley | Jun 2018 | B1 |
10064317 | Bradley | Aug 2018 | B1 |
10116432 | Bradley | Oct 2018 | B1 |
20060046564 | Stanford | Mar 2006 | A1 |
20070227757 | Moore | Oct 2007 | A1 |
20080072422 | Levante | Mar 2008 | A1 |
Entry |
---|
Akmal, M. et al., “An Enhanced Modulated Waveform Measurement System for the Robust Characterization of Microwave Devices under Modulated Excitation”, Proceedings of the 6th European Microwave Integrated Circuits Conference, Oct. 10-11, 2011, Manchester, UK, © 2011, pp. 180-183. |
Cunha, Telmo R. et al., “Characterizing Power Amplifier Static AM/PM with Spectrum Analyzer Measurements”, IEEE © 2014, 4 pages. |
Fager, Christian et al., “Prediction of Smart Antenna Transmitter Characteristics Using a New Behavioral Modeling Approach” IEEE® 2014, 4 pages. |
Fager, Christian et al., “Analysis of Nonlinear Distortion in Phased Array Transmitters” 2017 International Workshop on Integrated Nonlinear Microwave and Millmetre-Wave Circuits (INMMiC), Apr. 20-21, 2017, Graz, Austria, 4 pages. |
Martens, J. et al., “Towards Faster, Swept, Time-Coherent Transient Network Analyzer Measurements” 86th ARFTG Conf. Dig., Dec. 2015, 4 pages. |
Martens, J., “Match correction and linearity effects on wide-bandwidth modulated AM-AM and AM-PM measurements” 2016 EuMW Conf. Dig., Oct. 2016, 4 pages. |
Nopchinda, Dhecha et al., “Emulation of Array Coupling Influence on RF Power Amplifiers in a Measurement Setup”, IEEE © 2016, 4 pages. |
Pedro, Jose Carlos et al., “On the Use of Multitone Techniques for Assessing RF Components' Intermodulation Distortion”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, No. 12, Dec. 1999, pp. 2393-2402. |
Ribeiro, Diogo C. et al., “D-Parameters: A Novel Framework for Characterization and Behavorial Modeling of Mixed-Signal Systems”, IEEE Transactions on Microwave Theory and Techniques, vol. 63, No. 10, Oct. 2015, pp. 3277-3287. |
Roblin, Patrick, “Nonlinear RF Circuits and Nonlinear Vector Network Analyzers; Interactive Measurement and Design Techniques”, The Cambridge RF and Microwave Engineering Series, Cambridge University Press © 2011, entire book. |
Rusek, Fredrik et al., “Scaling Up MIMO; Opportunities and challenges with very large arrays”, IEEE Signal Processing Magazine, Jan. 2013, pp. 40-60. |
Senic, Damir et al., “Estimating and Reducing Uncertainty in Reverberation-Chamber Characterization at Millimeter-Wave Frequencies”, IEEE Transactions on Antennas and Propagation, vol. 64, No. 7, Jul. 2016, pp. 3130-3140. |
Senic, Damir et al., “Radiated Power Based on Wave Parameters at Millimeter-wave Frequencies for Integrated Wireless Devices”, IEEE © 2016, 4 pages. |
Number | Date | Country | |
---|---|---|---|
62732252 | Sep 2018 | US |