This application claims priority to Italian Patent Application No. TO2010A000306 filed on Apr. 15, 2010, the contents of which are incorporated fully herein by reference.
The present invention relates to bearings, and more particularly to lightweight, flanged bearing rings for the hub of a motor vehicle wheel.
The bearing ring of wheel hub bearings may either be a stationary ring with a flange for mounting the relevant hub-bearing unit to the suspension standard of a motor vehicle, or a rotatable ring where the flange provides connection to the wheel and/or the brake rotor.
There is an ever increasing demand for weight reduction in motor vehicle components for the sake of cutting down fuel consumption and exhaust emissions. With a vehicle wheel bearing, weight reduction must not result in a reduction in strength and/or safety. The raceways must be made of a material having hardness sufficient to resist the stresses of rolling contact. Conventional bearing steel is still widely used, although other materials have been proposed, such as ceramics and titanium, which provide good mechanical performance but are considerably more expensive as compared to bearing steel.
WO 2008/147284 A1 discloses a bearing ring made up of two different materials joined together in a single piece, namely a first, high toughness material such as bearing steel forming the raceways and a second, lightweight material, such as a lightweight metal, forming the rest of the ring. The second material is joined to the first material by a semi-solid casting process.
It is an object of the present invention to improve the connection between the two different portions of a flanged bearing ring made of two different materials, namely a first, hard material and a second, lightweight material. Particularly, it is desired to improve such a connection at least at high working temperatures.
The present invention is directed to a flanged bearing ring for a motor vehicle wheel that provides improvements in the key areas of bearing ring performance. That is, the bearing ring of the invention provides a lower weight, while ensuring the required high strength capabilities. The ring is made up of two different materials joined together as a single piece, and includes a radially inner, annular or tubular insert, and a radially outer body formed around the insert. The insert forms one or more raceways and is made of a hard material with a first thermal expansion coefficient. The outer body provides a radially outwardly extending flange and is made of a lightweight material with a second thermal expansion coefficient higher than that of the first material. Interlocking means, formed by the insert and the outer body, lock these two bodies together against relative axial movement. The interlocking means include one or more radially recessed portions at an outer surface of the insert. Respective, complementary radially protruding portions are formed by the outer body, thereby preventing axial movement between the outer body and the inner insert at least at high working temperatures. Preferably, these mating protrusions and recesses at the interface between the outer body and the inner insert are so shaped as also prevent relative rotary movement between the outer body and the inner insert.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings in which like numerals are used to designate like features.
In order that the present invention may be well understood there will now be described a few preferred embodiments thereof, given by way of example, reference being made to the accompanying drawings, in which:
Referring first to
The ring 10 comprises a radially inner insert 12 of generally annular or tubular shape and a radially outer body 13 providing a radially outwardly extending flange 14 near an outboard end of the insert 12. The flange 14 provides a number of through bores 24 to allow connection to the suspension standard by means of stud bolts. Although the bearing ring 10 shown in
Preferably, the radially inner insert 12 is formed of a first, relatively hard material having a first, lesser volumetric thermal expansion coefficient and the radially outer body 13 is formed of a second, “lightweight” (i.e., relatively low density) material with a second, volumetric thermal expansion coefficient higher than that of the first material. Since the insert 12 provides one or more raceways 11, a hard and tough material suitable for the insert 12 is, for example, a bearing grade steel. As alternatives, low carbon steel or a ceramic may be used. As a lightweight material for the outer body 13, a lightweight or low density metal is preferred, such as aluminium, magnesium, or alloys thereof. Other suitable materials for the outer body 13 may include, but not be limited to, carbon composites or reinforced polymers.
The insert 12 is machined so as to form, in its radially outer surface 23, at least one radially recessed, circumferentially extending annular “groove” or recess 16. The recess 16 is defined by a central circumferential portion of lesser diameter than the remainder of the outer surface 23 and a pair of facing, generally radial surfaces extending between each edge of the central portion and the outer surface 23. In a preferred embodiment, the insert 12 has a single recess 16 extending circumferentially and continuously about the outer surface 23 of the insert 12, but may alternatively have a plurality of circumferentially spaced, generally arcuate recesses 16. As better explained in the following, the recess 16 provides part of an interlocking means for preventing relative axial movement between the insert 12 and the outer body 13. To some extent, depending on the cross-sectional shape of the recess 16, these interlocking means will also prevent radial movement between the insert 12 and the outer body 13, when one or more undercuts 20 are provided, as in the embodiments of
Preferably, the outer body 13 is formed and joined to the insert 12 by means of a semi-solid casting process, which is a near net shape process wherein the metal of the outer body 13 is formed at a temperature between liquid and solid states. The advantage of a semi-solid casting process as opposed to a molten metal process, such as high pressure die casting, is that the outer body 13 obtains a denser, dendrite-free microstructure providing the strength and crack-propagation resistance required for bearing applications. Also, the semi-solid casting process allows the outer body 13 to more readily achieve a desired final shape in applications where the surfaces at the interface between the insert 12 and the outer body 13 have a particularly complex shape, for example if undercuts are provided.
The wheel-mounting flange 14 can be formed with the necessary geometry to ensure sufficient stiffness. Moreover, the bores 24 in the wheel mounting flange 14 can be provided during the semi-solid casting process, by forming the semi-solid metal of the flange 14 around appropriately positioned threaded nuts or stud bolts.
A rheocasting process is one example of a preferred semi-solid casting process. Using aluminium as an example of the lightweight metal for the outer body 13, a rheocasting process initially involves bringing the aluminium to a molten (liquid) state. The molten aluminium is then allowed to cool and is stirred during solidification to obtain a semi-solid slurry. The step of cooling can involve adding solid particles of aluminium to the molten material and, for enhanced efficiency, the solid particles can be added via a stirring mechanism. An exchange of enthalpy takes place between the liquid aluminium and the solid particles, which facilitates the formation of the slurry and can dispense from the need for external cooling. The semi-solid aluminium slurry is then injection-moulded to the inner insert 12 with the aid of a suitable die that defines the required shape of the wheel mounting flange 14.
While it is preferred, as already indicated, to form the outer body 13 by a semi-solid casting process, in its broadest aspect the invention is not so limited and encompasses the possibility of sintering or casting, die-casting or otherwise forming the outer body about the inner insert 12.
As the second material of the outer body 13 cools and solidifies, the body 13 shrinks. Basically, contraction occurs in a radially inward direction, towards the central axis of rotation x of the bearing unit. Thus, the semi-solid metal of the outer body 13 shrinks into the recess 16 of the insert 12 and forms a projection 19 tightly copying or following the shape of recess 16, so as to interlock, and substantially prevent relative axial movement between, the outer body 13 and the insert 12. Even at high working temperatures, relative movement between the outer body 13 and the insert 12 is substantially prevented by the interlocking means 16, 19. The nearness of the brakes to a typical wheel bearing hub creates harsh operating conditions, which generally results in considerable dimensional changes due to temperature. In such an occurrence, the outer body 13 will expand more that the insert 12 and will tend to separate therefrom. However, the projection or tongue 19 will expand more than the recess 16 within which it is seated, thereby substantially preventing any axial play between the outer body 13 and the insert 12.
The interlocking means 16, 19 may be formed in a variety of different structures. In a less preferred embodiment (not shown), the recess 16 (and projection 19) may have a generally rectangular cross-sectional shape as taken in an axial plane. Referring to
A variety of different designs of wheel bearing units may be produced utilizing the bearing ring 10 of the present invention. For example, the bore of the insert 12 can serve as an outer raceway for rolling elements of a constant velocity joint and the bearing unit can further comprise an integral CV joint. Moreover, the bearing unit can be a single row or a double-row angular contact bearing in which the rolling elements are balls, rollers, flattened balls etc. Also, when the unit is a double-row bearing, the raceways 11 for the first and second rows of rolling elements can be equal in diameter, or the diameter can differ.
Further embodiments are schematically depicted in
While a few illustrative embodiments have been disclosed in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the illustrative embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing the invention, it being understood that various changes may be made in the function and arrangement of elements described in the exemplary embodiments without departing from the scope as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
TO2010A000306 | Apr 2010 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
1652468 | Catlin | Dec 1927 | A |
2387182 | Procter | Oct 1945 | A |
2779641 | Sutowski | Jan 1957 | A |
3317256 | Ernest | May 1967 | A |
3586357 | Orain | Jun 1971 | A |
3832024 | Nishikawa | Aug 1974 | A |
3938864 | Haussels | Feb 1976 | A |
4010986 | Otto | Mar 1977 | A |
4125298 | Heurich et al. | Nov 1978 | A |
4213660 | Yasui et al. | Jul 1980 | A |
4685611 | Scobie et al. | Aug 1987 | A |
4925322 | Hishida | May 1990 | A |
5066147 | Brandenstein et al. | Nov 1991 | A |
5542752 | Quaglia | Aug 1996 | A |
6170919 | Hofmann et al. | Jan 2001 | B1 |
6238096 | Allen et al. | May 2001 | B1 |
6485188 | Dougherty | Nov 2002 | B1 |
6505973 | Buchheim et al. | Jan 2003 | B2 |
6626579 | Silvasi | Sep 2003 | B1 |
6715925 | Pairone et al. | Apr 2004 | B2 |
6866422 | Griseri et al. | Mar 2005 | B2 |
6935026 | Frantzen | Aug 2005 | B2 |
7654745 | Maloney | Feb 2010 | B2 |
20070098315 | Komori et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
19918351 | Oct 2000 | DE |
10061663 | Jun 2002 | DE |
1046828 | Oct 2000 | EP |
1830097 | Sep 2007 | EP |
1510546 | May 1978 | GB |
WO2008147284 | Dec 2008 | WO |
WO 2009077259 | Jun 2009 | WO |
WO2010012283 | Feb 2010 | WO |
WO2010012284 | Feb 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20110255819 A1 | Oct 2011 | US |