The invention is directed to flanged fittings for pipelines.
Flanged fittings are used for a variety of purposes in rigid piping systems. For example, in hot tapping operations a fitting can be welded to the pipeline at a location where the tap is to be made. The fitting can extend radially from the pipeline. After the fitting with flange is attached, a tapping valve can be attached to the flange and a tapping machine can then be mounted on the tapping valve. After the tapping operation is complete, the tapping machine can be removed from the tapping valve and replaced with a plugging machine to provide a non-permanent plug which blocks flow of material being transported through the pipeline so that maintenance can be performed on the pipeline. Following maintenance, the non-permanent plug can be withdrawn from the pipeline and replaced with a permanent plug which is positioned in the fitting. To complete the operation, a blind flange is connected to the flanged fitting on the pipeline.
Flanged fittings may also be used in line stop assemblies in operations where it is desired to temporarily prevent fluid flow through a selected pipeline section, such as to provide maintenance or modifications a downstream pipeline section. In a line stop assembly a pipeline sleeve can be first mounted or clamped over a target segment of the pipeline. A flanged fitting can be attached to the pipeline through the pipeline sleeve to extend radially from the pipeline. Next, a temporary valve can be attached to the flanged fitting and the pipeline can be tapped. After the tapping process, a completion plug can be secured in the flanged fitting, the temporary valve can be removed, and a blind flange connected to the flanged fitting.
Many flanged fittings have a “T” shape with a circular flange portion, a tubular neck portion with a distal end that can be attached to a pipeline, and a central bore extending through the flange and neck portions. Depending on the mode of attachment of the flange to the pipeline, it may be desired to modify the flange, such as by welding additional metal pieces to the neck of the fitting. However, such constructions may not be suitable for use in pipeline operations as the modifications may result in structural problems and cause the fitting to fail.
The invention provides flanged fittings with improved features that provide enhanced structural integrity and function for use in pipeline operations.
The flanged fitting has proximal, central, and distal sections between proximal and distal ends of the fitting. The proximal section includes a flange portion having a circumference, and proximal, vertical, and distal surfaces, and a plurality of bolt holes extending from proximal to distal surface of the flange portion, circumferentially arranged in the flange portion. The flange has a central opening extending from its proximal to distal end, with a central axis, and an inner surface.
In some embodiments, the central section has a tubular shape and in a proximal to distal arrangement: a first angled outer surface defining a first section of fitting wall between the inner surface that decreases in thickness; a second vertical surface defining a second section of fitting wall between the inner surface that is constant in thickness; and a second angled outer surface defining a third section of fitting wall between the inner surface that increases in thickness. The central section further includes a first curved transition surface between the first angled outer surface and the second outer vertical surface, and a second curved transition surface between the second outer vertical surface and the second angled outer surface.
In other embodiments, the central section has a tubular shape and includes, in a proximal to distal arrangement: a first curved outer surface defining a first section of fitting wall between the inner surface that decreases in thickness; a second vertical surface, parallel to the central axis and defining a second section of fitting wall between the inner surface that is constant in thickness; and a second curved outer surface defining a third section of fitting wall between the inner surface that increases in thickness.
The distal section has a third vertical surface defining a fourth section of fitting wall between the inner surface that is constant in thickness. The fourth section of fitting wall has a thickness that is greater than a thickness of the second section of fitting wall, and the outer diameter of the fourth section of fitting wall is greater than the outer diameter of the second section of fitting wall.
In some embodiments, the inner surface of the flange comprises an inner threaded surface positioned between two inner non-threaded surfaces and capable of receiving a threaded plug.
It has been found that by including first and second curved transition surfaces, or first and second curved outer surfaces, in the central portion of the flange, the flange has better structural integrity, and allows the presence of a bulkier distal end with greater outer diameter and wall thickness.
In other embodiments of the invention, the invention provides systems comprising the flanged fitting, such as a system comprising the flanged fitting along with additional components such as a plug, a blind or capping flange, a pipeline sleeve, or combinations thereof. In other embodiments of the invention, the invention provides a method for accessing a pipeline comprising a step of attaching the flanged fitting to the pipeline.
The embodiments of the present invention described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices of the present invention.
Embodiments of the invention include flange fittings as illustrated in
The proximal section (20, 120, 220) of the fitting includes flange portion (10, 110, 210). The flange portion includes a proximal surface (14, 114, 214), a vertical surface (16, 116, 216), and a distal surface (18, 118, 218). Extending through the flange portion, as well as the length of the fitting (from the proximal (12, 112, 212) to distal end (66, 166, 266) of the fitting), is a central opening (30, 130, 230) having a central axis CA.
A plurality of bolt holes (21, 121, 221) extend through the flange portion from the proximal surface (14, 114, 214) to distal surface (18, 118, 218).
Dimensions of the flange portion can be chosen based on factors such as the overall fitting size and use of the fitting. In exemplary designs, the flange has a thickness (from proximal surface (14, 114, 214) to distal surface (18, 118, 218)) in the range of about 0.75 inches to about 1.25 inches, such as about 1 inches, and a diameter in the range of about 5 inches to about 8 inches, such as about 6.5 inches. Exemplary bolt hole diameters are in the range of about 0.65 inches to about 0.85 inches, such as about 0.75 inches.
The proximal section (20, 120, 220) of the fitting can also include a raised portion (22, 122, 222) that extends proximally from the flange portion (10, 110, 210) and encompasses the diameter of the central opening (30, 130, 230). The height of the raised portion can be, for example, in the range of about 0.06 inches to about 0.3 inches, about 0.2 inches to about 0.3 inches, such as about 0.25 inches. The raised portion (22, 122, 222) has a circumference that is smaller than the flange circumference, for example, a diameter in the range of about 3 inches to about 4.5 inches, such as about 3.6 inches.
Referring back to
In one embodiment, and with reference to
In other embodiments (e.g., as reflected in
The inner surface of the central opening (30, 130, 230) can be parallel to the central axis over most or all of its length. The inner diameter of the central opening (30, 130, 230) will be constant over lengths where the inner wall is parallel to the central axis. The inner diameter of the central opening (30, 130, 230) can be sized to accommodate a desired object (e.g., one that is introduced into a pipeline through the central opening of the fitting), such as a plug, pig, or other article used in a hot tapping process. The inner diameter can be sized to provide a desired flow of material through the fitting. The inner diameter can be similar, or the same, over most or all of the length of the central opening. In exemplary embodiments, the inner diameter in the range of about 1.5 inches to about 2.0 inches, such as about 1.74 inches. In some embodiments the inner diameter slightly decreases in step wise manner from the proximal to distal end. For example, with reference to
In some embodiments, the inner wall is at an angle to the central axis in raised portion (22, 122, 222) causing an increase in the inner diameter of the central opening (30, 130, 230) near the proximal end of the fitting (not shown).
Adjacent and distal to the distal surface (18, 118, 218) of flange portion (10, 110, 210) is outer vertical surface (35, 135, 235). A curved transition surface can be between distal surface (18, 118, 218) and (outer) vertical surface (35, 135, 235).
In some embodiments, with reference to
In some embodiments of the fitting, with reference to
Referring back to
The length of the vertical surface (48, 148, 248) (as measured along the central axis) can vary in embodiments of the inventive fitting. In some embodiments the length of the vertical surface can be in the range of about 0.25 inches to about 2.5 inches, or about 0.8 inches to about 2.5 inches. In exemplary embodiments, with reference to
The thickness of section of fitting wall (50, 150, 250) can optionally be described in relation to the inner diameter of the central opening (30, 130, 230). For example, in some embodiments, the section of fitting wall (50, 150, 250) has a thickness that is in the range of about 15-25% of the inner diameter of the central opening, such as about 20% of the inner diameter.
In some embodiments, with reference to
Optionally, the angled outer surface (54, 154) may be described by its angle relative to the central axis. For example, in some embodiments, angled outer surface (54, 154) is at an angle in range of about 28° to about 38° to the central axis, such as about 32°, 33°, or 34° to the central axis.
In some embodiments of the fitting, with reference to
In some embodiments, with reference to
The curve of the curved transition surfaces (46, 146) and (52, 152) can follow a portion of a curved object, such as an arc of a circle or oval. For example, of the curved transition surfaces (46, 146) and (52, 152) can follow the arc of a circle having a certain radius, such as in the range of about 0.1 to about 0.15 inch.
Similar to the benefits that the curved transition surfaces (46, 146) and (52, 152) of the fitting embodiments show in
As a general matter, the distal section (60, 160, 260) of the fitting, when viewed relative to the central section, can have a bulging or bulbous shape. For example, at least a part of the distal section can have a greater outer diameter and greater wall thickness relative to the central section (40, 140, 240). The distal section (60, 160, 260) can include one or more surfaces angled relative to the central axis, a vertical surface (parallel to the central axis), and combinations thereof.
In one embodiment, the distal section (60, 160, 260) comprises a vertical surface (62, 162, 262) parallel to the central axis defining a section of fitting wall (64, 164, 264) between the inner surface that is constant in thickness. The section of fitting wall (64, 164, 264) of the distal section (60, 160, 260) has a thickness that is greater than a thickness of the section of fitting wall (50, 150, 250) in the central section (40, 140, 240). Also, the outer diameter of the section of fitting wall (64, 164, 264) is greater than the outer diameter of the section of fitting wall (50, 150, 250). In some embodiments, the section of fitting wall (64, 164, 264) in the distal section (60, 160, 260) has a thickness that is about 1.8 to about 2.0 times (e.g., about 1.9 times) the thickness of fitting wall (50, 150, 250).
The length of the vertical surface (62, 162, 262) (as measured along the central axis) can vary in embodiments of the inventive fitting. In some embodiments the length of the vertical surface can be in the range of about 0.5 inches to about 1.25 inches. In exemplary embodiments, and with reference to
The thickness of section of fitting wall (64, 164, 264) can optionally be described in relation to the inner diameter of the central opening (30, 130, 230). For example, in some embodiments, the section of fitting wall (64, 164, 264) is in the range of about 35-45% of the inner diameter of the central opening, such as about 40% of the inner diameter.
The fitting is preferably prepared by a method such as casting, forging, or machining, or a combination of such methods, and most preferably is formed by machining. Portions of, or all of the fitting may be described as “non-welded,” meaning that a welding process is not performed in making the fitting. In preferred embodiments the fitting is made from a single piece of stock material. The fitting can be made from any suitable stock material, such as stainless steel, carbon steel, alloy steel, or other suitable material. In preferred embodiments, the fitting is made from the same material.
Embodiments of the invention include the flanged fitting along with a threaded plug (e.g., completion plug) capable of being screwed into an inner threaded surface 34 or 234, with reference to
With reference to
In some modes of operation, the flanged fitting may be used in a line stop assembly to seal an opening tapped into a pipeline. The line stop assembly can include the flanged fitting, a pipeline sleeve, and a cover plate. The pipeline sleeve can be formed from two sleeve portions that can be welded, or otherwise coupled, to the pipeline. The flanged fitting can be coupled (e.g., by welding) to a sleeve portion. The fitting can be positioned on the pipeline so a bore in the flange is aligned and in fluid communication with a tapped opening in the pipeline.
In some modes of operation, the distal end of the fitting can be welded onto a pipeline to surround an opening therein. In some uses, the distal end of the fitting is welded onto a pipeline and then a hot tap is made in the pipeline through the opening. In use, the flanged fitting can be connected to a tapping valve, and further connected to various mechanisms such as hot tapping machines, plugging machines, etc. Through the central opening of the fitting can be passed cutting tools, plugs, and the like, an optionally into the pipeline.
The completion plug can be inserted into the central opening of the fitting to provide a primary seal of the tapped opening, thereby inhibiting release of any pressurized fluid in the pipeline from the central opening of the fitting. The cover plate can also be coupled to the flange portion using a set of bolts (303, 304), as shown in
The present non-provisional Application claims the benefit of commonly owned provisional Applications having Ser. No. 61/917,631, filed on Dec. 18, 2013, entitled FLANGED FITTING FOR PIPELINE, and Ser. No. 62/030,859, filed on Jul. 30, 2014, entitled FLANGED FITTING FOR PIPELINE, which Applications are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3070129 | Poulallion et al. | Dec 1963 | A |
3155116 | Nooy | Nov 1964 | A |
3329447 | Hitz | Jul 1967 | A |
4058142 | Rankin | Nov 1977 | A |
4100929 | Harrison | Jul 1978 | A |
4401133 | Lankston | Aug 1983 | A |
4579484 | Sullivan | Apr 1986 | A |
4635162 | McLaughlin | Jan 1987 | A |
4691740 | Svetlik | Sep 1987 | A |
4878698 | Gilchrist | Nov 1989 | A |
5208937 | Cooper | May 1993 | A |
5439331 | Andrew et al. | Aug 1995 | A |
5443095 | Glossop, Jr. | Aug 1995 | A |
5469881 | Phan et al. | Nov 1995 | A |
5531250 | Freeman et al. | Jul 1996 | A |
5560388 | Caldwell | Oct 1996 | A |
5577776 | Welch | Nov 1996 | A |
5660199 | Maichel | Aug 1997 | A |
5676174 | Berneski, Jr. et al. | Oct 1997 | A |
5701935 | Vasudeva | Dec 1997 | A |
5752690 | Ellett | May 1998 | A |
5883303 | Bliss et al. | Mar 1999 | A |
5904377 | Throup | May 1999 | A |
5967168 | Kitani et al. | Oct 1999 | A |
5975142 | Wilson | Nov 1999 | A |
6116285 | Wilson | Sep 2000 | A |
6286553 | Morgan | Sep 2001 | B1 |
6364371 | Mckay | Apr 2002 | B1 |
6367313 | Lubyk | Apr 2002 | B1 |
6502867 | Holmes, IV et al. | Jan 2003 | B2 |
6675634 | Berneski, Jr. et al. | Jan 2004 | B2 |
6705350 | Lee | Mar 2004 | B2 |
7134454 | Montminy | Nov 2006 | B2 |
7353839 | Calkins et al. | Apr 2008 | B2 |
7523962 | Wright et al. | Apr 2009 | B2 |
7546847 | Morrison et al. | Jun 2009 | B2 |
7604217 | Lum | Oct 2009 | B2 |
7841364 | Yeazel et al. | Nov 2010 | B2 |
7891639 | Wiecek et al. | Feb 2011 | B2 |
7909065 | Aleksandersen et al. | Mar 2011 | B2 |
8171961 | Koyama | May 2012 | B2 |
8342209 | Hasunuma | Jan 2013 | B2 |
8505585 | Cox | Aug 2013 | B2 |
20030127848 | Campbell | Jul 2003 | A1 |
20130032238 | Butler | Feb 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150176731 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61917631 | Dec 2013 | US | |
62030859 | Jul 2014 | US |