The invention relates to a flap folding unit adapted for folding flaps of lids of boxes, in particular custom-sized cardboard boxes. The invention also relates to a flap folding apparatus comprising such flap folding unit, and a method for folding the flaps of lids onto boxes, in particular custom-sized cardboard boxes. The unit, the apparatus and the method are particularly useful in systems for automatically packaging shipment sets, i.e. sets of one or more items to be shipped, in particular varying shipment sets, in which at least the number, and usually the number and the size of the items vary, in custom-sized boxes made from cardboard blanks. The invention also relates to a system and a method for automatically packaging varying shipment sets in custom-sized cardboard boxes.
Mail ordering has become a widely used way of buying goods. More and more companies offer online shops, in which the customers can electronically put goods in a virtual shopping cart that later will be transferred by the respective company into a dispatch order so that in a warehouse a shipment set comprising the items ordered (and sometimes additional items such as samples, vouchers, invoices, void-fill etc.) can be assembled based on the respective dispatch order.
While assembling a shipment set in a warehouse of a specialized distributor is nowadays often done fully automated, packaging the shipment set is still a challenge, in particular when a shipment set comprises several items of different sizes and in different quantities. Often, the items to be packaged are provided automatically to a person packaging the items manually. Depending on the size and number of the items, the person selects a suitable box size.
To automate the packaging process even in cases where the items forming a shipment set vary in size and number, different systems have been proposed. One approach is shown in WO 2016/059218 A1, which discloses a system and a method for automatically packaging varying shipment sets, which system and method employ two separate packings, namely an inner packing surrounding the items to be packaged in a first direction, and an outer packing surrounding the inner packing in a second direction, said second direction being substantially perpendicular to the first direction such that the inner and the outer packing form a combined package enclosing the package items from all sides.
A different approach is shown in WO 2014/118629 A2 and WO 2014/117817 A1, which teach methods and systems that allow—within the boundaries imposed by the material used—creating a fully custom-sized box, i.e. a cuboid box, of which width, length and height are adapted to the respective content of the box.
Such systems create boxes by first obtaining information on the outer dimensions length, width and height of the shipment set to be packaged and calculating based on this information the layout of a custom-sized cardboard blank (sometimes called template or piano) comprising different so called panels, which are delimited from each other by crease lines or indentations and incisions allowing the panels to be folded in order to create the box wanted. A piece of cardboard supplied from a roll of cardboard or a stack of zig-zag cardboard is then cut-off, indented and incised (not necessary in this order) to form the blank. Depending on the specific way the system works, a box with or without an attached lid may then be formed automatically by gripping and folding the blank.
The “International Fibreboard Case Code” published by FEFCO and ESBO, 2007, 11th edition, discloses under item 0300 a box (hereinafter referred to as “type 0300” box), which is very stable and yet very easy to manufacture as the layout of the corresponding blank, from which the box is folded, is rather simple. Each box comprises a rectangular bottom panel having four edges, a first and a second rectangular end panel, each joined over a crease line to opposite edges of said bottom panel, a first and a second rectangular side panel, each joined over a crease line to opposite edges of said bottom panel, two first and two second rectangular corner panels, the first corner panels joined over respective crease lines to opposite edges of the first end panel, and the second corner panels joined over respective crease lines to opposite edges of the second end panel. As the blank typically is moved in a transport direction through a system for automatically forming custom-sized boxes, the first end panel is also called front end panel and the respective first corner panels attached to it are called front corner panels, as these panels form the front of a blank moving through the system, while the second end panel is called for the corresponding reason the rear end panel, and the second corner panels attached to it are called rear corner panels. In the erected state, the two end panels and the two side panels form the side walls of the box.
It should be noted that due to the thickness of the cardboard, the so-called crease lines are not thin lines as for folding paper, but are rather “crease grooves”. However, following the terminology common in the art, the term crease line is used herein.
It should be also noted that in case of rectangular bottom panels, the term “width of the bottom panel” as used herein refers to the extension of a respective bottom panel in the direction of the width of the cardboard supplied for making the box, and “length of the bottom panel” refers to extension in the direction of the length of the cardboard supplied, which is also the direction, in which the cardboard is transported into and inside a system for creating custom-sized boxes. Seen in this transport direction, the end panels of the box are in front and behind the bottom panel, while the side panels of the box are to the left and the right of said bottom panel. The term “outer dimensions” refers to the dimensions of the panels on the outside of the erected box.
Boxes like the type 0300 boxes, also called “tray boxes”, have no attached lids and can be closed for example with lids having the same structure as the boxes, i.e. lids with corner panels, such as a “type 0300” lids shown under item 0300 in said FEFCO/ESBO publication or with lids having an even simpler blank layout such as the lids shown under item 0302 in said FEFCO/ESBO publication (so-called “type 0302” lids). In the layout of a type 0302 lid, the corner panels are cut away, so that the lid comprises just a rectangular top panel having four edges, and four rectangular flaps, each flap joined over a crease line to one edge of the top panel and each flap adapted for being folded onto a respective side wall of a box panel, where it is fixed for example by glue or an adhesive tape. If the boxes are made from cardboard, the lids may be created from the same type of cardboard as the boxes or from a different type.
Known systems for creating custom-sized tray boxes and corresponding separate closing lids from cardboard being continuously supplied to the systems in particular from stacks of zig-zag folded cardboard, can be set up to produce type 0300 boxes and corresponding lids or combinations of such boxes with, e.g., type 0302 lids by first cutting out and creasing a custom-sized blank, from which a box is folded automatically around the shipment set to be packaged after placing the shipment set consisting of one or more of item(s) on the blank. Such systems comprise structure for cutting (which may also include die cutting. i.e. punching out certain parts), like rotating or reciprocating knifes, lasers, die cutters etc., structure for creasing, like crease rollers or moving stamps, structure for folding the cardboard, like moveable grippers and flaps, and structure for attaching the respective panels to each other, like a glue unit for applying hot melt glue to one or both of two overlapping panels. Upon erecting a box, the system would first fold the corner panels upwards, then the end panels upwards and thus the corner panels, which are joined to the end panels, inwards, and finally the side panels upwards.
While the known systems and methods for automating the packaging process work well for a number of applications, and in particular the system disclosed in WO 2014/117817 A1 has proven to allow packaging items varying in size and number fully automatically, it has turned out that there is still room for optimization of the packaging process.
A particular challenge is automatically closing the above mentioned tray boxes, i.e. boxes like the type 0300 boxes, which have no attached lids, with separate cardboard lids such as the type 0302 or type 0300 lids, and various systems and methods using different approaches have been proposed to improve placing and fixing lids on boxes. For example, US 2003/0009985 A1 discloses a system that takes a flat cardboard blank, which has been pre-cut and pre-creased to define a type 0302 lid, from a stack of such blanks, places it on an open box, folds the flaps onto the side walls of the box and winds straps around the box to close it. U.S. Pat. Nos. 4,420,924 and 3,694,999 disclose methods for placing pre-assembled lids like type 0300 lids on corresponding boxes. U.S. Pat. No. 6,598,375 B2 discloses a system for automatically placing lids on boxes that are almost completely filled with items having the shape of the boxes and thus providing sufficient stability for pressing the flaps of the lid against the side walls of the box. However, when shipment sets of varying items are packaged, the items often do not fully fill out the respective box and the side walls of the box can easily bend inwards (and thus away from the flap of the lid) when pressure is applied to the outside of a respective side wall when the corresponding flap of a lid or an adhesive tape is pressed against the side wall for gluing the flap to the side wall respectively for joining the side wall with the flap via the adhesive tape. This can lead to little or no adhesion between the side wall and the flap or between the tape and the side wall. While in the regions of the corners of adjacent side walls the boxes typically have sufficient stability, the aforementioned problem increases as the box size increases, since the regions between the corners become more flexible. This problem is particularly relevant in systems for automatically packaging varying shipment sets in custom-sized boxes. In such systems, the sizes of the boxes can vary to a great extend.
To at least partially solve this problem, a system has been proposed in U.S. Pat. No. 6,048,421 for closing tray boxes with type 0302 lids, which is based on the idea to press the top panel of the lid slightly into the box to create some outward directed pressure on the side walls of the box. The respective system employs L-shaped levers cooperating with flap-guiding elements. At the free end of each L-shaped lever, an elongated bar is attached that is adapted to run parallel to a crease line delimiting a flap from the top panel of a lid. In use, after placing a flat pre-cut and pre-creased blank for a lid on a box to be closed, the lever and the guiding element are brought into contact with the blank such that the bar contacts the blank on the top panel close to a crease line delimiting a flap and presses the top panel slightly into the box, which creates some outward directed pressure on the side wall of the box, which prevents a side wall from simply bending inwards when the respective flap is folded by the guide element onto the side wall. As the levers and the guiding elements are mounted on a common structure and are moved together, the adjustability of the system is somewhat limited. The elongated bar also requires that there is always a minimum distance between two parallel side walls of a box adjacent to and spaced apart by the side wall against which the top panel is pressed by the bar, as otherwise the bar would damage said adjacent side walls.
Another problem that is particularly relevant in systems for automatically packaging varying shipment sets in custom-sized cardboard boxes and closing the boxes with a respective custom-sized cardboard lid is that due to the inherent properties of the material and the way this material it is handled in systems that create custom-sized boxes and lids at high speed, the boxes and the lids are always created with certain tolerances and slight deviations.
One object of the invention is to provide an alternative solution for automatically attaching flaps of lids to the side walls of boxes that is particularly useful in cases of custom-sized boxes and which improves the aforementioned known methods and systems in at least one aspect.
The object is achieved by a flap folding unit according to claim 1, a flap folding apparatus according to claim 6, and a flap folding method according to claim 13. Independent claims 14, 15 and 16 relate to a system for closing tray boxes respectively to a system and method for automatically packaging items in custom-sized boxes. The respective dependent claims relate to advantageous embodiments of the respective independent claims.
One basic concept of the invention is to use flap folding units comprising a hinged guiding element and an extendable pusher. In use, such flap folding units will be moved parallel to the side wall of a box, onto which a flap is to be folded, such that the hinged guiding element makes a first soft contact with the flap to be folded and presses it toward its intended final position on the side wall. In a known manner, hot-melt glue or other glue will be applied prior to folding the flap onto the side wall, in particular at positions where the pushers of the flap folding units are contacting the respective flaps. Using hinged guiding elements for making first contact has several advantages. For example, the guiding elements provide for a soft contact with the flaps, preventing indenting the flaps or even damaging them. Furthermore, as will be described below, the hinged elements allow larger tolerances between the flap folding units and the lids, which is useful in particular in high speed system for creating custom-sized cardboard boxes and respective lids that due to the inherent properties of the material treated need greater tolerances. When the flap folding unit comprises a mounting body holding the guiding element and the extendable pusher, the guiding element may be spring-preloaded towards a position away from the mounting body.
In one embodiment, each pusher is extended in a controlled manner by a piston-cylinder-unit or an electric actuator such as a step-motor, which facilitates pressing a respective flap of a lip onto a respective side wall of a box in a well-defined manner that prevents pressing the flaps too much into the side wall while ensuring sufficient contact between the flaps and the side walls and allowing the glue to settle. Depending on the type of box and glue used, different pushers along each flap can be extended slightly differently, for example the pushers adjacent to corners of boxes and lids may be extended less than those pushers close to the middle of a respective flap, where typically the flap and the box are most flexible. To facilitate movement of the pusher while ensuring a compact structure of the flap unit, in a preferred embodiment the hinged guiding element comprises an opening, through which the pusher is extendable for pushing the flap.
While typically the boxes and lids in the folded state will be substantially cuboid, the invention is not limited to such boxes and may advantageously be as well used with boxes and lids having any type of polygonal bottom panels and respective top panels, i.e. triangular, quadrangular, pentagonal, hexagonal etc. bottom and top panels. While typically the invention will be used for closing tray boxes, it can also be used for closing other types of boxes as will be described below.
A flap folding apparatus according to one embodiment comprises a plurality of flap folding units as described above and structure for moving the plurality of flap folding units relative to a lid comprising at least one flap to be folded. In order to ensure that lids of different sizes can be treated, preferably the distance between at least some of the flap folding units is automatically adjustable. To achieve that, one option is to arrange some flap folding units on a common rail, along which they are automatically positionable with respect to each other.
In one embodiment, all flap folding units are arranged on a common structure for moving them in a direction substantially perpendicular to a top panel of a lid comprising the flaps to be folded. Typically, a lid will be placed on top of a box, and all flap folding units will be lowered together in a vertical direction onto the lid.
To further allow treating differently sized lids comprising at least two flaps at opposite sides, the apparatus in one embodiment comprises a first plurality of said flap folding units arranged along a first one of said flaps and a second plurality of said flap folding units arranged along a second one of said flaps, and structure for adjusting the distance between said first and said second plurality of flap folding units. Typically, the lid to be handled by the apparatus will comprise a rectangular top panel and four flaps, and accordingly the apparatus will comprise four pluralities of flap folding units arranged in opposite pairs.
In one embodiment, in which each flap folding unit comprises a mounting body holding the guiding element and the extendable pusher, the apparatus further comprises structure for adjusting the distance of each mounting body to an adjacent side wall of a box, onto which a flap of a lid is to be folded such that a gap remains between the mounting body and the respective flap in the folded position. By this, tolerances in the dimensions of the boxes and the lids can be taken into account, while ensuring that when the hinged elements make contact with the flaps, the lid still can move a bit, which will ensure automatic alignment of the lid with the box.
Further details and advantages of the invention will become apparent from the following detailed description of embodiments in conjunction with the drawing, which comprises 16 drawing figures.
Shifting the crease lines 38 and 44 with respect to the crease line 36, and shifting the crease lines 40 and 42 with respect to the crease line 32 also leads to the fact that the length LCP of the corner panels is to the amount of shifting greater than the height HSP of the side panels.
The slots 46, 48, 50 and 52 are also dimensioned to take into account the thickness of the cardboard: the height HCP of the corner panels has to be decreased by the thickness of the cardboard as in the erected state these corner panels abut against the bottom panel while the top side of the corner panels shall, in this type of box, be level with the top end of the end panels. The height HEP of the end panels 14 and 16 corresponds to the height HSP of the side panels 18, 20, which in this type of box defines the maximum height of the box. However, the invention is not limited to this type of boxes, but can for example also be used with boxes such as the ones disclosed in WO 2019 081773 A1 or other types.
Due to the inherent properties of the material, the slots are typically not made such that only the height HCP of the cornel panels is shortened, but also the length LSP of the side panels, which facilitates erecting the box and ensures that the side panels do not extend beyond the end panels in the erected state. Hence, the length LSP of the side panels 18, 20 is typically a bit shorter than the length LBP of the bottom panel 12. The first end panel 14 is considered here to be the above mentioned front end panel, i.e. the panel that forms the front of the blank in a processing direction, in which it is transported through a system for creating boxes, whereas the second end panel 16 forms the above mentioned rear end in that direction and is accordingly called rear end panel. Likewise, the first corner panels 22 and 24 are called front corner panels, whereas the second corner panels 26 and 28 are called rear corner panels. In the erected state, the first and second end panels 14 and 16 and the side panels 18 and 20 form the side walls of a box. As with respect to closing the box with a lid it is in most cases irrelevant, which panel forms which side wall, the end panels and the side panels will later on simply be addressed as “side walls” of the box.
The folding station 60 shown comprises four folding units, each comprising a corner panel folding element 62, of which in the shown situation, in which a cardboard blank 10 has been placed on the folding station and the corner panel folding elements 62 have started to push the corner panels 22, 24, 26 and 28 upwards, only two are visible.
The folding units are slidably mounted on rods 64, 66 and 68 in order to be moveable in a plane parallel to the plane of the cardboard blank 10, as the cardboard blanks to be folded may in this embodiment differ in size and hence the positions of the panels of the cardboard blank to be folded by the folding station 60 may vary from blank to blank. The shown folding station 60 is of exemplary nature to facilitate understanding the folding process.
The folding station 60 forms part of an automatic packaging system, in which custom sized boxes and corresponding lids can be created from cardboard fed into the system usually from stacks of zig-zag folded cardboard and in which items to be shipped are automatically packaged in the boxes formed. Such system is disclosed for example in WO 2014/117817 A1. Such automatic packaging system comprises a blank forming apparatus, in which the cardboard is cut and creased to form a custom sized blank, which then can be folded automatically. The system also comprises one or more glue application units (not shown in these schematic drawings) for applying glue on at least one of the panels of the blank 10 that are to be glued together. Such glue application unit may be adapted to apply portions of hot melt glue with at least two different surface-to-volume ratios, which can contribute to speeding up the whole process as a portion having a higher surface to volume ratio may cure faster and thus fix the panels provisionally, while a portion having a lower surface to volume ratio may contain more glue and may lead, once cured, to a stronger bond. The glue application unit may also be adapted to apply portions of hot melt glue on the side walls of the erected box and/or on the flaps of a lid for adhering the flaps to the side walls. Depending on the general layout of the system, it may be more efficient to provide one or several separate glue application units for separate gluing steps.
It should be noted that the glue can in principle be any adhesive, while it will typically be hot melt glue, which is easy to handle in automated systems and cures fast. For sake of simplicity, in the following it will be assumed that the glue is hot melt glue and the process in which it hardens and binds those parts, between it is placed, together will be denoted as curing, although the invention is equally useful if other types of glue are used, that may not harden but that will stay flexible even when the glue has set. Thus, the invention is not limited to systems using hot melt glue.
While the invention typically will be used for closing tray boxes with lids as shown in
In order to facilitate understanding the invention,
In the situation shown in
In this embodiment, the hinged element 94 is spring-preloaded into a position away from the mounting body 92 and thus towards a flap to be folded. In this embodiment, the hinged element 94 comprises an opening 102, through which the pusher 96 can be extended as indicated by direction arrow 104. The pusher 96 is moved forwards and backwards as indicated by direction arrow 104 by respective actuator structure integrated in a housing 106, and which may be of suitable type. For example, the pusher can be moved by a piston-cylinder unit, by an actuator like a step-motor or other electrical, mechanical, hydropneumatic or hydraulic means. In particular, the pusher 96 itself can form a piston and the housing 106 can form a respective cylinder, into which pressurized air or a hydraulic fluid is introduced respectively from which air or fluid is drawn in order to move the pusher as necessary.
In the situation shown in
As indicated by x in
Depending on the layout of the lid and in particular the number of flaps to be folded, a flap folding apparatus will comprise multiple flap folding units 90, typically three to four units per flap. Once all respective flap folding units 90 are in position, they are preferably synchronously moved downwards, i.e. in a direction perpendicular to the bottom panel 12 of the box. In doing so, the hinged elements 94 of the flap folding units 90 come into contact with the respective flaps 76 and fold them towards their final position. As mentioned above, prior to this folding operation, glue is applied onto the side of the side panels facing the flaps and/or the side of the flaps facing the side panels, in particular at the positions, where the pushers 96 will press on the side of the flaps 76 facing away from the side panels to push the flaps towards the respective side panels. As the shown embodiment is adapted for being used with custom-sized lids, the length of the flaps 76 may vary so that the length of the movement of the flap folding units in said direction perpendicular to the bottom panel 12 of the box varies. The end position is a position, in which the respective pushers 76 are positioned close to the free edge of the respective flaps. In this position, as shown in
Once the glue is sufficiently cured, the pushers retract and, in a preferred embodiment as shown in
In the shown embodiment, four groups of three flap folding units 90 are arranged along rails 108 (again only some of the rails have been provided with reference numbers, which will also be true for further elements described below). The respective flap folding units 90 arranged on the same rail can be positioned along the respective rail with respect to each other as indicated by the direction arrows 110. As indicated by the direction arrows 112, the rails themselves are movable upwards and downwards, and, as indicated by direction arrows 114, towards and away from each other, so that each flap folding unit 90 is in this embodiment positionable in three dimensions.
The items to be packaged are transported via conveyor belts through a laser scanning unit 134, which measures the outer dimensions of the items passing through the unit in order to obtain information on the desired inner dimensions length LD, width WD and height HD a box needs to have in order to receive the items or the arrangement of items as they are, i.e. without re-arranging the items. Of course, the system could also be provided with structure for arranging the items in a certain manner for example to reduce the volume of a box needed. However, in this schematic drawing a simple and fast working embodiment is shown. The cardboard blank is transported from the cutting and creasing station 124 to a folding station 136, where the item or the items to be packaged are put on top of the bottom panel of the respective blank cut and creased in the cutting and creasing station. Respective grippers and folders like the gripping and folding units 138 and 140 fold the box around the item(s) to be packaged, i.e. erect all four corner panels, of which two, namely corner panels 22 and 28, are visible in this view upwards, then fold the end panels inwards thus folding also the corner panels inwards and finally the side panels, of which side panel 18 is visible in this view, upwards.
When the respective blank is transported from the station 124 to the station 136, it passes a glue application unit 142, which applies hot melt glue to the parts of the side panels, which are to be brought into contact with the corner panels.
To close the box, in this embodiment a lid placing station 144 is provided, which as indicated by the double-sided direction arrows is moveable upwards and downwards, forwards and rewards in the transport direction of the items respectively the boxes. Similar to the blanks for the box, based on the calculated dimensions a blank for the lid is produced and picked up by the lid placing station 144 with suction grippers.
In this schematic drawing, only flap folding units 146 and 148 of the lid placing station are shown. A gluing unit 150 applies hot-melt glue to the end panels and the side panels of the lid, which is placed on top of the box that just has been erected, upon which the flaps of the lid are folded down and closed. The thus closed boxes 152, 154 are then transported via respective conveyor belts to a label printing and application unit 156, which puts a label including for example the address of the recipient and postage on the boxes, which then can be picked up and further transported. The lid can be created from the same cardboard supplied as the box, in case of which the cutting and creasing station may be set up to produce not only a blank for the box, but also a blank for the lid, which may then be transported via respective conveyor belts to the lid placing station, which picks up the lid and puts it on top of the box.
Both production lines comprise glue application units 142, 166, 168 and 170. In this embodiment, the lid placing station 144 comprises a separate glue unit 166 for applying hot-melt glue to the side panels in the transport direction of the cardboard of the lid 172 to be placed on a box, and two glue units 168 and 170 for applying holt-melt glue to the end panels of the box where the end panels of the lid have to be attached to the box.
The pusher 176 has a punch 182 with an enlarged-diameter end section 184 which is accommodated in an undercut cavity 186 in the cap 178. A helical spring 188 is arranged between the cap 178 and the pusher 176 such that it pushes the cap 178 away from the pusher 176. As shown in
In one embodiment, the pushers may be adapted to apply different forces at different positions of the lid flap. For example a higher force may be used near the corners of the box, where the adjacent perpendicular side panel provides a counterforce. In the middle of a lid flap a lower force may be used to prevent pushing the side panel of the box away, therewith reducing the bonding surface with the lid. If the pushers are provided with elastic elements at their ends like the spring-preloaded end caps mentioned above, choosing the respective elastic elements differently, e.g. stronger springs for pushers intended to work near the corners of a lid flap and weaker springs for pushers intended to work in or close to the middle of a lid flap, allows adjusting the applied forces easily.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 121 483.9 | Aug 2020 | DE | national |