The field of the invention is flapper type subsurface safety valves with a through-flapper equalizing feature and more particularly where the return spring is integral to the equalizing valve member.
Subsurface safety valves are placed in tubular strings to allow shutting in the well for well control. They are actuated to open for production or injection with hydraulic control lines that extend from a surface location. One or two line systems have been used for valve control. The hydraulic pressure operates a rod or annular piston in the housing of the valve. The piston is linked to a flow tube in the passage through the valve. The piston is driven with hydraulic pressure in a control line against the bias of a closure spring. Movement of the piston against the spring takes the flow tube against the flapper that is biased with a pivot spring to a closed position. On contact with the flapper, the pivot spring is overcome as the flapper rotates 90 degrees and the flapper goes behind the advancing flow tube. The open position is maintained as long as pressure is supplied in the hydraulic control line. One removal of such pressure deliberately or through a system malfunction such as a seal leak the closure spring takes over and raises the piston that takes the flow tube with it to allow the pivot spring to move the flapper to the closed position.
When the flapper is in the closed position there is a large pressure differential potential that can appear across it making it difficult for the hydraulic system to provide the required force to open the flapper with the flow tube without component damage. To address this problem in the past equalizer plungers have been placed in the flapper at a location where the descending flow tube would engage the plunger to open a bypass passage through the flapper before the flow tube was brought into contact with the flapper itself for rotation to the open position. In this manner the pressure across the flapper was equalized before the flow tube was in contact with it to rotate it. In this case only the force of the pivot spring needed to be overcome to open the flapper. The prior designs all employed springs to return the equalizer plunger back to a sealed position when the flow tube no longer contacted the plunger. This was done with leaf or coil springs as illustrated in these U.S. Pat. Nos. 4,478,286; 6,644,408; 7,204,313; 6,848,509; 4,415,036 and 8,056,618. Referring specifically to U.S. Pat. No. 7,204,313 the problem was that the spring 86 would not stay mounted to the plunger 86 by moving off its mount flange 70. Another issue was that the shape and length of the spring resulted in a very minimal closing force applied to the plunger in the order of about two pounds. One of the reasons that the spring could be moved off its flange mount is that the plunger is normally struck by the flow tube in an off center manner which could have put a slight turning moment on the plunger sufficient to dislodge the spring from its mounting flange. Without the spring in position to push the plunger to its closed position the safety valve became inoperative as there was a perpetual bypass flow through the flapper in the closed position. This was a safety issue that needed to be addressed.
The present invention addresses these concerns with a design where the spring is integrally fabricated in the plunger body using techniques known as wire EDM or more familiarly “turn and burn.” As a result a spring is integrated into the plunger that can put out substantially higher closing force without taking up incremental space and this allows less of the flapper body to be removed. The integral design can be symmetrical or asymmetrical and the plunger in an asymmetrical design can be keyed to prevent rotation and the spring designed to generate more force on one side to better counter act the side loading force from off-center contact from the flow tube. These and other features of the invention will be more apparent to those skilled in the art from a review of the detailed description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be found in the appended claims.
A flapper equalizer plunger embodies a unitary coiled spring that is compressed by the flow tube to shift the plunger to equalize pressure across the flapper before the flow tube tries to move the flapper. The hydraulic control system then need only to overcome the force of a flapper pivot spring to swing the flapper 90 degrees to an open position behind the flow tube. The integral spring is produced with a wire EDM technique and can be symmetrical or asymmetrical around its periphery as a way of offsetting off-center impact from the bottom of the flow tube. The plunger can be rotationally locked if it is asymmetrical. The pitch can be constant or variable and the output force greatly exceeds the force provided by an independent coiled spring.
Referring to
Referring to
Below tapered surface 36 is the integral biasing component which preferably is a tapered end 42 into which there is a spiral cut 44 that has enlarged bores 46 and 48 at opposed ends to mitigate stress fractures at what would otherwise be a zone of stress concentration. The tapered end is preferably hollow so that the spiral cut 44 will allow it to function as a spring. The lower end 50 slides into a complementary groove 52 on retainer nut 54 as shown in
Referring to
Various options are envisioned. The tapered section 42 can be cylindrical or some other shape. The spiral cut 44 can be replaced with other patterns of material removal to get a spring action in the lower end of the plunger 22. The interaction between surfaces 38 and 40 can be metal to metal or there can be an added seal on one of the surfaces such as in a groove with a seal ring in the groove to contact the opposing surface. The spiral cut 44 can have a uniform pitch and uniform width or the pitch can vary as can the width of cut. The wall thickness of the lower end can be symmetrically uniform or asymmetric. The generated spring force can be in the order of hundreds of pounds as compared to the small coiled springs used in the past that put out only a few pounds of force. The number and shape of the opening 34 can be varied. The tapered end 42 can be a different material than the shaft 20. The end 42 can be metallic, composite, a resilient material or a shape memory alloy. Using the shape memory alloy the well fluids can bring the end 42 above its transition temperature to gain a boost in the delivered biasing force for a delivery of a force in the order of 200 pounds or more whereas the existing separate springs that are now used deliver in the order of between 1.8 and 2.2 pounds of force. End 42 can be a solid shape that has the spiral cut 44 or some other pattern of material removal to allow it to act as a spring. Alternatively the end 42 can be a block of resilient material that has some shape memory and therefore can replicate the action of a spring. “Integrally” means made of a single piece or of a plurality of pieces that are not non-destructively separable. Apart from solid or tubular shapes that have material removed so that they approximate the operation of a coiled spring, other techniques can be used such as a solid shape of a resilient and non-swelling material that is simply compressed by the flow tube 62 and then regains its shape as the flow tube 62 is raised.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.