1. Field of the Invention
Embodiments of the present invention generally relate to a wellbore tool for selectively isolating a zone in a wellbore. More particularly, the invention relates to a flapper latch for use with the wellbore tool.
2. Description of the Related Art
A completion operation typically occurs during the life of a well in order to allow access to hydrocarbon reservoirs at various elevations. Completion operations may include pressure testing tubing, setting a packer, activating safety valves or manipulating sliding sleeves. In certain situations, it may be desirable to isolate a portion of the completion assembly from another portion of the completion assembly in order to perform the completion operation. Typically, a ball valve, which is referred to as a formation isolation valve (FIV), is disposed in the completion assembly to isolate a portion of the completion assembly.
Generally, the ball valve includes a valve member configured to move between an open position and a closed position. In the open position, the valve member is rotated to align a bore of the valve member with a bore of the completion assembly to allow the flow of fluid through the completion assembly. In the closed position, the valve member is rotated to misalign the bore in the valve member with the bore of the completion assembly to restrict the flow of fluid through the completion assembly, thereby isolating a portion of the completion assembly from another portion of the completion assembly. The valve member is typically hydraulically shifted between the open position and the closed position.
Although the ball valve is functional in isolating a portion of the completion assembly from another portion of the completion assembly, there are several drawbacks in using the ball valve in the completion assembly. For instance, the ball valve takes up a large portion of the bore in the completion assembly, thereby restricting the bore diameter of the completion assembly. Further, the ball valve is susceptible to debris in the completion assembly which may cause the ball valve to fail to operate properly. Additionally, if the valve member of the ball valve is not fully rotated to align the bore of the valve member with the bore of the completion assembly, then there is no full bore access of the completion assembly.
There is a need therefore, for a downhole tool that is less restrictive of a bore diameter in a completion assembly. There is a further need for a downhole tool that is debris tolerant. There is a further need for a downhole tool having a flapper latch assembly that is configured to maintain a flapper valve in a closed position.
The present invention generally relates to a method and an apparatus for selectively isolating a portion of a wellbore. In one aspect, an apparatus for isolating a zone in a wellbore is provided. The apparatus includes a body having a bore. The apparatus further includes a first flapper member and a second flapper member disposed in the bore, each flapper member selectively rotatable between an open position and a closed position multiple times, wherein the first flapper member is rotated from the open position to the closed position in a first direction and the second flapper member is rotated from the open position to the closed position in a second direction. Additionally, the apparatus includes a flapper latch assembly disposed in the bore, the flapper latch assembly movable between an unlocked position and a locked position, wherein the flapper latch assembly is configured to hold the first flapper member in the closed position when the flapper latch assembly is in the locked position.
In another aspect, a method for selectively isolating a zone in a wellbore is provided. The method includes positioning a downhole tool in the wellbore, the downhole tool having a body, a first flapper member, a second flapper member and a flapper latch assembly, whereby each flapper member is initially in an open position. The method also includes moving the first flapper member to a closed position by rotating the first flapper member in a first direction. Further, the method includes moving the second flapper member to a closed position by rotating the second flapper member in a second direction. Additionally, the method includes moving a flapper latch assembly from an unlocked position to a locked position, whereby the flapper latch assembly is configured to hold the first flapper member in the closed position when the flapper latch assembly is in the locked position.
In yet a further aspect, a flapper latch assembly for use with a flapper valve is provided. The flapper latch assembly includes a body rotatable between an unlocked position and a locked position, wherein the body includes an end configured to engage a portion of the flapper valve when the flapper valve is in a closed position and the body is in the locked position. Additionally, the method includes a biasing member attached to the body, wherein the biasing member is configured to bias the body in the locked position.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The tool 100 includes a first flapper valve 125 and a second flapper valve 150. The valves 125, 150 are movable between an open position and a closed position multiple times. As shown in
The valves 125, 150 may move between the open position and the closed position in a predetermined sequence. For instance, in a closing sequence, the first flapper valve 125 is moved to the closed position and then the second flapper valve 150 is moved to the closed position as will be described in relation to
As illustrated in
The tool 100 also includes a shifting sleeve 115 with a profile 165 proximate one end and a profile 190 proximate another end. The tool 100 further includes a spring 120 and a shift and lock mechanism 130. As discussed herein, the shift and lock mechanism 130 interacts with the spring 120, the shifting sleeve 115, and the upper tubes 140, 155 in order to move the flapper valves 125, 150 between the open position and the closed position.
As shown in
As the shifting sleeve 115 begins to move toward the upper sub 105, the shift and lock mechanism 130 starts the closing sequence of the flapper valves 125, 150. During the closing sequence, the shift and lock mechanism 130 moves the upper flow tube 140 away from the first flapper valve 125 in a direction as indicated by an arrow 230. A biasing member (not shown) attached to a flapper member 185 in the first flapper valve 125 rotates the flapper member 185 around a pin 175 until the flapper member 185 contacts and creates a sealing relationship with a valve seat 170. As illustrated, the flapper member 185 closes away from the lower sub 110. As such, the first flapper valve 125 is configured to seal from below. In other words, the first flapper valve 125 is capable of substantially preventing fluid flow from moving upward through the tool 100. In addition, as the shifting sleeve 115 moves toward the upper sub 105, the spring 120 is also compressed.
As illustrated in
To open the valves 125, 150 according to one opening sequence, the second flapper valve 150 is moved to the open position first in order to allow the second flapper valve 150 to open in a clean environment by manipulating the shift and lock mechanism 130. As discussed herein, in one embodiment, the shift and lock mechanism 130 is a key and dog arrangement, whereby the plurality of dogs move in and out of the plurality of keys formed in the sleeves as the sleeves are shifted in the tool 100. The movement of the dogs and the sleeves causes the flapper valves 125, 150 to move between the open and the closed position. It should be understood, that the shift and lock mechanism 130 is not limited to this embodiment. Rather, the shift and lock mechanism 130 may be any type of arrangement capable of causing the flapper valves 125, 150 to move between the open and the closed position.
Prior to moving the second flapper valve 150 to the open position, the pressure around the second flapper valve 150 may be equalized by aligning a port (not shown) with a slot (not shown) formed in the flow tube 155 as the shifting sleeve 115 is moved toward the lower sub 110. Thereafter, the further movement of the shifting sleeve 115 toward the lower sub 110 causes the flapper valves 125, 150 and the flapper latch assembly 300 to move together as a subassembly relative to the housing 160 in a direction as indicated by an arrow 240. The flapper latch assembly 300 moves in the housing 160 until an edge 320 of the flapper body 305 contacts a slanted edge 330 in the housing 160. At that point, the flapper latch assembly 300 moves to the unlocked position as the contact between the edge 320 and the slanted edge 330 causes the flapper body 305 to rotate around the pin member 325, thereby causing the flapper latch assembly 300 to disengage from the end portion 145 of the flapper member 185. At the same time, the second flapper valve 150 moves in the housing 160 toward the lower flow tube 155. Contact of the second flapper valve 150 with the lower flow tube 155 overcomes a biasing member in the second flapper valve 150 such that the second flapper valve 150 moves from the closed position to the open position as shown in
In one embodiment, a hydraulic chamber arrangement is used to move the flapper valves. For instance, the flapper valves in the downhole tool are moved to the open position by actuating the shift and lock mechanism. In this embodiment, the shift and lock mechanism is actuated when a pressure differential between an ambient chamber and tubing pressure in the bore of the tool reaches a predetermined pressure. The chamber is formed at the surface between two seals. As the tool is lowered into the wellbore, a hydrostatic pressure is developed which causes a pressure differential between the pressure in the chamber and the bore of the tool. At a predetermined differential pressure, a shear pin (not shown) is sheared, thereby causing the spring to uncompress and shift the shifting sleeve toward the lower sub in order to release the flapper valves and start the opening sequence. The shear pin may be selected based upon the depth location in the wellbore that the shift and lock mechanism is to be actuated.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/761,229, filed Jun. 11, 2007 now U.S. Pat. No. 7,673,689, which claims benefit of U.S. provisional patent application Ser. No. 60/804,547, filed Jun. 12, 2006. Each of the aforementioned related patent applications is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1871536 | Le Bus | Aug 1932 | A |
2064247 | Evans | Dec 1936 | A |
3687157 | Whitmer | Aug 1972 | A |
4154303 | Fournier | May 1979 | A |
4161985 | Fournier et al. | Jul 1979 | A |
4220206 | Van Winkle | Sep 1980 | A |
4378818 | Cormier, Jr. | Apr 1983 | A |
4469179 | Crow et al. | Sep 1984 | A |
4561630 | McCulloch | Dec 1985 | A |
4926945 | Pringle et al. | May 1990 | A |
5095937 | LeBlanc et al. | Mar 1992 | A |
5141020 | Sunderhaus et al. | Aug 1992 | A |
5236009 | Ackroyd | Aug 1993 | A |
5372193 | French | Dec 1994 | A |
5810087 | Patel | Sep 1998 | A |
5857523 | Edwards | Jan 1999 | A |
5950733 | Patel | Sep 1999 | A |
6015014 | Macleod et al. | Jan 2000 | A |
6152224 | French | Nov 2000 | A |
6220355 | French | Apr 2001 | B1 |
6230808 | French et al. | May 2001 | B1 |
6286594 | French | Sep 2001 | B1 |
6289991 | French | Sep 2001 | B1 |
6328109 | Pringle et al. | Dec 2001 | B1 |
6334633 | Nguyen et al. | Jan 2002 | B1 |
6494269 | French et al. | Dec 2002 | B2 |
6508309 | French | Jan 2003 | B1 |
6595296 | French | Jul 2003 | B1 |
6840321 | Restarick et al. | Jan 2005 | B2 |
6904975 | Horne et al. | Jun 2005 | B2 |
7204315 | Pia | Apr 2007 | B2 |
20020070028 | Garcia et al. | Jun 2002 | A1 |
20040020657 | Patel | Feb 2004 | A1 |
20080245531 | Noske et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
2 313 610 | Dec 1997 | GB |
2 411 193 | Aug 2005 | GB |
2 439 187 | Dec 2007 | GB |
WO 2006081015 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080210431 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60804547 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11761229 | Jun 2007 | US |
Child | 12061475 | US |