The present disclosure pertains to flame sensing and ignition and particularly to precipitation resistant mechanisms for sensing and igniting pilots.
The disclosure reveals a system having a flame rod assembly for operation in a high temperature pilot burner. The assembly is designed for operation in temperatures from about −40 to 1100 degrees C. The system may operate in inclement weather involving high speed winds and significant amounts of moisture and rain. The system incorporates an electrical apparatus which may provide flame sensing and ignition via the flame rod assembly incorporating a quick drying insulator around the rod.
a and 3b are diagrams of configurations of a flame rod assembly for a pilot burner; and
An industrial process flare may need a computerized electronic management system to continuously monitor the existence of its pilot flame. This may be to ensure that the flare will ignite when the need arises. As electronic management technology advances, a closed loop feedback time cycle required may decrease. However, related art flame monitoring technology is currently not necessarily providing adequate response times.
Ionization flame rod technology may indicate an existence of a flame virtually instantaneously. Because of extreme environmental conditions, a product is needed for use in flare pilot applications. The product may utilize several characteristics to overcome various challenges. A location of the flame rod may ensure that it will work continuously in high wind speed environments. A hermetic seal and a particular profile of a rod insulator may keep heavy rain and moisture from causing a failure of the flame rod. A signal cable connected to the rod at the insulator should be of the type that can withstand high temperatures. The materials and manufacturing processes may allow the resultant flame rod product to withstand very high temperatures during an operational life. Also, such product may be rapidly self-drying. These considerations may differentiate the present flame rod product from other flame rod technology in terms of reliability and service life, thus giving a holder of the present flare rod product a competitive advantage in the flare and flare pilot market.
The present product may contain a limited number of parts. The flame rod and its threaded connections may be either cast or machined from a steel or stainless steel alloy (selected as required for service). The insulator may be made of any suitable insulating material, such as ceramic. The insulator material may be cast with a specific geometry and attached to a flame rod at the end connections via a high temperature coupling with brazing or welding. “Brazing” or “welding” may be referred to as “brazing” herein. “High temperature” brazing may withstand temperatures at least up to 1100 degrees Celsius (C.) (2012 degrees F.). The brazing process may satisfy specifications for integrity and temperature requirements. Results of high temperature brazing may withstand temperatures equal to or greater than about 815 degrees C. (1500 degrees F.). The high temperature brazing process may involve a use of alloys incorporating materials such as chromium, nickel, and other like materials. Ordinary or low temperature brazing may involve a use of materials such as copper, silver, and the like.
A signal cable attached to the flame rod may have a high temperature rating sufficient for the operating conditions. An example flame rod product may meet geometrical requirements as revealed in
An ignition/flame rod for a flare may provide flame ignition through sparking and detection through ionization detection in a pilot for a flare system. The product may be exposed to extreme temperatures (i.e., −40 to 1100 degrees C.). The product may be mounted several hundred of feet above the ground in the air, or mounted close to the ground, or somewhere in between. The product needs to withstand the extreme temperatures without having its performance affected. The product should be robust enough to have at least five years of life without issues, which may be the typical lifecycle of a refinery between service times. Detection should be reliable at a six-sigma level and be without false positives.
In sum, certain aspects of the present product may incorporate self drying capabilities, a temperature resistance up to 1100 Celsius degrees, and a combination of detection and ignition capabilities. Particularly, the ceramic insulator may have self-drying capabilities. Likewise, the flame rod may have self-drying capabilities.
The flame rod may be made of a high temperature, high performance (HP) alloy, to withstand the severe temperatures produced both by the pilot flame and by the flare flame. The rod may be connected to a longer rod or tubing made of a high temperature resistant alloy. An electrical signal may be transmitted through a naked rod/tubing to a wire several feet below and then to an electric box. The electric box may provide a carrier voltage for ionized gas detection from the pilot flame through a flame relay and another voltage for sparking through a high voltage transformer. A switch may allow an electrical passage selectively between the two devices. The switch box may be placed at a ground level. Two ceramic insulators may provide protection against short circuiting and may be placed in the upper part of the unit, where the naked rod is the distance between the two ceramic assemblies (
A ceramic insulator assembly may be provided. A flame rod may be purchased and inserted in the ceramic insulator. High temperature alloy tubing or a rod may be attached to the bottom end of the insulator assembly with a coupling. The second ceramic insulator assembly may be inserted in the high temperature alloy tubing or rod. A wire may be attached to the bottom part of the assembly and run all the way to the switch box. The switch box may be placed at grade, or where the customer specifies, and it may be connected to the electric power source.
The present approach and apparatus may be used for assuring that a flame from pilot 11 is present for flare 12. Pilot 11 may incorporate a pilot burner 21 which provides the flame which is present for flare 12 in case the flare needs to be ignited to obtain a flame 17 to burn off gas or whatever is provided via tube or stack 13. A tube 22 may provide an air and fuel mixture for sustaining the flame of the burner 21 of pilot 11. A tube 23 with screen and/or deflector 24 may provide a flame front generator (FFG) for igniting the pilot burner 21 in situations where the flame of the pilot burner 21 has ceased. A tube 25 may be connected to tube 22. Tube 25 may provide high energy (capacitance discharge) ignition up stream of the fuel air mixture delivery to burner 21 from tube 22. Tubes 23 and 25 may provide alternate forms of ignition for the pilot burner 21. In burner 21, there may be a thermocouple and line 26 which may determine whether or not burner 21 is operating with a measurement of temperature at the burner. Thermocouple and line 26 may be connected to a temperature indicator 64. A concern may be a slow indication of temperature change at burner 21. The slow indication may imply that if the pilot flame at burner 21 goes out, there may be a delay for the burner 21 assembly to cool down sufficiently to reveal an absence of the pilot 11 flame, and then for an ignition of the pilot flame to occur. Heat from the pilot main flame 17 may inadvertently heat the thermocouple 26 when the pilot flame is extinguished causing a false positive indication of the presence of flame at the pilot burner 21.
A high temperature cable 37 may be attached to the end of a rod 39 with a crimp connection, screw connection, braze or weld. Cable 37 may be to go through pipe or conduit 36 to an electrical switch mechanism 38.
Rod 32 may be regarded as a multi-mode device. In one mode, rod 32 may be a part of an ionization device for detecting whether the pilot burner 21 flame is on or not. The detecting may be nearly instantaneous. In another mode, rod 32 may be part of an ignition device for igniting the gas/air mixture to pilot burner 21 in an event that the flame in the pilot burner has been extinguished. An operating carrier voltage to rod 32 in an ionization or detection mode may, for instance, be in a range from 100 to 200 volts. The noted operating detection voltage range is an illustrative example but may be of other ranges. The operating voltage to rod 32 in an ignition mode may be in a range from 10 to 20 thousand volts. The noted operating ignition voltage range is an illustrative example but may be of other ranges. Switch mechanism 38 may provide a selected voltage to rod 32 via rod 39 and cable 37. Rods 32 and 39 in some approaches as may instead be a one-piece rod.
Insulator 34 may be for high voltage isolation (i.e., up to 20,000 volts) of rod 32 from various items in the environment. The rod 39 portion in insulator 34 may be hermetically sealed from the environment. Insulator 34 may have a corrugated shape or other advantageous shape on its external portion to prevent the various items, such as heavy rain, from causing electrical shorts or failures. Insulator 34 may be positioned relative to flame 17 and/or flame 21 so as to be dried almost instantly. Insulator 34 may be fabricated from other suitable insulating materials besides ceramic.
A structure 82 may hold and support tube 22, tube 23, tube 25, tube 36 and thermocouple line 26.
When a flame is emitted by pilot burner 21, the combustion process may create and move a field of ionized gas 81 as a part of the burner flame. An effect of an ionized gas field 81 in the flame may result in an electrical voltage or potential occurring between the metal burner 21 and flame rod 32, as rod 32 may be situated through an opening 79 of burner 21 to be in the ionized gas field 81. The voltage may be conveyed over a carrier signal emitted by a flame rod signal amplifier 42. The signal may be conveyed from rod 32 via coupling 33, rod 39, coupling 35, cable 37, switch 38 and line 43 to amplifier 42 for conditioning into a useful signal at an output 44. Amplifier 42 and burner 21 may be connected to a common ground 63.
Output 44 may indicate whether there is a flame in the pilot burner 21. If there is no flame, then output 44 via a processor 45 may cause electrical box 38 to send a very high voltage from voltage source 46 via line 47 to rod 32 in form of a spark to ignite the fuel/air mixture from tube 22 so as to re-light the pilot burner 21. Voltage source 46 and burner 21 may be connected to the common ground 63.
Switch 38, processor 45, signal amplifier 42 and high voltage source 48 may assembled together as illustrated or alternately constructed together into a single electrical device. Alternately, switch 38, processor 45, signal amplifier 42 and high voltage source 46 may be constructed in any combination of combined devices.
a is a diagram of a configuration of a stainless steel flame rod 65 assembly situated in a pilot burner 66. A ceramic insulator 67 may be situated on flame rod 65 with compression fittings 68 and 69 brazed to or compressed against and sealing to the ceramic at the ends of insulator 67. A high temperature cable 71 may be connected to rod 65 at fitting 69. A mounting bracket 72 may be secured around ceramic insulator 67.
b is a diagram of another configuration of a flame rod 65 assembly. Fittings 68 and 69 may be brazed to the ends of ceramic insulator 67 to secure it to rod 65. Rod 65 may be bent for another kind of a burner. Rod 65 may have an insulator 73 on a portion of the rod near the burner. A ring-like bracket 74 on insulator 73 may be welded or brazed to a pilot tip.
With reference to
The position the insulators 34, 67 and 78 from the flare 12 and burner 21 may vary relative to the size of the flare flame 17 and/or the burner 21 flame. However, if the flare flame 17 is extinguished, for instance in a case where there is no material available for burn-off, then the burner 21 flame needs to be sufficiently large or hot enough to keep the insulator dry at virtually all times even for a short period when the burner 21 flame may be accidentally or intentionally be extinguished for some reason. In case of such extinguishment, the insulator should be sufficiently hot enough to maintain a dry condition in a worse case environment of precipitation for a period of time long enough (e.g., thermal inertia) until burner 21 can be relit with a flame.
The length of the insulators 34, 67 and 78 should be sufficiently long enough and thick enough to prevent arcing between the rod and, for example a grounded component such as a support strap, during a conveyance of a high voltage via the rod during an igniting of burner 21. The needed length, thickness and/or diameter of the insulators may depend on the magnitude of the ignition voltage. Also, the dimensions (e.g., diameter, thickness and length) of the insulators should be sufficient so that leakage of ionization signals for indicating a presence or non-presence of a burner 21 flame is sufficiently small so that the signals are strong enough at the recipient end for detection. The material content of the insulator should also have a very small conductance factor. Ceramic may be an example of such insulator material.
The shape of insulators 34, 67 and 78 may aid in reduction of the effects of precipitation on the insulators. An example design may incorporate a corrugated external surface on the insulators. The shape of the insulators may be selected from a variety of designs. Further, the insulators may have straight and/or curved configurations. Other design factors of the insulators may be implemented.
In sum, the factors of insulators 34, 67 and 78 such as position relative to and distance from flare 12 and/or burner 21, insulator temperature, length, thickness, diameter, material content, shape, configuration and other factors may be interdependent (e.g., in terms of quantification) in that, for example, a strong factor may compensate for a weak factor. The design and layout of the flare 12 and burner 21 may indicate factors needed for effective insulators. The location and environment of the flare and burner may indicate considerations such as cold, humid, hot, dry, windy, calm and other conditions, which may dictate needed specifics for insulators.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
The present application is a continuation-in-part of U.S. patent application Ser. No. 12/905,309, filed Oct. 15, 2010, and entitled “A Rapidly Self-Drying Rectifying Flame Rod”. U.S. patent application Ser. No. 12/905,309, filed Oct. 15, 2010, is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12905309 | Oct 2010 | US |
Child | 13352830 | US |