Not applicable.
Embodiments disclosed herein relate generally to a flare tip assembly used in the combustion of gases in flare stacks for the destruction of combustible vapors in various applications, including those on oil and gas production pads, crude oil tank batteries, midstream liquified natural gas processing facilities, offshore platforms, and refining and petrochemical applications during normal and emergency operations, for efficient combustion of both low pressure vapors and high pressure vapors in a single stack, as the embodiments can safely flare both sub sonic and sonic flows.
For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
While certain embodiments will be described in connection with the preferred illustrative embodiments shown herein, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by claims. In the drawing figures, which are not to scale, the same reference numerals are used throughout the description and in the drawing figures for components and elements having the same structure, purpose or function.
Turning now to the detailed description of the preferred arrangement or arrangements of various embodiments of the present invention, it should be understood that, although an illustrative implementation of one or more embodiments are provided below, the inventive features and concepts may be manifested in other arrangements and that the scope of the invention is not limited to the embodiments described or illustrated. The various specific embodiments may be implemented using any number of techniques known by persons of ordinary skill in the art. The disclosure should in no way be limited to the illustrative embodiments, drawings, and/or techniques illustrated below, including the exemplary designs and implementations illustrated and described herein. The scope of the invention is intended only to be limited by the scope of the claims that follow. Furthermore, the disclosure may be modified within the scope of the appended claims along with their full scope of equivalents.
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the disclosure and do not limit the scope of the disclosure.
The present disclosure will now be described more fully hereinafter with reference to the accompanying figures and drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. Likewise, a reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, devices, components, or systems. The following detailed description is, therefore, not intended to be taken in a limiting sense.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter include combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and”, “or”, or “and/or,” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
As shown in
As shown in
The nozzle tube 101 can include machined slots (not shown), spaced along the length of the nozzle tube 101 for attaching centering guides 105. Within the nozzle tube 101 there is a connecting rod 108 that extends within the nozzle tube 101 along the nozzle tube 101's longitudinal axis. The connecting rod 108 passes through the centering guides 105 installed in the nozzle tube 101 and extends into the spring assembly 109. The connecting rod 108 also extends through an anti-rotation slotted guide 119 (
At the end of the connecting rod 108 that is opposite to the spring assembly 109, a cone shaped structure 104 is connected to the connecting rod 108. In one embodiment, the cone 104 is attached to the connecting rod 108 by welding a substantially flat shaped cone 104 bottom to the connecting rod 108, which is attached at the bottom center of the cone 104. In other embodiments, the cone 104 is integrally formed with the connecting rod 108, or the cone 104 is connected to the connecting rod 108 using a threaded connector, or the cone 104 is connected to the connecting rod 108 using a pinned connection, or the connecting rod 108 extends up through the cone 104 and is connected to the bottom of a concaved section 112 of the cone 104 body, or any combination thereof and the like. See e.g.,
The cone 104 is preferably a machined cone with a concave top 112 having a taper with a cone angle of between 15° and 80°, such as 30°, 45°, 60°, 75° and other angles, from the top to the bottom. See e.g.,
In one embodiment, the cone 104 is designed such that the tapered end sits within a seat formed by the chamfered end 103 of the nozzle tube 101. See e.g.,
In an embodiment of the present invention, the cone 104 and tubular firing orifices 111 are configured to minimize the use of purge gas and/or velocity reduction devices in order to prevent bum back inside the nozzle tube 101 and flare stack (not shown). For example, in an embodiment of the present invention, no or minimum purge gas is required. In an embodiment of the present invention, the tip design minimizes and or does away with the need of purge gas and/or velocity seals used to prevent the back flow of combustible gases back into the nozzle tube 101 and flare stack (not shown) during low fire conditions, For example, in one embodiment this is achieved due to the cone 104 shape with the concave top 112, with a cone 104 angle of between 15° and 80°, along with the multiple tangential tubular orifices 111 that pass through the cone 104 body starting in the concave face 112 and passing through the cone 104 at an angle. See e.g.,
Around the perimeter of the nozzle tube 101 there are gusset halves 106 for lower shroud 107 mounting. See e.g.,
In one embodiment, there are a number of spaced openings 115 around the perimeter of the top of the upper shroud 114. See e.g.,
The shape of the tapered cone 104 with a concave top 112, and use of the tangential firing orifices 111, and use of upper shroud 114 with openings 115, aid to induce a vortex flow which creates more turbulence when mixing the fuel stream with the annular air flow between the nozzle tube 101 and lower shroud 107, thus allow for a stable flame attachment in both low and high pressure flow conditions, providing a high turndown ratio configuration, See e.g.,
In one embodiment, during normal low-pressure operation the fuel, such as a hydrocarbon-based waste stream, is introduced to the fuel inlet on the base of an elevated flare stack (not shown) and will travel up through the stack and exit out of the nozzle tube 101/cone 104 assembly. In one embodiment, if this is a low-pressure stream, for example less than one pound per square inch gauge (PSIG) pressure, the cone 104 is completely seated at the chamfered end 103 of nozzle tube 101, with the fuel stream only passing through the firing orifices 111. This low-pressure flow is ignited as it exits the firing orifices 111 by the pilot and the concave top 112 of the cone 104 is designed to further create a low-pressure zone of recirculation to maintain stability. Air is drawn into the bottom of the lower shroud 107 in a low-pressure case as the result of a draft created from heating the air inside the shroud 107. In one embodiment, the spring assembly 109 is configured allow cone 104 to move upward and unseat from the chamfered end 103 of nozzle tube 101 as the pressure is increased inside the nozzle tube 101. See e.g.,
Referring to
Above certain fuel pressure which is enough to overcome the spring tension and gravitational force of cone 104, rod 108 and spring assembly 109, the cone 104 tip will lift up creating more open area for the gas flow. The lifting distance of cone 104 is related to fuel pressure allowing for a design that adjusts the open area for various conditions while also being capable of firing variable range of fuels compositions. The flare tip assembly 100 is designed so that the cone 104 will start to lift and rise until full open within an appropriate gas pressure range, achieving better fuel/air mixing and also preventing high upstream back pressure. To create more tension in order to keep the cone 104 tip from becoming fully open at a low pressure stiffer springs should be used in the system. For example, in an embodiment of the present invention, six (6) polywave springs can be used for the spring assembly 109. For example, during testing, using six (6) polywave springs, the system became fully open at about 4-5 PSIG. In a further aspect of an embodiment of the present invention, the configuration of the spring assembly 109, and cone 104 design yield a larger turndown capability, keeping the fuel gas exit velocity within the design range by preventing the system from opening fully too early. The spring assembly 109 is designed to have a spacer (not shown) that will allow variable tension loading to add more flexibility.
In one embodiment, this apparatus, when mounted on an elevated flare stack (not shown) facilitates the mixing of fuel and air across a wide range of fuel pressures, allowing for the efficient combustion of the fuel stream, with ninety-eight percent (98%) or higher destruction efficiency and with no visible smoke. In a further aspect of an embodiment of the present invention, the flare tip assembly 100 including cone 104, firing orifices 111, spring assembly 109 and shroud 114 with openings 115 is designed based on the maximum flow rate that is required and the maximum available gas pressure, while maintaining acceptable gas velocity at exit of shroud 114.
In one embodiment of the present invention, the flare tip assembly 100 provides a greater than 200 to 1 turndown ratio of the flare. In a further aspect of an embodiment of the present invention, the cone 104 geometry design and inclusion of firing orifices 111 allows for accommodating low and high-pressure vent gas eliminating the need for multiple flares (e.g., a low-pressure flare assembly and a high-pressure flare assembly). See e.g.,
Further examples of flare capacity curves for various single flare tip assemblies in accordance with an embodiment of the present invention are shown in
As shown in
As shown in
As shown in
As shown in
In a further aspect of an embodiment of the present invention, the upper shroud 114 length, openings 115 quantity, size, and placement further allow for accommodating low and high-pressure vent gas eliminating the need for multiple flares (e.g., a low-pressure flare assembly and a high pressure flare assembly).
This flare tip assembly 100 can be used in a wide range of applications and in certain situations negate the need for multiple flares or pieces of combustion equipment as it can safely flare both sub sonic and sonic flows. It would be suited for applications including those on oil and gas production pads, crude oil tank batteries, midstream liquified natural gas processing facilities, offshore platforms, and refining and petrochemical applications. Embodiments of the present invention can be used in conjunction with other smoke-reducing technologies, such as air-assisted flare, steam-assisted flare for handling heavier fuels and other applications that have poor air/fuel mixing. As mentioned earlier, embodiments of the present invention can be installed on flare stacks for elevated flares. Furthermore, they can also be used for ground flares, enclosed combustors and other combustion devices including thermal oxidizers, etc. Serial and/or parallel uses of multiple embodiments of the present invention can be arranged for applications such as multi-point ground and/or elevated flaring.
Although the apparatuses and methods described herein have been described in detail, it should be understood that various changes, substitutions, and alterations can be made without departing from the spirit and scope of the invention as defined by the following claims. Those skilled in the art may be able to study the exemplar embodiments and identify other ways to practice the invention that are not exactly as described herein. It is the intent of the inventor that variations and equivalents of the invention are within the scope of the claims while the description, abstract and drawings are not to be used to limit the scope of the invention. The invention is specifically intended to be as broad as the claims below and their equivalents.
This application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/807,819 filed Feb. 20, 2019, titled “FLARE TIP ASSEMBLY,” the disclosure of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2363098 | Tullis | Nov 1944 | A |
2802521 | Campbell et al. | Aug 1957 | A |
3833337 | Desty | Sep 1974 | A |
3915622 | Desty | Oct 1975 | A |
4021189 | Swann | May 1977 | A |
5086982 | Hirano | Feb 1992 | A |
5975885 | Rajewski | Nov 1999 | A |
6442771 | Meier | Sep 2002 | B1 |
8800895 | Hicks et al. | Aug 2014 | B2 |
9267686 | Little et al. | Feb 2016 | B1 |
9368806 | Noh et al. | Jun 2016 | B2 |
9464804 | Tremblay et al. | Oct 2016 | B2 |
9644356 | Gass | May 2017 | B1 |
9816704 | Noman et al. | Nov 2017 | B2 |
20090117505 | Okayasu | May 2009 | A1 |
20140027914 | Tomizawa et al. | Jan 2014 | A1 |
20140329186 | McClain | Nov 2014 | A1 |
20140329190 | McClain et al. | Nov 2014 | A1 |
20150050604 | Griffin | Feb 2015 | A1 |
20150316257 | Skachkov et al. | Nov 2015 | A1 |
20160178197 | Rayssiguier | Jun 2016 | A1 |
20200332999 | Chanbers et al. | Oct 2020 | A1 |
20200340671 | Hong | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2236224 | Apr 1998 | CA |
2216250 | Feb 1968 | GB |
1459087 | Dec 1976 | GB |
2136555 | Sep 1984 | GB |
2216250 | Apr 1989 | GB |
20170116950 | Oct 2017 | KR |
Entry |
---|
GBA Flare Systems; Flare and Vent Tips, Structures, Pilot and Ignition Systems, Ancillary Equpment; www.gba.com; 15 pages. |
Number | Date | Country | |
---|---|---|---|
20200309368 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62807819 | Feb 2019 | US |