This disclosure is related to metal fabrication tools, and more specifically is related to flaring and swaging metal fabrication tools, and methods using the same.
Fitting metal tubes together often requires manual pounding or pressing of the ends of the metal tubes, so as to modify the ends to fit together. Fitting can be a very laborious and imprecise process. A few models of tools in the market are available to perform flares and swages, the majority being concentric flaring and swaging tools and eccentric flaring tools:
Disclosed subject matter provides flaring and swaging tools that avoid or reduce risk of cracking in the wall of tube being fitted. In an embodiment, flaring and swaging tools do not create flares or swages at room temperature, and thus do not harden the flared material to an undesirable degree, in this manner do not increase the risk of cracking the wall of the tube.
Disclosed subject matter eliminates the need for using an extra clamping tool when flaring and swaging, and eliminates the labor and time for a technician to couple the tube into a clamping tool. Disclosed subject matter eliminates the performing of flaring and swaging at room temperature, and thus avoids contributing to undesirable brittleness and susceptibility or risk of the wall cracking during fitting or thereafter, such as during expansion of the tube. In an embodiment, swaging and flaring tools require reduced or minimal spaced compared to previous tools, and methods for swaging and flaring with tools as disclosed may be performed during tube installation by a technician in less space than for previous tools and methods.
Disclosed subject matter may provide a rotary insert. The rotary insert may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry. The at least one stage portion may comprise rounded edges.
The disclosure may further comprise a system. The system may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry. The at least one stage portion may comprise rounded edges. The system may further comprise a drill engaging at least a portion of the shank portion.
The disclosed subject matter may further provide a method for flaring a tube. The method may comprise spinning a rotary insert coupled to one of a drill or screwdriver. The insert may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry. The at least one stage portion may comprise rounded edges. The tip may further comprise a flared bottom portion. The flared bottom portion may be affixed between the stopper portion and the at least one stage portion. At least two edges of the flared bottom portion may slope from the tip to the stopper portion.
In an embodiment, a method may further comprise inserting the rotary insert into an interior surface of a tube to cause friction between the tip and an interior surface of the tube, to increase the diameter of at least a portion of the tube, to create a flare, and to increase structural quality of the tube from heat provided to the tube.
The disclosure may further provide a method for swaging a tube. The method may comprise spinning a rotary insert coupled to one of a drill or screwdriver. The insert may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry. The at least one stage portion may comprise rounded edges.
A method may further comprise inserting the rotary insert into an interior surface of a tube to cause friction between the tip and an interior surface of the tube, to increase the diameter of at least a portion of the tube, and to increase structural quality of the tube from heat provided to the tube.
FIG. 20 is a perspective view of a rotary insert embodying features disclosed herein.
FIG. 21 is a perspective view of an unflared and unflanged metal tube.
FIG. 22 is a perspective view of a the tube of FIG. 21 flared/flanged with the rotary insert of FIG. 20.
FIG. 23 is a side view of a rotary insert with one flanging/flaring stage.
FIG. 24 is a side view of a rotary insert with multiple flanging/flaring stages.
FIG. 25 is an end view showing edges of the flanging/flaring stages of the rotary insert of FIG. 24.
Reference now should be made to the drawings, in which the same reference numbers are used throughout the different figures to designate the same components.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element discussed below could be termed a second element without departing from the teachings of the present disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
The present disclosure describes a metallic insert which, in some implementations, can be coupled into a rotary actuated mechanism, to flare or swage metallic tube ends. The actuation of the insert, in some implementations, can be performed by “drills” or “screwdrivers” and, as a final result, the insert is capable of creating flares and swages in metallic tubes, especially tubes applied to “split” air conditioning connection systems, refrigeration connection systems, and transportation of liquefied petroleum gas and any other similar tube, being much quicker and more resistant to cracks than conventional technology, due to the heat created by the friction of the insert spinning inside the metallic tube.
In embodiments, the insert may provide, to a tube, a flared opening at at least one of the tube's ends, such as, but not limited to, a 45 degree angle.
In embodiments, the insert may provide, to a tube, a swaged opening at at least one of the tube's ends, which may allow for the coupling of another tube with the same, or a larger, diameter.
In embodiments, the insert may provide, to a tube, a swaging opening with a flared opening, which may allow for the coupling of another tube with the same, or a larger, diameter.
Many industrial segments, especially the Heating, Ventilation and Air Conditioning (HVAC) industry, demand tools and equipment to simplify their day to day work, in order to optimize and reduce the production and work times. For example, there is a need to swage and flare metallic tubes of heat exchangers, such as copper tubes and aluminum tubes, to both manufacture condensating and evaporating units for residential, commercial, and industrial applications.
It will be understood that, as used herein, “tube” may include pipe or piping having a round, tubular cross section.
Conventionally, there are many mechanisms to obtain a swaged or flared tube.
In embodiments, the bits may provide the ability to be coupled to a number of drills or screwdrivers.
In embodiments, a single flaring bit may provide the ability to create multiple flares in metallic tubes with different diameters without needing to use one or more other bits.
In embodiment, the bits do not need to be utilized with any clamping tools or holders during or after operation.
In embodiments, the bits may be utilized to perform a flare or swage at a hot temperature in order to avoid material hardening and, subsequently, cracking.
In embodiments, the bits may comprise a homogeneous and resistant microstructure due to the high temperature at which the bits may be formed.
During an air conditioning installation, especially the split types of air conditioners, at least four flaring are necessary for the installation. The split type air conditioners comprise two units: an indoor unit and an outdoor unit. To connect the outdoor unit and the indoor unit and make the two air conditioner units work together, the use of copper or aluminum tubes is required. Each tube has a different diameter, varying according to the refrigeration capacity of the equipment. As an example, for R-22 air conditioners, 7,000 BTUs/hour and 9,000 BTUs/hour equipment generally requires one ¼″ tube and one ⅜″ tube, while 12,000 BTUs/hour and 18,000 BTUs/hour equipment generally requires one ½″ tube and one ¼″ tube.
In embodiments, the rotary inserts 600, 700, 1000, 1100, 1200 in
In embodiments, the rotary insert 500, 600, 700 for the flaring of metallic tubes (
In embodiments, the bits may be composed of separate parts that may be connected by any connection method, including but not limited to, screwing, gluing, welding, etc.
Whenever a metallic tube is cut, the cutting may create sharp inner edges around the perimeter of the metallic tube due to material deformation and design of the cutting tool. In embodiments, the swaging and flaring tips design may allow for the removal of sharp edges from the tube and may not permit the tube to crack easily.
In embodiments, the tips may not require any clamping or holding tool to perform a flare or swage in a metallic tube because the strength required to keep the metallic tube in position is low so a user can keep the tubes in the right position using his hands. The friction and ensuing heat generation (from the rotation of the tips) facilitate the shape formation of the flare or swage, which may increase malleability in the flared or swaged tip of the metallic tube. The lack of hardening in the flared or swaged tip may prevent cracking at the flared or swaged tube end during the assembling of a metallic tube with a valve using a connection nut, which is a recurring problem during any air conditioning installation.
The method 1800 may further comprise inserting 1840 the rotary insert into an interior surface of a tube to cause friction between the tip and an interior surface of the tube, to increase the diameter of at least a portion of the tube, to create a flare, and to increase structural quality of the tube from heat provided to the tube.
The method 1900 may further comprise inserting 1940 the rotary insert into an interior surface of a tube to cause friction between the tip and an interior surface of the tube, to increase the diameter of at least a portion of the tube, and to increase structural quality of the tube from heat provided to the tube.
In embodiments, the flaring or swaging tips may be handled more easily than traditional flaring or swaging tools. In embodiments, the flaring or swaging tips may save a technician time when completing a job.
In embodiments, a rotary insert may be provided. The rotary insert may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry (such as that in
In embodiments, a system may be provided. The system may comprise a shank portion comprising a top end, a bottom end, and a body. The insert may further comprise a stopper portion coupled to one of the top end and the bottom end of the shank portion. The stopper portion may comprise a top surface and a bottom surface. The insert may further comprise a tip comprising at least one stage portion coupled to one of the top surface and the bottom surface of the stopper portion along an axis of symmetry (such as that in
In embodiments, each of the at least one stage portion may be different in diameter than each of the other at least one stage portion.
In embodiments, the insert may be formed as a single element. In embodiments, the single element insert may be formed using a mold.
In embodiments, the insert may be formed from more than one element. For example, the shank portion, the stopper portion, and the tip may be single elements that may be affixed to one another. In embodiments, the separate elements may be welded together.
In embodiments, the insert may comprise metal. In embodiments, the insert may comprise ceramic.
In embodiments, the tip may further comprise a flared bottom portion. The flared bottom may be affixed between the stopper portion and the at least one stage portion. At least two edges of the flared bottom portion may slope from the tip to the stopper portion.
In embodiments, the rounded edges may be equal in diameter.
In embodiments, the insert may comprise one stage portion. In embodiments, the insert may comprise two stage portions.
For the purposes of this disclosure, the term “insert” may refer to the end of a bit that may be inserted and secured within a drill or screwdriver.
For the purposes of this disclosure, the terms “tube” and “pipe” may be synonymous.
In embodiments, a flaring or swaging bit may comprise more than two stages.
In embodiments, any of the embodiments of a rotary insert may comprise a shank portion 40. The shank portion 40 may be configured to fit within a mandrel, such as, but not limited to, a mandrel in a screwdriver or a drill.
In embodiments, any of the embodiments of a rotary insert may comprise a stopper portion 50. The stopper portion 50 may be found between a swaging tip and a shank portion 40 or (if a flaring bit) between a flared bottom and a shank portion 40. The stopper portion 50 may prevent a flaring or swaging bit from being inserted more than a certain length into a metallic tube.
In embodiments, the stopper portion 50 may comprise a single stage, such as that in
In embodiments, the stopper portion 50 may be a shape other than that of a cylinder such as, but not limited to a rectangular prism, a hexagonal prism, and an octagonal prism.
In embodiments, inserts may be formed as a single element.
In embodiments, inserts may be formed from more than one element.
In embodiments, tubes to be flared or swaged may comprise polymer.
In embodiments, tubes to be flared or swaged may comprise wood.
For the purposes of this disclosure, the terms “stage” and “stage portion” may be synonymous.
In embodiments, the disclosure may provide optimization of the flaring or swaging process and optimization of time for altering metallic tubes for air conditioning installations, altering tubes for refrigeration applications, altering tubes for liquefied petroleum gas systems, or any similar flared or swaged connections. In embodiments, the flaring and swaging bits may improve the final quality of a flare or swage by adding heat through constant friction to a flared or swaged area, which may create a stronger micro structure.
Although specific embodiments are illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose can be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the embodiments and disclosure. For example, although described in terminology and terms common to the field referenced hereinabove, one of ordinary skill in the art will appreciate that implementations can be made for other systems, apparatus or methods that provide the required function. In particular, one of ordinary skill in the art will readily appreciate that the names of the methods and apparatus are not intended to limit embodiments or the disclosure. Furthermore, additional methods, steps, and apparatus can be added to the components, functions can be rearranged among the components, and new components to correspond to future enhancements and physical devices used in embodiments can be introduced without departing from the scope of embodiments and the disclosure. One of skill in the art will readily recognize that embodiments are applicable to future systems, apparatus and processes. Terminology used in the present disclosure is intended to include all environments and alternate technologies which provide the same functionality described herein.
Inserted herein is text from certified English language translation of the Specification of PCT Application No. PCT/BR2013/00379, filed 30 Sep. 2013 (published as WO 2015/042674 on 2 Apr. 2015), which was incorporated by reference in U.S. patent application Ser. No. 14/947,537, as noted above. References to the FIGS. 5-10 have been amended to refer to FIGS. 20-25.
The present invention refers to a metal insert that must be coupled to a rotary drive mechanism, for flanging/widening the ends of metal tubes. The insert drive can be made by using “drills” or “screwdrivers” and, as a final result, it is capable of making flanges in specially applied metal tubes, and “split” type air conditioning system connections, refrigeration systems connections and liquefied petroleum gas transport systems connections and similar, being faster than the current state of the art, due to the heating generated by the rotation of the insert inside the metal tube.
Therefore, the insert is intended to form:
The industrial sectors, notably the industry and commerce of refrigeration, demand equipment that simplifies, optimizes and reduces production and labor time. As an example, the need for widening and shaping flange in metal tubes of heat exchangers, such as copper tubes and aluminum tubes, for the manufacture of condensing and evaporation units, in home applications, commercial and industrial lines can be highlighted.
The present patent application is directly related to patent PI0902047-0 A2, which clearly denotes the characteristics of the connection where flanged tubes are applied. However, it differs in that it refers to the method of obtaining the shape of the flanged tube or, as denoted in patent PI0902047-0 A2 cited above, “angled tube.”
Currently, there are several mechanisms of obtaining a flanged tube. However, they are differentials of the object of the present invention:
Initially, referring to the current state of the art, there are two models of flanging tools present on the market, called a) “conventional flanging tool” and b) “eccentric flanging tool”:
Although both promote the final shape of the flange, the current state of the art requires the use of a “mordant” (tailstock) for shaping the flange. The coupling of the tube to the “mordant” and the flange execution takes a long time to execute because, in the case of split type air conditioning applications, it is necessary, for example, to make a total of four flanges per equipment. That is, two flanges per tube, these tubes being necessarily of two different gauges. In addition, due to their conception, both make the cold tube conformation, hardening the flanged material, incurring the risk of cracks in the flange wall.
Referring now to the rotating Insert for flanging and widening of metal tubes, called drill for flanging, it allows the execution of the widening and/or flanging of metal tubes through a system of interchangeable inserts. These inserts can be coupled to drills (whether with a chuck or pneumatic coupling) or even to electric screwdrivers.
Insert (FIG. 20) can be subdivided into the following parts:
Therefore, the invention differs from the current state of the art in several aspects. First, because the insert does not need a tailstock (“mordant”) system to perform the flange in the metal tube. Since the strength required to hold the pipe in the working position is low, the user himself can maintain the positioning of the flanged pipe by hands. Second, as it works through a high rotation system, it is present friction and heating generation in the pipe, facilitating the hot shaping of the flange, without hardening in the region of the tube flange. The absence of hardening in the flange region avoids cracking problems during the tightening of the connection, a problem that is recurrent in the current state of the art. Third, the invention allows the presence of one or more gauges within the same insert, with different diameters, reducing the time of flanges execution, especially in the installation of split type air conditioners, being able of flanging different tube sizes using only one single insert.
The main objective of the insert in question is, therefore, to optimize the working time, due to its speed and ease of operation and to bring a higher quality result, considering the heating of the tube when flanged with the insert and its best microstructural result with greater strength.
Regarding the applicability of the product, the present invention aims to optimize the process and time of a flange in metal tubes for split type air conditioning systems, but it is not restricted to them. It can also be applied in flange type connections, in tubes for refrigeration applications or even in tube connections for systems that use liquefied petroleum gas.
This application is a reissue of U.S. Pat. No. 9,550,223, which issued from U.S. patent application Ser. No. 14/947,537, filed 20 Nov. 2015, which is a continuation-in-part of PCT Application Serial No. PCT/BR2013/000379 filed 30 Sep. 2013, and pending,all of which isare hereby incorporated by reference in its entiretytheir entireties.
Number | Name | Date | Kind |
---|---|---|---|
2924263 | Landis | Feb 1960 | A |
5983496 | Hermanson | Nov 1999 | A |
7578161 | Sizemore | Aug 2009 | B1 |
7650772 | Minor | Jan 2010 | B2 |
9550223 | Anjos | Jan 2017 | B2 |
20080006074 | Gaydusek | Jan 2008 | A1 |
20130140739 | Backlund | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
8606077 | Jun 1988 | BR |
9202764 | Mar 1993 | BR |
201895046 | Jul 2011 | CN |
202667470 | Jan 2013 | CN |
1028057 | May 1953 | FR |
2209648 | Jul 1974 | FR |
2000-197935 | Jul 2000 | FR |
560324 | Mar 1944 | GB |
1204000 | Sep 1970 | GB |
S4915129 | Feb 1974 | JP |
2005-324208 | Nov 2005 | JP |
Entry |
---|
Certified Translation of FR 1.028.027, May 19, 1953. (Year: 1953). |
PCT International Preliminary Report on Patentability issued for related PCT/BR2013/000379 dated Apr. 5, 2016. |
PCT Written Opinion and Search Report issued for related PCT/BR2013/000379 dated Jan. 3, 2014 with English translation. |
Canadian Office Action issued in related Canadian Patent Application No. 2922459 dated Feb. 16, 2021. |
Canadian Office Action issued in related Canadian Patent Application No. 2922459 dated Aug. 23, 2021. |
Canadian Office Action issued in related Canadian Patent Application No. 2922459 dated Mar. 3, 2022. |
Mexican Office Action issued in related Mexican Patent Application No. MX/a/2016/003811 dated Sep. 24, 2021 with English translation. |
Mexican Office Action issued in related Mexican Patent Application No. MX/a/2016/003811 dated Apr. 15, 2021 with English translation. |
China First Office Action issued in related Chinese Patent Application No. 202010911256.3 dated Mar. 2, 2022. |
China Second Office Action issued in related Chinese Patent Application No. 202010911256.3 dated Sep. 14, 2022. |
EP Office Action issued in related European Patent Application No. 13894366.7 dated Aug. 9, 2017. |
EP Extended Search Report issued in related European Patent Application No. 13894366.7 dated May 17, 2021. |
EP Office Action issued in related European Patent Application No. 13894366.7 dated Nov. 17, 2021. |
EP Office Action issued in related European Patent Application No. 13894366.7 dated Dec. 19, 2019. |
EP Office Action issued in related European Patent Application No. 13894366.7 dated Oct. 12, 2020. |
Petition for Inter Partes review of U.S. Pat. No. 9,550,223 Pursuant to 35 U.S.C. Section 311-319, 37 CRF section 42. |
Declaration of Ian Soukup, including Curriculum Vitae. |
Excerpts from new Oxford American Dictionary (1st Edition, 2015), Oxford University Press pp. 1605 and 1775. |
Excerpts from Collins English dictionary (1st Edition, 2015) Harberg Collins Publishers, pp. 285-286 and 863. |
Excerpts from A Dictionary of Mechanical engineering (1st Edition, 2013), Oxford Press, pp. 321 and 372. |
Excerpts from Chambers Dictionary of Science and Technology (2007 Edition), Chambers Harrap publishers, Ltd., pp. 89-90 and 1064. |
Excerpts from Webster's New World College Dictionary (5th Edition, 2014), Houghton, Mifflin Harcourt, NY, pp. 40 and 101. |
Excerpts from The American heritage Dictionary of the English Language (5th Edition, 2011) Houghton, Mifflin, Harcourt, NY, pp. 125 and 1780. |
Excerpts from Longman Dictionary of American English, (5th Edition, 2014) Pearson Education Limited, pp. 32 and 598. |
Excerpts from The Cassell Dictionary of Science, (1st Edition, 1998), El Camino Collage Library, p. 220. |
European Patent Office Communication of Extended European Search Report for EP 22177371.6 dated Sep. 9, 2022. |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/BR2013/000379 | Sep 2013 | US |
Child | 14947537 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14947537 | Nov 2015 | US |
Child | 18115993 | US |